Mojgan Kamali | Massimo Merro | Alice Dal Corso

AODVv2: performance vs. loop free-
dom

Turku CENTRE for COMPUTER SCIENCE

TUCS Technical Report
No 1177, February 2017

1

AODVv2: performance vs. loop free-
dom

Mojgan Kamali
Abo Akademi University, Faculty of Science and Engineering,
the Agora building, 3rd floor, room 341A, Vesilinnantie 5, 20500 Turku, Finland
mojgan.kamali@abo.fi

Massimo Merro
University of Verona, Department of Computer Science,

Strada Le Grazie 15 - 37134 Verona, Italy
massimo.merro@univr.it

Alice Dal Corso
University of Verona, Department of Computer Science,

alice.dal_corso@studenti.univr.it

TUCS Technical Report
No 1177, February 2017

Abstract

In this paper, we focus on two different evolutions of Ad-hoc On-demand Distance
Vector (AODV) routing protocol, i.e., DYMO and AODVv2. We investigate the
performance of these protocols as well as check the protocols for loop freedom.
We sketch how DYMO can cause routing loops whereas AODVv2 can overcome
this issue by paying the price of degraded performance. Our modelling and anal-
ysis are carried out by the Uppaal Statistical Model Checker (SMC).

Keywords: Mobile Ad-hoc Networks, Reactive routing Protocol, Statistical Model
Checking, Performance, Loop Freedom

TUCS Laboratory
Distributed Systems Laboratory

1 Introduction

Wireless Networks are on the rise from the more obvious laptops and smart phones
in use everywhere, to sensor networks generating large amount of data, and to en-
visioned electrical cars being charged wirelessly. Ad hoc networking among wire-
less communication has gained popularity and is applied in a wide range of ap-
plication areas, such as public safety, emergency response networks, etc. Mobile
Ad-hoc Networks (MANETS) are self-configuring networks that support broad-
band communication without relying on any wired infrastructure. Therefore, they
provide faster and low-cost network deployment. In these networks, nodes can
move freely through the network causing the links to appear or to fail.

Routing protocols of ad-hoc networks are main factors determining the perfor-
mance and reliability of these networks. They specify the way of communication
among different nodes by finding appropriate paths on which data packets must be
sent in the network. These routing protocols are divided into two main categories:
reactive and proactive routing protocols. Reactive protocols find alternative routes
on demand whenever needed whereas proactive protocols find different routes in
advance by exchanging control messages through the network. Two examples of
reactive and proactive routing protocols are Ad-hoc On-demand Distance Vector
(AODV) [[1'7] and Optimised Link State Routing (OLSR) [5]], respectively.

In this work, we have focused on two evolutions of the AODV routing protocol
to investigate their performance and their ability to cause routing loops. AODV
is one the four protocols standardised by the IETF MANET working group. The
protocol is intended to first establish a route between a source node and a desti-
nation node (route discovery), and then maintain a route between the two nodes
during topology changes (route maintenance). Different studies of protocols es-
pecially for large scale networks are mostly done by simulation techniques and
test-bed experiments. These are valuable techniques for performance analysis,
however it is not feasible to simulate the systems for all possible scenarios. As
a consequence, unexpected behaviour and flaws appear many years after the de-
velopment of protocols. Since AODV works on-demand, routers only maintain
distance information for nodes reached during route discovery, meaning as soon
as a packet is injected into the system, the protocol starts finding routes whereas
in proactive protocols this is not the case.

Proactive protocols find different routes in advance by exchanging control
messages through the network which bears the benefit that routes to different des-
tinations are available. As a consequence if a packet is injected into the network,
it can rapidly be delivered to the destination.

In addition, the protocol’s specification are written in English prose (available
as RFCs) in order to provide the opportunity for the reader to read and understand
the protocol behaviour. However this makes RFCs easy to understand, it may lead
to ambiguities and different interpretations of the same specification causing to
different implementations.

Formal methods as mathematical languages and techniques, complement al-
ternatives such as test-bed experiments and simulation approaches, and provide
valuable tools for designing and verifying MANET routing protocols. They al-
low the sketching of protocols in a precise manner and provide counter examples
to diagnose their flaws. As such, they have a great potential for improving the
precision of design and development. As a case in point, a model checking [4]
technique is a powerful approach used for validating key correctness properties
in finite representations of a formal system model. Statistical Model checking
(SMC) [20] is a technique combining testing techniques and formal verification.
It relies on choosing sampling traces of the system and verifying if they satisfy
the given property with a certain probability. In contrast to exhaustive approach,
a simulation-based technique does not assure a 100% correct result, but it is pos-
sible to restrict the probability of an error occurring. In other words, it is possible
to specify the number of runs that the simulator must perform to guarantee the
level of required precision; as the higher precision of the analysis is required, the
number of runs increases.

In this work, we apply Uppaal SMC [/, the extension of the Uppaal model
checker [1]], which allows the automata to be probabilistic. In Uppaal SMC the
two main statistical parameters « and ¢ in the interval [0, 1] must be specified.
The tool provides a value in the confidence interval [p — €, p + €] indicating the
probability p of the intended property. Parameters o and e represent the proba-
bility of false negatives and probabilistic uncertainty, respectively. Our work has
been strongly motivated by the recent version of the AODVv2 Internet draft [19]
in which there are several modifications to the protocol to overcome the looping
problem of AODV and DYMO (DYMO is the evolution of AODV protocol that
has better performance due to the path accumulation [6]). Loop freedom is a criti-
cal and challenging property for any routing protocol, especially routing protocols
of MANETS. A loop in the routing table is an established route stored in the rout-
ing table at a specific point in time that visits the same node more than one time
before the intended destination is reached [9]]. Caught packets in a routing loop
can saturate the links and decrease the network performance. Several studies have
shown that AODV and DYMO suffer from routing loops [3}8.|12, 16].

In previous versions of AODV specification, when a node sends a request to
find a path to a specific destination, the receiving intermediate nodes could send
the reply back to the route request originator (if they have valid information about
the destination node) and provide the information about the path to the destination
node (route reply messages from intermediate nodes were the main factors caus-
ing routing loops). In the current version of AODV specification, no intermediate
node is able to send the route reply back to any route request even if valid infor-
mation about the destination of the route request is provided in the intermediate
node, meaning that the route request has to travel to the destination node and the
destination is only responsible for sending back the route reply. This behaviour
will increase the time needed for route discovery (routing tables in AODVv2 are

2

not updated as often as they are updated in DYMO), leading to decrease the per-
formance of the protocol.

Contributions: Our first contribution is to model the core functionality of the
AODV V2 protocol [19]. Second, we investigate the performance of DYMdI] and
AODVV2 in terms of route discovery, number of route entries, optimal route find-
ing, and packet delivery. As the third contribution, we analyse the ability of both
protocols to create routing loops. We show how the modifications of AODVv2
help the protocol to have no loop by paying the price of degraded performance.

