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Abstract. Nivat’s conjecture is a long-standing open combinatorial prob-
lem. It concerns two-dimensional configurations, that is, maps Z2 → A
where A is a finite set of symbols. Such configurations are often under-
stood as colorings of a two-dimensional square grid. Let Pc(m,n) denote
the number of distinct m × n block patterns occurring in a configura-
tion c. Configurations satisfying Pc(m,n) ≤ mn for some m,n ∈ N are
said to have low rectangular complexity. Nivat conjectured that such
configurations are necessarily periodic.
Recently, Kari and the author showed that low complexity configurations
can be decomposed into a sum of periodic configurations. In this paper
we show that if there are at most two components, Nivat’s conjecture
holds. As a corollary we obtain an alternative proof of a result of Cyr
and Kra: If there exist m,n ∈ N such that Pc(m,n) ≤ mn/2, then
c is periodic. The technique used in this paper combines the algebraic
approach of Kari and the author with balanced sets of Cyr and Kra.

1 Introduction

Let A be a finite set of symbols and d a positive integer, the dimension. A

d-dimensional symbolic configuration c is an element of AZd

, that is, a map
assigning a symbol to every vertex of the lattice Zd. The symbol at position
v ∈ Zd is denoted cv.

For a non-empty finite domain D ⊂ Zd, the elements of AD are D-patterns.
We can observe patterns in a given configuration, the D-pattern occurring in c
at position v ∈ Zd is the map

p : D → A
u 7→ cv+u.

The number of distinct D-patterns occurring in c, denoted Pc(D), is the D-
pattern complexity of c. We say that c has low complexity if Pc(D) ≤ |D| holds
for some D.

We study what conditions on complexity imply that a configuration is pe-
riodic, that is, when there exists a non-zero vector u such that cv = cv+u for
all v ∈ Zd. The situation in one dimension was described by Morse and Hed-
lund [MH38], let us denote JnK = {0, . . . , n− 1}:
? Research supported by the Academy of Finland Grant 296018.

ar
X

iv
:1

71
0.

05
36

0v
1 

 [
cs

.D
M

] 
 1

5 
O

ct
 2

01
7



Theorem (Morse–Hedlund). Let c be a one-dimensional symbolic configura-
tion. Then c is periodic if and only if there exists n ∈ N such that Pc(JnK) ≤ n.

As a corollary, non-periodic one-dimensional configurations satisfy Pc(JnK) ≥
n + 1. Those for which equality holds for every n are Sturmian words, they
are a central topic of combinatorics on words and have connections to discrete
geometry, finite automata and mathematical physics [Lot02, AS03, DL99]. Note
that Sander and Tijdeman [ST00] extended the Morse–Hedlund theorem for
patterns of other shapes than JnK, they showed that in fact any low complexity
one-dimensional symbolic configuration is periodic.

Nivat’s conjecture [Niv97] is a natural extension of the theorem to two-
dimensions. To simplify notation we write Pc(m,n) = Pc(JmK× JnK).

Conjecture (Nivat). If a two-dimensional symbolic configuration c satisfies Pc(m,n) ≤
mn for some m,n ∈ N, then it is periodic.

Nivat’s conjecture is tight in the sense that there exist non-periodic configu-
rations satisfying Pc(m,n) = mn+1 for all m,n ∈ N, all such configurations were
classified by Cassaigne [Cas99]. Note that the conjecture is not an equivalence,
the opposite implication is easily seen to be false.

There have been a number of partial results towards the conjecture. Cyr
and Kra [CK16] proved that having Pc(3, n) ≤ 3n for some n ∈ N implies
periodicity, which was an improvement on a previous result with constant 2
[ST02]. In another direction, there are results showing that having Pc(m,n) ≤
αmn for somem,n ∈ N implies periodicity for a suitable real α. The best result to
date is also by Cyr and Kra [CK15] with α = 1/2, which improved on previous
constants α = 1/16 [QZ04] and α = 1/144 [EKM03]. Recently, Kari and the
author [KS15] proved an asymptotic version of the conjecture: If Pc(m,n) ≤ mn
for infinitely many pairs (m,n) ∈ N2, the configuration is periodic.

The Morse–Hedlund theorem does not analogously generalize to higher di-
mensions. There exists a three-dimensional configuration with low block com-
plexity which is not periodic [ST00].

Our contributions

In [KS15], Kari and the author introduced an algebraic view on symbolic con-
figurations. Following their definition, let a configuration be any formal power
series in d variables x1, . . . , xd with complex coefficients, that is, an element of

C[[X±1]] =
{ ∑

v∈Zd

cvX
v
∣∣ cv ∈ C

}
where Xv is a shorthand for xv11 · · ·xvdd .1 If the configuration has only integer
coefficients it is called integral, if they come from a finite set the configuration

1 For the most of this paper, however, it is enough to consider configurations to be

elements of CZd

.
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is finitary. A symbolic configuration can be identified with a finitary integral
configuration if the symbols from A are chosen to be integers. Kari and the
author in [KS15] proved:

Theorem (Decomposition theorem). Let c be a low complexity d-dimensional
finitary integral configuration. Then there exists k ∈ N and periodic d-dimensional
configurations c1, . . . , ck such that c = c1 + · · ·+ ck.

Note that the summands do not have to be finitary configurations. The min-
imal possible number of components k in the decomposition plays an important
role. In this paper we prove:

Theorem 1. Let c be a two-dimensional configuration satifying Pc(m,n) ≤ mn
for some m,n ∈ N. If c is a sum of two periodic configurations then it is periodic.

In the proof of the asymptotic version of Nivat’s conjecture given in [KS16],
configurations which are a sum of horizontally and vertically periodic config-
uration had to be handled separately using a rather technical combinatorial
approach. Theorem 1 is of particular interest since it covers this case.

In this paper we revisit the method of Van Cyr and Bryna Kra [CK15,CK16].
They approach Nivat’s conjecture from the point of view of symbolic dynamics.
They use a refined version of the classical notion of expansiveness of a subshift,
a so called one-sided non-expansiveness. A key definition of theirs is that of a
balanced set – it is a shape D ⊂ Z2 which satisfies a particular condition on the
complexity Pc(D). (Note that this notion is different from balancedness usual
in combinatorics on words.) The crucial tool they developed is a combinatorial
lemma which links one-sided non-expansiveness and balanced sets to periodicity
of a configuration. However, in order to obtain the main result of the paper from
the lemma it still takes a rather lengthy technical analysis.

We combine the algebraic method with ideas of Cyr and Kra. We start the
exposition with a very basic introduction to the topic of symbolic dynamics. In
section 2 we define a subshift, in section 3 we fix some geometric terminology,
and in section 4 we give definitions of non-expansiveness and one-sided non-
expansiveness of a subshift.

In section 5 we introduce a simplified version of a balanced set and prove
Lemma 4 which connects balanced sets with periodicity using the ideas of Cyr
and Kra. We use the lemma together with decomposition theorem to prove
Theorem 1 in section 6. As a corollary, we obtain an alternative proof of Theorem
1.2 of [CK15], the main result of their paper:

Theorem (Cyr, Kra). Let c be a configuration satisfying Pc(m,n) ≤ mn/2
for some m,n ∈ N. Then c is periodic.

2 Symbolic dynamics and subshifts

Let us recall basic facts from symbolic dynamics, for a comprehensive reference
and proofs see [Kůr03].
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Symbolic dynamics