Outline: The paper is structured as follows: in Section 2] we overview the two
generations of the AODV protocol and in Section [3| we briefly discuss the Uppaal
models of the two protocols based on their English specifications ([18] and [[19])).
Sections {]and [5]are the core of our paper where we present the results of our anal-
ysis w.r.t. the performance and loop analysis, respectively. We draw conclusions
and review related work, as well as propose future research directions, in Section

6l

2 DYMO and AODVv2: two generations of reactive
routing protocols

This section provides a brief overview of DYMO and AODVv2 protocols. In
both protocols, each node maintains a routing table (R1") containing information
about the routes to be followed when sending messages to the other nodes of the
network. In particular, for each destination node n a routing table provides an
entry containing the following information: (i) the name of the destination node
(say n); (ii) the number of hops necessary to reach n; (iii) the neighbour node in
the route towards n; (iv) a destination sequence number to represent how recent
the information is: the higher the sequence number is, the more recent the path
will be; (v) a validity flag for that entry. The collective information in the nodes’
routing table is at best a partial representation of network connectivity as it was at
some times in the past; in the most general scenario, mobility together with node
and communication failures continually modify that representation.

In Figure[I] we report a scheme of the DYMO protocol on a network of four
nodes in a line topology: a source s, a destination d, and two intermediate nodes [
and m. We also provide a graphical representation of the flow of messages: dashed
arrows denote the broadcast of route request packets (rreq), while continuous
arrows denote the unicast sending of route reply packets (rrep). More precisely,
suppose the source node s wishes to send a message to the destination node d. In

"We use our modified DYMO model, originally developed in [13], for our experiments. The
modified model is available in http://users.abo.fi/mokamali/FORTE2017.

http://users.abo.fi/mokamali/FORTE2017

* rreq, s, d, Sseq, Dseq, 0

* rreq, s, d, Sseq, Dseq, [, 1

* rreq, s, d, Sseq, Dseq, l&m, 2
m : rrep,s,d, Dseq,0

[rrep, s,d, Dseq', m, 1

s rrep, s,d, Dseq’, m&l, 2

~3 a3 <o
DT

@, rreq | @ rreq @ rreq | @
rrep rrep rrep
Figure 1: The DYMO routing protocol.

order to perform the sending, s will look up an entry for d in its routing table. If
there is no such entry it will launch a route discovery procedure to find a route to
d. The protocol works as follows:

e The source s generating a route request packet increases its sequence num-
ber and broadcasts the route request packet of the form (rreq, s, d, Sseq
Dseq, intms, hc). Here, the fields s and d denote the IP addresses of source
and destination, respectively. The Sseq field contains the source sequence
number, i.e. the current sequence number to be used in routing table entries
pointing towards the source node s. The Dseq field is the destination se-
quence number containing the latest sequence number received in the past
by the source node s for any route towards the destination d; this number is
0 if d is unknown to s. The field intms denotes intermediate nodes on the
way (accumulated path) from the message originator to the receiving node.
DYMO uses the concept of path accumulation: whenever a control message
travels via more than one node, information about al!/ intermediate nodes is
stored in the message. In this way, a node receiving a message establishes
routes to all other intermediate nodes. Initially, there is no entry when the
source broadcasts rreq. The path is accumulated later when the rreq is
rebroadcast via intermediate nodes. The hop-count field hc keeps track of
the number of hops from the source node to the node handling the request.
Initially, this field is set to 0.

e When the intermediate node [receives the route request, it acts as follows:

1. It looks up the pair (s, Sseq) in its routing table to verify whether the
request has already been processed. If this is the case, the request is
discarded and the processing stops. Otherwise, the pair is entered into
the routing table, the routing table is updated for s and correspond-
ing intms, so that future requests from s with the same Sseq will be
discarded.

2. Then, [looks up an entry for d in its routing table. If there is such an
entry, with destination sequence number greater than or equal to the
Dseq, then [increases its sequence number and a route reply packet is
sent back to the source and to the destination. By this, DYMO estab-
lishes bidirectional routes between originator and destination. When
an intermediate node initiates a route reply, it unicasts a message back
to the originator of the request, but at the same time it forwards a route
reply to the intended destination of the route request. In this manner
the destination node gets all information about intermediate nodes. If
[does not have any entry with a destination sequence number greater
than or equal to the Dseq, it adds itself as the intermediate node of
rreq and then re-broadcasts the route request with the Ac field incre-
mented by one.

e Node m will repeat the same steps executed by node /.

e Whenever the destination d receives the route request, it increases its se-
quence number first and then sends to m a unicast reply packet of the form
(rrep, s, d, Dseq’, intms, hc). Here, the source address and the destina-
tion address are copied from the incoming request, while the destination
sequence number is possibly updated according to d’s sequence number
which is unique to d. The intms represents intermediate nodes from the
message originator toward the receiving node. Initially, there is no entry
and the path is accumulated later when the rrep is unicast via intermediate
nodes. The hop-count field is set to 0.

e The reply packet then follows the reverse path towards node s increasing
the Ac field at each hop. Each node receiving the reply packet will update
the routing table entry associated with d and intms if one of the following
conditions is met: (i) no route to d is known; (ii) the sequence number in
the route reply packet is greater than that stored in the routing table; (iii) the
sequence numbers are equal but the new route is shorter. In this way, nodes
on the reverse route learn the route to d.

Nodes also monitor the status of alternative active routes to different destina-
tions. Upon detecting the breakage of a link in an active route, an rerr message
is broadcast to notify the other nodes about the link failure. The rerr message
contains the information about those destinations that are no longer reachable to-
ward the broken link. When a node receives an rerr from its neighbours, it
invalidates the corresponding route entry for the unreachable destination.

The architecture of the AODVv2 protocol [19]] is quite similar to that of DYMO
considering some differences. Here we highlight the design differences between
the two protocols.

e AODVv2’s mechanism for managing duplicate rreq messages is based
on checking the local route message set. This set contains the informa-
tion about recently received rreq, e.g., source address, sequence number,
destination address and metric. Whenever AODVvV2 receives a rreq, it
compares the newly received messages with this set to decide whether that
request should be processed or discarded.

e AODVYv2 establishes bidirectional routes between originator and destina-
tion. One of the main difference of AODVV2 is to avoid sending rrep by
intermediate nodes. When AODVv2 broadcasts a rreq, it waits to get the
rrep back only from the destination of the rreq. It means that intermedi-
ate nodes do not send the rreps to the source of the rreq even if they have
active routes through the destination node. This behaviour will increase the
time needed for route discovery (routing tables in AODVv2 are not updated
as often as they are updated in DYMO), decreasing the performance of the
protocol.

2.1 Degrading performance to avoid routing loops

In this section, we sketch how the two protocols differ in terms of performance
and loops by providing an example of a potential loop in DYMO. We also discuss
how AODVv2 protocol pays the price to remain loop free. Different studies have
proved the presence of loops in DYMO protocol [16]. Here, we draw a simple
example to show how a loop can appear in DYMO.

0 =07

Figure 2: Presence of a loop in DYMO.

The network in Table [2] consists of three nodes that are connected in a linear
topology (the red lines depict the connectivity between nodes). Let’s assume that

6

node s has a pkt to send to node d. It initiates the route discovery and broadcasts
a rreq. Node i gets the rreq, updates its routing table for node s, adds itself
as an intermediate node in the rreq of s, and rebroadcasts the rreq, Fig. P(1).
Node s and d receive the rreq. Node s drops the message since the received
message is its own rreq and node d updates its routing table for node s and i
and since it is the rreq destination, it sends a rrep back through the path to the
originator of the rregq, i.e., node s. Node i gets the rrep from d, updates its
routing table for d, adds itself as an intermediate node in rrep of d and sends the
rrep to s. Finally, node s receives the rrep of d, Fig. [2[(1), updates its routing
table for 1 and d and sends the pkt to node i to be delivered to d, Fig. @2).

Afterwards, the link between s and i breaks and node i has a pkt to send
to s. Node i becomes aware of the link breakage and broadcasts an rerr to its
neighbours. Assume the rerr from 1 is lost in the reception of d, resulting in
node d not being notified about the link breakage, Fig. [2(3). Next when node i
has another pkt to send to s, and it knows already that there is no valid route
to s, it initiates a rreq to its neighbours. Node d receives the rreq and it has
the valid route to s. Node d, as the intermediate node, sends the rrep to i, Fig.
[2J4). Node i receives the rrep from d and updates its routing table for node s
with new information. In this situation, node i sends its pkt to d since node i’s
next hop through s is d. Node d then sends the pkt to i as node d’s next hop
through s is i. Finally, the pkt is circulated in a loop, Fig. [2(5).

Protocol designers have overcome the looping problem of DYMO by incor-
porating several changes in the new version (AODVv2). In this current version,
if route discovery is initiated the intermediate nodes which have active routes
through the destination do not send the rrep to the originator, meaning that the
destination of the rreq has sole responsibility for sending the rrep back to the
originator. By this, they have solved the problem of having loops in the network,
but the performance level has decreased.

In AODVvV2, the routing tables can be updated if:

® “If AdvRte is more recent than all matching LocalRoutes.

e If the sequence numbers are equal, Check that AdvRte is safe against routing loops compared to all
matching LocalRoutes, If LoopFree(AdvRte, LocalRoute) returns TRUE, compare route costs:

—If AdvRte is better than all matching LocalRoutes, it MUST be used to update the Local Route Set
because it offers improvement.

—If AdvRte is not better (i.e., it is worse or equal) but LocalRoute is Invalid, AdvRte SHOULD be used
to update the Local Route Set because it can safely repair the existing Invalid LocalRoute.” [[[19]], page 28]

Here, LocalRoutes stores the previously received messages, AdvRte con-
tains the information about newly received message, and LoopFree (AdvRte,
LocalRoute) := (Cost (AdvRte) <= Cost (LocalRoute)).

100-loss 100-loss
addmsg(msg_global) addmsg(msg_global)

isconnected(sip,ip)
rrep[sip][ip]?

{ 100-loss
' addmsg(msg_global)
\

s T N

N
isconnected(sip,ip)
rreg([sip]?

nextmsg()!'=0 && idle[ip]
imsglip]!

N
N ,'\sconnected(swp,\p)
! rerr[sip]?

isconnected(sip,ip)
pkt[sip][ip]?
addmsg(msg_global)

newpkt[ip][tip]?

create_msg(), -
addmsg(createpkt(tip,ip)))

delete_msg()

Figure 3: Queue(ip) model.

There are more conditions in the specification of the AODVv2 protocol in-
dicating when to update routing tables, leading to less information being stored
in the routing tables, hereby decreasing the performance. For instance, routing
tables in AODVV2 are not updated in the scenario where sequence numbers are
the same, the message is received via a longer path, and the link toward a des-
tination is broken, whereas updating in this situation helps to repair the broken
paths. In addition, the sending of rrep by intermediate nodes is not specified
in AODVv2. This leads to routes being established more slowly than in DYMO,
since the rreq has to travel all the way to the destination node and rrep has
to be sent back along the whole path, from the rreqg destination to the rreqg
originator.

3 Uppaal Models of AODVv2 and DYMO

In this section, we briefly explain our AODVv2 automata and provide some mod-
ifications of the Uppaal SMC model of [13]] for DYMO. Both protocols are repre-
sented as parallel compositions of node processes, where each process is a parallel
composition of two timed automata, the Handler and the Queue. This is be-
cause each node maintains a message queue to store incoming messages and a
process for handling these messages; the workflow of the handler depends on the
type of the message. Communication between nodes i and j is only feasible if
they are neighbours, i.e. in the transmission range of each other. This is mod-
elled by predicates of the form isconnected[i|[j] which are true if and only if i
and j can communicate. Communication between different nodes i and j are on
channels with different names, according to the type of the control message being
delivered (rrep, rreq, rerr).

The Queue of a node ip for the three protocols is depicted in Figure
Messages from other nodes are stored in the queue. Only messages sent by
nodes within the transmission range may be received. Unlike the model of [13]]
our Queue is essentially a probabilistic timed automata. Uppaal SMC features

branching edges with associated weights for the probabilistic extension. Thus we
define an integer constant loss, with 0 < loss < 100, and a node can either lose
a message, i.e., rreq, rrep and rerr, with weight loss or receive them with
weight 100—loss.

The Handler automaton, modelling the message-handling protocol, is far
more complicated and has around 22 locations. The implementation of the two
protocols differs for this automaton. The Handler is busy while sending mes-
sages, and can only accept one message from the Queue once it has completely
finished handling the previous message. Whenever it is not processing a message
and there are messages stored in the Queue, the Queue and the Handler syn-
chronise via channel imsg[ip|, transferring the relevant message data from the
Queue to the Handler. According to the specification of the protocol, the most
time consuming activity is the communication between nodes, which takes 40 ms
on average. This is modelled in the Handler by means of a clock variable t,
set to 0 before transmission, so that a delay of between 35 and 45 ms is selected
uniformly at random.

Based on DYMO and AODVv?2 specifications, rregs can be resent the max-
imum of 3 times in the presence of message loss. We have considered this be-
haviour when modelling AODVv2 in Uppaal. The major difference of AODVv2
that distinguishes it from DYMO, is the absence of using intermediate rreps
and also updating the routing tables. As we explained in Section [2, AODVv2
tries to find the whole path through the destination node and it does not rely on
the rreps from intermediate nodes that have routes through the destination node
(intermediate nodes do not generate any rrep message even if they have active
routes through the destination node). We have considered this behaviour when
modelling AODVv2 in Uppaa

Changes w.r.t. DYMO automaton:

The modified DYMO handler is depicted in Fig 4]

e In the DYMO model by [[13]], two connected nodes could get disconnected
while a node is waiting to transmit a message (waiting time of 40 ms), which
could cause a potential deadlock in the system. For our experiments, we
modify this behaviour and assume that two connected nodes cannot get dis-
connected during this period of time which is the case in reality (the proba-
bility that two nodes disconnect upon communication is too low).

e We minimised the DYMO automaton of [13]] by removing a number of re-
dundant locations and transitions that were modelling the same procedure,
Figl] (1,9, 11, 15).

>The reader can consult our models at |http://users.abo.fi/mokamali/
FORTE2017

http://users.abo.fi/mokamali/FORTE2017
http://users.abo.fi/mokamali/FORTE2017

We have also modelled the resending of rreqg for the maximum number of
3 times, when control messages, i.e., rreq, rrep and rerr, can get lost.
This was done by adding new locations and transitions, Fig 4] (2).

In the current version of DYMO Uppaal model, when a node receives a
message from its neighbour it first checks the message sequence number. If
it is recent then it updates its routing table for the message originator and
for the stored intermediate nodes in the message. If the sequence number is
not recent, the message is simply dropped without any routing table update

Fig[] (7, 14).

We changed the guards of transition (3) in Fig [4] since there was a contra-
diction in the guards of the transition (rt [msg_local.tip] .nhop==
&& rt [msg_local.tip] .nhop!=0).

We removed condition rt [msg_local.tip] .nhop==0 from the guards
of transitions (4, 5) in Fig @] as the condition was redundant. In other words,
if rt [msg_local.tip] .nhop==0, meaning that the next node along
the path to the destination has not been updated previously which is equiva-
lentto !rt [msg_local.tip] .f_flag (valid route has not been found

yet).

We changed the type of deliver variable from boolean to an array with
integer type to keep track of delivered packets used in our experiments Fig

(6).

We modified the guards of transitions (8, 10, 13) FigEf} This was due to the
fact that the connectivity between nodes was not checked properly. When a
destination or intermediate node is replying back to the source of the rregq,
the connectivity between the that node and next node along the path to the
originator of the rreq must be checked.

We modified the synchronisation channels on the transitions (8, 12) since
the node that is replying back has to be synchronised with the next node
along the path to the originator of the rreq.

We modified the update of variable pending. This variable is set to 1 for
the rreq destination when a rreq is broadcast through the network and it
is assigned to O later when the rrep was sent back to the originator of the
rreqin transition (16) in Fig[d] In the previous model, variable pending
was assigned to 1 for the rreq destination and was assigned to O later for
the rrep destination which is the originator of the rreq, meaning that
this variable was not updated for the corresponding node. In the current
model, We assign variable pending to 1 for the rreq destination when
broadcasting a rreq and later we assign 0 to this variable for the rrep
originator which is the destination of the rregq.

10

e We changed the type of msg_global, ips_global, sgns_global and
dists_global variables from meta variables to the types that we had
defined for our model.

4 Performance analysis on static grids

We replay the experiments of [13] to compare DYMO, and AODVv2 on a 3x3
grid (9 nodes) with possibly lossy channels as well as one more property, namely
the packet delivery property. We consider four different workbenches to compare
the two protocols : (i) a probabilistic analysis to estimate the ability to success-
fully complete the protocol finding the requested routes for a number of properly
chosen scenarios; (i1) a quantitative analysis to determine the average number of
routes found during the routing process in the same scenarios; (iii) a qualitative
analysis to verify how good (i.e. short) are the routes found by the routing proto-
col. (iv) a probabilistic analysis to investigate the number of delivered packets to
their corresponding destinations. We conduct our experiments using the follow-
ing set-up: (1) 2.3 GHz Intel Quad-Core 17, with 16GB memory, running the Mac
OS X 10.9 “Maverick” operating system; (ii) Uppaal SMC model-checker 64-bit
version 4.1.19. The statistical parameters of false negatives («) and probabilistic
uncertainty (¢) are both set to 0.05 -yielding a confidence level of 95%. For each
experiment with these parameters, Uppaal SMC checks several hundred runs of
the model, up to 738 runs in the worst case. We run our experiments for the mes-
sage loss rates used in [6]], namely 0%, 10% and 30%, and then also for 40% to
obtain more precise results.

4.1 Successful route requests

In the first set of experiments we consider four specific nodes: A, B, C and D; each
with particular originator/destination roles. Our scenarios are a generalisation of
those of [13]] (as we consider larger networks) and assign roles as follows:

(i) A is the only originator sending a packet first to B and afterwards to C;
(i1) A is sending to B first and then B is also sending to C;
(iii) A is sending to B first and then C is sending to D.

Up to symmetry, varying the nodes A, B, C and D on a 3x3 grid, we have 5184
different configurations. From this number we deduct 4518 configurations be-
cause they make little sense in our analysis, as the source and the destination node
coincide. This calculation yields 666 different experiments. This gives 10656
experiments in total for each protocol, since we repeat simulations for each com-
bination of four loss rates and four experiments.

11

‘ loss=0% ‘ stand. dev. ‘ loss=10% ‘ stand. dev. ‘ loss=30% ‘ stand .dev. ‘ loss=40% ‘ stand. dev.
0.951 0.000 0.951 0.000 0.886 0.058 0.650 0.145
0.951 0.000 0.950 0.001 0.718 0.147 0.449 0.201

DYMO
AODVv2

Table 1: Probability analysis on 3x3 grid-static network (o = € = 0.05).

Initially, for each scenario no routes are known, i.e. the routing tables of each
node are empty. Then, with a time gap of 35-45 ms, two of the distinct nodes
receive a data packet and have to find routes to the packet’s destinations. The
query in Uppaal SMC syntax has the following shape:

Pr[<=10000] (<> (tester.final && emptybuffers() &&
art [OIP1][DIP1l].nhop!=0 && art[OIP2][DIP2].nhop!=0))

The first two conditions require the protocol to complete; here, tester refers
to a process which injects to the originators nodes (tester.final means that
all data packets have been injected), and the function emptybuffers () checks
whether the nodes’ message queue are empty. The third and the fourth conditions
require that two different route requests are established. Here, art [o] [d].nhop
is the next hop in o’s routing table entry for destination d. As soon as this value
is set (is different to 0), a route to d has been established. Thus, the whole query
asks for the probability estimate (Pr) satisfying the CTL-path expression within
10000 time units (ms); as in [[13]] this bound is chosen as a conservative upper
bound to ensure that the analyser explores paths to a depth where the protocol is
guaranteed to have terminated.

In Table |1| we provide the results of our query on the two models. More pre-
cisely, we report the average probability to satisfy the required property in all 666
different configurations. This is done for the four different loss rates. Note that
in the case of perfect communication, our analysis shows that the probability to
successfully establish a required route in our setting can be estimated to be at least
0.95. We should add here that increasing the message loss rate leads an increase
in the number of runs to complete the simulation. This is because unreliable com-
munication channels make the routing process longer in order to resent control
messages.

We can see that on the 3x3 grid with perfect communication the reliability
of the two protocols is quite similar. However, in the presence of message loss,
DYMO performs better than AODVv2. In fact, the higher the loss rate, the bigger
the gap between the two protocols. More precisely, with a 10% loss rate DYMO
performs better than AODVv2, whereas with 30% and 40% loss rate the gap be-
tween two protocols becomes more obvious (DYMO performs much better than
AODVvV2). It should be also noticed that the results of the simulations on DYMO
are more homogeneously distributed around the average probability, as it appears
from the smaller standard deviation.

12

‘ loss 0% ‘ stand. dev. ‘ loss 10% ‘ stand. dev. ‘ loss 30% ‘ stand. dev. ‘ loss=40% ‘ stand. dev.
37.268 7.678 37.416 6.189 34.661 5.891 31.247 5.461
34.564 5.945 34.393 5.744 34.548 5.928 31.616 5.436

DYMO
AODVV2

Table 2: Route quantity on 3x3 grid-static network (738 runs for each experiment).

4.2 Number of route entries

The second analysis proposed in [13] takes into account the capability to build
other routes while establishing a route between two specific nodes. Routing tables
are updated whenever control messages are received. Both protocols update for
the whole discovered paths by forcing path accumulation (storing the information
about intermediate nodes in control messages).

We do that by checking the property

E[<=10000, 738] (max:total_knowledge ())

where the function total_knowledge () counts the number of non-empty en-
tries appearing in all routing tables built along a run of the protocol, and the func-
tion max returns the largest of these numbers among all runs of the simulation.
This calculation is done for all different configurations; the result of the analysis
is the average over all configurations. The reader should notice that this kind of
query is different from the previous one. It has the formE[..] (. .), where the
letter “E” stands for value estimation, as the result of the query is a value and
not a probability. Since value estimation does not fix the statistical parameters o
and ¢, from which it is determined the number of runs, we set 738 runs for our
simulations to guarantee a 95% confidence level.

We repeat the same analysis of [13]] on our 3x3 grid by considering four differ-
ent loss rates. In total we did 2664 experiments, one for each configuration with a
different loss rate.

The results of our analysis are reported in Table[2] Table [2] shows that during
the routing process DYMO establishes more routes than AODVv2 (37 versus 34
routes), in the absence of message loss. This gap remains the same when having
10% message loss rate. The analysis shows that increasing the rate of the message
loss leads to have similar behaviour of DYMO and AODVv2 (having the same
number of route entries).

4.3 Optimal routes

The results of the previous section tell us that in our 3x3 grid, DYMO is more
efficient than AODVv2 in populating routing tables while establishing routing
requests.

In this section we provide a class of experiments to compare the ability of two
protocols in establishing optimal routes, i.e. routes of minimal length, according
to the network topology. As explained in [[13,|15], all ad-hoc routing protocols

13

based on rreg-broadcast can establish non-optimal routes when, for instance,
the destination node does not forward the rreg-message. This phenomenon is
more evident in a scenario with an unreliable communication medium.

We replay the same experiments of [[13]. We checked the following property:

Pr[<=10000] (<> (tester.final && emptybuffers () &&
art [OIP1][DIP1l].hops==min_path &&
art [OIP2][DIP2].hops==min_pathl)).

Here, the third and the fourth conditions require that two different route requests
are established. In fact, art [o][d].hops returns the number of hops neces-
sary to reach the destination node d from the originator o, according to o’s rout-
ing table. Furthermore, we require this number to be equal to the length of the
corresponding optimal route (which has been previously computed).

In this experiment we are not interested in checking all non-empty routing
entries but only those which are directly involved in the two routing requests.
This property is checked on all 666 configurations with four different loss rates.
Notice that this time we ask for a probability estimation, so the result is going to
be a probability. The statistical parameters of our simulations are o« = € = 0.05.

‘ loss 0% ‘ stand. dev. ‘ loss 10% ‘ stand. dev. ‘ loss 30% ‘ stand. dev. ‘ loss=40% ‘ stand. dev.

0.911 0.184 0.840 0.177 0.672 0.163 0.446 0.162
0.914 0.178 0.826 0.175 0.587 0.175 0.377 0.188

DYMO
AODVv2

Table 3: Optimal routing on 3x3 grid-static network (o = € = 0.05).

Table [3] says that the probability to establish optimal routes in the two routing
protocols is very close when having no message loss.

Actually, in the presence of message loss, there is still a gap in favour of
DYMO. This gap would become bigger if we would focus only on the optimality
of the second route request, which is launched slightly after the first one. This
is because DYMO works better than AODVv2 when routing tables are non com-
pletely empty.

4.4 Packet delivery

The packet delivery property differs from the successful route request property, in
that the route establishment property only checks if the source node has the infor-
mation about the destination node, however the packet delivery property checks if
the injected packets are delivered to the destination at the end. Indeed, there might
be a situation where an originator node has the information about the destination
node and sends its packet to the next node along the path to the destination node,
but the next node itself does not have any information about the destination node.
As a consequence, all the packets stemming from the originator node will be lost,
hence the packets cannot arrive at the destinations.
This property in Uppaal SMC syntax is as following:

14

| loss0% | stand. dev. | loss 10% | stand. dev. | loss 30% | stand. dev. | loss=40% | stand. dev.
0.951 0.000 0.951 0.000 0.784 0.099 0.503 0.162
0.893 0.126 0.858 0.119 0.423 0.097 0.195 0.078

DYMO
AODVv2

Table 4: Packet delivery on 3x3 grid-static network (o = € = 0.05).

Pr[<=10000] (<> (tester.final && emptybuffers() &&
empty_queues () == && packet_delivered()==2))

The first two conditions require the protocol to complete. Here, t ester refers to
a process which injects to the originators nodes (tester.final means that all
data packets have been injected), and the function emptybuffers () checks
whether the nodes’ message queue are empty. The third and the fourth con-
ditions require that the two packets are delivered at their destinations. Here,
empty_queues () is a function checking whether or not there is any packet
in the queue of any nodes. When this function returns 0, it shows that there is no
more packet in the queues of nodes. Function packet_delivered () returns
the number of delivered packets which must be 2 at the end, given that we have
injected two packets for our experiments. Thus, the whole query asks for the prob-
ability estimate (Pr) satisfying the CTL-path expression within 10000 time units
(ms); as in [13]] this bound is chosen as a conservative upper bound to ensure that
the analyser explores to a depth where the protocol is ensured to have terminated.

The results in Table 4] show that AODVv2 works worse than DYMO w.r.t. the
packet delivery property as it tries to find the whole path to the destination node
whereas DYMO relies on replying back from the intermediate nodes. Moreover,
routing tables in AODVv2 are not updated regularly due to the more restricted
routing table updated in AODVv2. Therefore, the probability that all packets are
delivered to the destination nodes is lower in AODVv2.

S5 Loop analysis on grids with link breakage

We run our experiments w.r.t. the looping property for a 3x3 grid where links
between nodes can break. We model link breakage by modifying the Queue au-
tomaton (depicted in Fig. [5) so that when a control message is received by the
queue of a node (using a function addmsg ()) with probability of 100-10ss,
the link between the sender node and the receiver can break with a fixed prob-
ability breaks. We assign this value to 80, so that with high probability the
link between the sender and the receiver fails as link breakage is one of the main
factors causing routing loops.

We consider four specific nodes: A, B, C and D; each with particular origina-
tor/destination roles. We assign roles as follows:

(i) A is the only originator sending the first packet to B, and afterwards sends
the second and third packets to C;

15

\ loss 0% \ loss 10% \ loss 20% \ loss 30% \ loss 40%
1 2 2 2 2
0 0 0 0 0

DYMO
AODVv2

Table 5: Number of loops in different configurations

(i1) A is sending to B first and then B is also sending the second and third
packets to C;

(iii) A is sending to B first and then C is sending the second and third pkts to D.

The second and third packets have the same originators and destinations, so
the number of configurations up to symmetry will remain the same, i.e., 666. In
our experiments we check the number of loops in all 666 different configurations
(how many loops exist in the network) and we show how many configurations
have routing loops i.e., in how many configurations an injected packet can be
circulated between nodes. To more carefully analyse loops in the network, we also
run our experiments for a 20% message loss rate in addition to the four message
loss rates we used for performance analysis. This gives 3330 experiments in total
for each protocol. For simplicity we maintain the same number of runs as for
performance analysis, i.e., 738. Our experiments can be represented using the
following Uppaal SMC syntax:

E[<=10000; 738] (max:numberofloops())

Function numberofloops () returns an integer value which reflects the num-
ber of loops found in the network. Table [5|depicts the maximum number of loops
considering different message loss rate in different configurations for both proto-
cols.

The results show that when message loss rate increases, number of loops in
the networks for DYMO also increases. For instance when having 0% message
loss, the number of loops in the network is 1 and when message loss increases to
10% or more number of loops in the network increases to 2. Unlike DYMO, the
rate of message loss rate does not have any effect on the number of loops in the
network for AODVv2 as there is no routing loop while verifying AODVv2.

| loss 0% | loss 10% | loss 20% | loss 30% | loss 40%
10‘11‘35‘13‘11

DYMO

AODVV2 0 0 0 0 0

Table 6: Number of configurations that have loops

Table [6 shows the number of configurations having loops. Results for DYMO
show with 0% message loss there are 10 configurations out of 666 that have loops
in the network. This value is increased to 11 with 10% message loss, and when
message loss is increased to 20%, the number of configurations that have loops

16

goes up to 35. The table depicts when message loss increases to 30% and 40%,
the number of configurations that have loops respectively decrease to 13 and 11.
In contrast to DYMO, there is no configuration in AODVv2 that has routing loops.
The results show that AODVv2 does not cause any routing loops.

6 Conclusion, Related Work and Future Directions

Formal analysis of MANTEs and their protocols is a challenging task, however
their formal verification have attracted the attentions from formal methods com-
munity [2,6, 11,/13,/14,|16]. There are several studies on loop freedom of AODV
and DYMO. Glabbeek et al. [12]] have studied the loop freedom of the AODV
protocol and they have showed that AODV is not loop free and sequence num-
bers do not guarantee loop freedom. Namjoshi et al. [[16]] have investigated the
looping property of DYMO and they have proved this protocol causes routing
loops. There are several other studies that confirm existence of routing loops in
AODV [3,8,(10]. Our work complements the performance analysis of [6] where
it was shown that DYMO has better performance than AODV due to the path
accumulation of DYMO.

Our work has been strongly inspired by the recent version of AODVv2 In-
ternet draft [[19] where there are several modifications to the protocol to over-
come the looping problem of DYMO. We believe that the protocol designers ac-
cepted the performance hit in order to ensure that the protocol is loop free. To the
best of our knowledge, our work is the first to investigate the looping property of
AODVV2 [19]] and compare the performance of DYMO and AODVv2.

In this paper we modelled the AODVv?2 protocol and investigated the perfor-
mance of two evolutions of the reactive protocols DYMO and AODVv2 in a 3x3
grid with possibly lossy communication as well as checking the loop freedom
property for both protocols. Our analysis is performed using the Uppaal SMC.
We have provided an Uppaal model which is in accordance with the AODVv2
standard, modelling core functionality of the protocol. We were able to show how
the performance of the more recent AODVv2 has been worsened compared to the
preceding DYMO to achieve a loop free routing protocol, i.e., AODVv2.

We investigated the performance of both protocols considering four different
properties and four different message loss rates. DYMO performs better than the
more recent AODVv2, however the results show that DYMO can cause routing
loops whereas AODVV2 is loop free. The performance analysis is carried out for
stationary networks where there is no link breakage through the network. How-
ever, we have verified the looping property of the protocols for the networks where
links between nodes can fail.

Due to the application diversity of MANETS, different protocols have been
developed. These protocols have been already implemented and deployed. How-
ever, it is unclear which protocol should be used in certain circumstances. To

17

answer these questions systematically, we aim at formally defining properties that
can be used as measurements for routing protocols. To evaluate the measurements,
we focus on comparing reactive and proactive protocols.

References

[1] Behrmann, G., David, A., Larsen, K.G.: A tutorial on Uppaal. In: Interna-
tional School on Formal Methods for the Design of Computer, Communica-
tion, and Software Systems, SFM-RT 2004. Revised Lectures. pp. 200-236
(2004)

[2] Bhargavan, K., Obradovic, D., Gunter, C.A.: Formal verification of stan-
dards for distance vector routing protocols. J. ACM 49(4), 538-576 (2002)

[3] Bres, E., Glabbeek, R., Hofner, P.: A timed process algebra for wireless net-
works with an application in routing. In: Proceedings of the 25th European
Symposium on Programming Languages and Systems - Volume 9632. pp.
95-122 (2016)

[4] Clarke, Jr., EM., Grumberg, O., Peled, D.A.: Model Checking. MIT Press
(1999)

[5] Clausen, T., Jacquet, P.: Optimized link state routing protocol (OLSR). RFC
3626 (Experimental) (2003)

[6] Dal Corso, A., Macedonio, D., Merro, M.: Statistical model checking of ad
hoc routing protocols in lossy grid networks. In: NASA Formal Methods -
7th International Symposium, NFM. pp. 112-126 (2015)

[7] David, A., Larsen, K.G., Legay, A., Mikucionis, M., Wang, Z.: Time for sta-
tistical model checking of real-time systems. In: Proceedings of the 23rd In-
ternational Conference on Computer Aided Verification. pp. 349-355 (2011)

[8] Fehnker, A., van Glabbeek, R.J., Hofner, P., Mclver, A., Portmann, M., Tan,
W.L.: A process algebra for wireless mesh networks used for modelling,
verifying and analysing AODV. CoRR abs/1312.7645 (2013)

[9] Garcia-Luna-Aceves, J.J.: A unified approach to loop-free routing using dis-
tance vectors or link states. SIGCOMM Comput. Commun. Rev. 19(4), 212—
223 (1989)

[10] Garcia-Luna-Aceves, J.J., Rangarajan, H.: A new framework for loop-free
on-demand routing using destination sequence numbers. In: 2004 IEEE In-
ternational Conference on Mobile Ad-hoc and Sensor Systems. pp. 426435
(2004)

18

[11] van Glabbeek, R., Hofner, P., Portmann, M., Tan, W.L.: Modelling and
verifying the aodv routing protocol. Distributed Computing 29(4), 279-315
(2016)

[12] van Glabbeek, R., Hofner, P., Tan, W.L., Portmann, M.: Sequence num-
bers do not guarantee loop freedom: Aodv can yield routing loops. In: Pro-
ceedings of the 16th ACM International Conference on Modeling, Analysis
and Simulation of Wireless and Mobile Systems (MSWiM’13). pp. 91-100
(2013)

[13] Hofner, P., Mclver, A.: Statistical model checking of wireless mesh routing
protocols. In: NASA Formal Methods Symposium (NFM’13). pp. 322-336
(2013)

[14] Kamali, M., Hofner, P., Kamali, M., Petre, L.: Formal analysis of proactive,
distributed routing. In: 13th International Conference on Software Engineer-
ing and Formal Methods (SEFM 2015). pp. 175-189 (2015)

[15] Miskovic, S., Knightly, E.W.: Routing primitives for wireless mesh net-
works: Design, analysis and experiments. In: INFOCOM, 2010 Proceedings
IEEE. pp. 1-9 (2010)

[16] Namjoshi, K.S., Trefler, R.J.: Loop freedom in aodvv2. In: Formal Tech-
niques for Distributed Objects, Components, and Systems - 35th IFIP WG
6.1 International Conference, FORTE 2015. pp. 98-112 (2015)

[17] Perkins, C., Belding-Royer, E., Das, S.: Ad hoc On-Demand Distance Vector
(AODV) Routing. RFC 3561 (Experimental) (2003)

[18] Perkins, C., Stan, R., Dowdell, J.: Dynamic MANET On-demand
(AODVV2) Routing draft-ietf-manet-dymo. Internet Draft 26 (2013)

[19] Perkins, C., Stan, R., Dowdell, J., Steenbrink, L., Mercieca, V.: Dynamic
MANET On-demand (AODVv2) Routing draft-ietf-manet-aodvv2. Internet
Draft 16 (2016)

[20] Sen, K., Viswanathan, M., Agha, G.A.: Vesta: A statistical model-checker
and analyzer for probabilistic systems. In: QEST. pp. 251-252 (2005)

19

—O

clk>=time_between_rreq-time_spread

clk<=time_between_rreq+time_spread _rerr[ip]!

msg_local.tip!=ip &
irt{msg_local.tip].f_flag &&
msg_local.oip!=ip

set_unodes(msg_local.tip),
invalidate(),
createerr(ip,10),
delete_msg()

clk>=time_between_rreq-time_spread

clk<=time_between_rreq+time_spread _ rrealipl
msg_local.tip!=ip &&
irtfmsg_local.tip].f_flag&&
queues[ip][msg_local.tip]++
sn=
rreqslip](sn]
pendmg[msg ol tipl=1,
empty_loc:
createirealip, 10,msg_localtp,rtimsg_localip.tsn p,sn.0),
delete_msg)

msg_local.tip!=ip &
ir{msg_local.tip].f mg &

taufip]!

counter(tip]>=discovery_attempt&&
queuesfip][tip]>0

tip:IP

counterftip]

tipIP

msg_local.msgf

rtitip].nhop!=0¢
counter(tip] <di

clk>=time_between_rreq-time pendingltip]

fscomected(t{tiptmpl o)

preada&
tip:IP

queueslip][tip]--,

queueslip][tip]>0 &&
Intip].f_flag&&

emptybuffers&&

taulipl!

typ NE & tiptmp=tip,
sn=sn+1,

rregslipl(sn]=1,

&&
scovery_attempt&&

taulip]!

msg_local.oip
queues]ip][msg. \D:a\ np]>0
queueslip][msg_local.tip]+-+,
delete_msg()

clk>=time_between_rreq-time_spread

clk<=time_between_rreq+time_spread rerripl!
msg_local.tip!=ip set_unodes(msg_local.tip),
rt[msg_local nm f_flagaé nvalidate(,
lisconnected(ip, rtimsg_local.tipl.nhop) ~ createerr(ip,10),
delete_msg()

clk>=time_between_rreq-time_spread

—O

clk

ime_between_rreq+time_spread

clk<=time_}

clk>=time_between_rreq-time_spread&&
lisconnected(ip,rt[tiptmp].nhop)

fetween_rreq-+time_spread

pklipl(rttiptmp].nhop]! counter[tip] <disco
0&&

idlelip]=1

set_unodes(tiptmp),
invalidate(,
empty_locals(),

clk>=time_between_rreq:
eq[ip]!
counter[tiptmp]++,

msg_local. msgtype==NONE &
queues[ip][tip] >0 && rt[tip].nhop==0&&

clk<=time_between_rreq+time_spread

ime_spread

very_attempt&&

tip:IP

clk>=time_between_rreq-time_spread

msg_local.tip!=ip && pkt(ip]irtimsg_local.tip).nhop]! tip:IP createerr(ip, 10), empty_| uxa\so
rtimsg_local.tipl.f_flaga& raulipl! idlelipl=1 tltiptmpl.t O—
isconnected(ip, rtimsg_local.tip].nhop) leipl=T g, Iocalmgtyper -NONE 86 lunodes_empty0 && msg_local.hop_Iimit>1 ¢ < time_between_rreq+ti
createpktimsg_local in,msg_ocal.oip) msg_local.msgtype==NONE && queues(ipltip]>0 & rerrlip]! - -
delete msgh »meg-] g queues[ip][tip] >0 && Irtltip) f_flag && invalidate(),
-msf rltip].f_flag Ipendingltipla& createerr(ip,msg_local.hop_limit-1),
tiptmptip, clk=0, idlelis}=0 counter[tip] <discovery_attempt delete_msg)
msg_local.tip==ip
packet(ip]++,
delete_msg()
PKT_pro unodes_empty() || msg_local.hop_limit<=1
L RERR_pro delete_msg()
msg_localm e==PKT taufip]!
m type==RERR
ka0 taufip]! taufip]! T_unodes. emmsg local.sip),
o
RREQ_pro WM i RREP_pro
~ tautiol taufip]! X
msg_local. msgtype==RREQ msg_local.msgtype: P
rreqs(msg_local.oip)imsg_local.osn] clk=0 clk=0 rreqs[msg_local.oip][msg_local.osn]

delete_msg()

rregs[msg_local.oipl(msg_local.osn]&&
msg_local.tip==ip

rt[msg_local. ! 1,msg_local local.sip,m:
loopfree_new(,

rreqs[msg local.oip][msg_local.osn!

_local.odist+1,RREQ),

empty_locals(,

local.odist, local

delete_msg()

msg_local.msgtype==NONE
imsglip]?

deletems90 repiipiirimsg_local.oipl.nhopl!
between reqtime.spread €>=UMe_betuzen.req-time_spreadss

upd inter0,
\uopfree new(g”« —ti

ipl.nhop)
set_unodes(msg_local.oip),
invalidate(,
createerr(ip,10), clk>=time_between_rreq-time_spread&&
delete_msg() lisconnected(ip, rt[m>g local.oip].nhop)
Irregs[msg_local.oip]imig_local.osn] && rrlip]!

msg_local.tip!=ip
rtimsg_local.tip].nhop!=!
rt[msg_local.tip]. s msq \um\ tsn&&

rt[msg_local.tip].f_flag
rtimsg_local.oip]=update(rtmsg_local.oip],msg_local.osn,msg_local.sip,msg_local.odist+1,RREQ),
loopfree_new(),

rveqs[msq local.oip]msg_local.osn]=1,
dis

receive_msg(),
idlelipl=0

Irreqs[msg_local.oiplimsg_local.osnj&&
msg_local.tip==ip

rt{msg_local. local.oip],ms;

g_local local. _local.odist+1,RREP),

loopfree_new(),
rreqs[msg_local.oip][msg_local.osn]=1,
dist_incO)

upd_inter(),

0,msg_local.tip,rtlmsg_local.tip].tsn,rt{msg_local.tip].dist))

inco, rrepliplirtimsg_local.oip].nhopl!
upd-inter0, Createrrep_spec(ip,msg_local.odist,msg_local.oip,msg_local.
loopfiee, newd, k=0

sn=sn+1 clk>=time_between_rreq-time_spread&&

\scnnnected(\p rt{msg_local.oip].nhop)
tween_rr

<=time eqztime_spread
=time_between_rreq-ti

clk>=time_between_rreq-time_spread&&
isconnected(ip,rt[msg_local.tip].nhop)
rrepliplirtimsg_local.tip].nhop]!

clk<=time Jbetween_rreq-time_spread
clk>=time_between_rreq-time_spread&&

e_spreadd& lisconnected(ip,rt[msg_local.tip].nhop)

nnected(ip, rtimsg_localloipl.nhop) set_unodes(rtimsg_local.tipl.nhop),
rerrlipl! invalidate, rerrlipl!
ket \ .nhop), createerr(ip, 10),
fnvalidate0, delete_msg)
'Ef‘ge”(‘p‘w)' cll>=time_between.rreq-time_spread &
isconnected(ip, timsg_local.t _local.tip].nhopl!

rtimsg_local.tip].dist-1,msg_local.tip,msg_lo

o

~time_bet
clk<=time_t delete_msg()

+time_sprea

clk>=time_between_rreq-time_spread &&
| [msg_local.tip].nhop) set_
invalidate(),
createerr(ip, 10),
delete_msg()

rerrlipl!

irreqs(msg_local.oipl(msg_local.osnI&&
msg_local.tip!=ip &
(rt{msg_local.tipl.nhop==0 || rtfmsg_local.tipl.tsn<msg_local.tsn|!rt(msg_local.tipl.f_flag) &
msg_local.hop_limit>=1 rtimsg_local. mp] update(rt{msg_local.oip],msg_local.osn,msg_local.sip,m{

loopfree_new(),

rreas(msg_local.oiplimsg_local.osnl=1,

dist_incO,

upd_inter(),

loopfree_new(),

add_inodes(ip,5n,0),

local.hop limit-1,msq_local.tip.msq_local.tsn.msq_local

add_inodes(msg_local.oip,msg_local.osn,msg_local.odist+1),
createrrep(ip,rtimsg_local.tip].dist-1,msg_local.tip,msg_local.tsn,
delete_msg()

Toopiree_newn,

pendingimsg_local.oip!
set_pending0), ,
Gelare msg0 "r‘veqs[ms‘g ‘\om\ oip][msg_local

rt{msg_local.tip]. nhcp‘

clk>=time_between_rreq-time_spread&&
isconnected(ip,rtimsg_local.tip].nhop)
add_inodes(ip,sn,0), rreplip]lrtimsg_local.tip!

delete_msg()

l.osnj&&

0 && rt{msg_local.tip].f_flag && msg_local.hop_limit>=1

).nhop]!

createrep(p.mss_local nop_limit-Lmsg_Iocalipmsg_localtsn,msg_local.oip,msg_localosn.msg local.o

e_spread

ist+1

rtimsg_local. al.

clk>=time_between_rreq-time_spread
&& (tisconnected(ip,rtimsg_local.tip].nhop)

rreqs[msg_local.oip][msg_Tocsdsn]

msum(L clic<=time_betuleen_rreq-+time_spread
dinerd,

loopfree newd

| ilmsg, Tocal iplf_flag)

verlip)

b.sn.0), Let_unodes(msg_local.tip),

invalidate(),
createerr(ip, 10),
delete_msg()

loopfree_new(),

add. |nodes(msg \oca\ oip,msg.local.osh,msa_local.odist+),

al.tsn,ip,sn,0),

o_local.odist+1,RREQ),

_local.osn,msg_local.odist+1),

delete_msg()
clk<=time_between_rreq-+time_spread
rregs[msg_local.oiplimsg_local.osn]&&
msg_local.tip!=ip &
(rt[msg_local.tip].nhop:
msg_local.hop_limit<1

T
cll>=time_between_rreq-time_spread ""¢d(IP)

0 || rtlmsg_local.tip].tsn<msg_local.tsn) &

delete_msg()

Figure 4: handler automaton.

20

dist_inc0,
upd_inter),

irreqsimsg_| Iocal c\D][rmq local.osn]
&& msg_local.t

&& rt[msg_| \o(a\ un] nhop‘ 0 && !rt[msg_local.tip].f_flag &g
Irreqs{msag_| \D(a\ mp][msg local.osn]

&& msg_loc
&& (rt[msg_| \oca\ i nhop==0 Il msq_local hop_limit<1)

rtlmsg_local.oip)=update(rt{msg_local.oip],msg_local.osn,msg_local.sip,msg_local.odist+1,RREP),

delete_msg0),
loopfree_new()

),
g_local.sip,msg_lo

msg_local.hop_limit:

100-loss 4

addmsg(msgglobal)

sip:IP
drop(ip,sip)
breaks

isconnected(sip,ip)
rrep[sip][ip]?

nextmsg()!=0 && idle[ip]
imsglip]!
msgglobal=msglocal[0],
deletemsg()

newpkt[ip][tip]?
addmsg(createpkt(tip,ip))

sip:IP
drop(ip,sip)
breaks

sip:IP

isconnected(sip,ip)
pkt[sip][ip]?

addmsg(msgglobal)

I]
1100-breaks !
i

! 100-loss

1 addmsg(msgglobal)

sip:IP
isconnected(sip,ip)
rerr[sip]?

Figure 5: Queue(ip) model with link breakage.

21

TURKU

CENTRE for

COMPUTER

SCIENCE

Joukahaisenkatu 3-5 A, 20520 TURKU, Finland | www.tucs.fi

University of Turku

) . .

§\\)‘ ,/é Faculty of Mathematics .ana' Natural Sciences

— . e Department of Information Technology

2N 4SS

4/” ‘\\§ e Department of Mathematics
Turku School of Economics
e |[nstitute of Information Systems Sciences
O Abo Akademi University

e Department of Computer Science
e |[nstitute for Advanced Management Systems Research

ISBN 978-952-12-3521-4
ISSN 1239-1891

	Introduction
	DYMO and AODVv2: two generations of reactive routing protocols
	Degrading performance to avoid routing loops

	Uppaal Models of AODVv2 and DYMO
	Performance analysis on static grids
	Successful route requests
	Number of route entries
	Optimal routes
	Packet delivery

	Loop analysis on grids with link breakage
	Conclusion, Related Work and Future Directions

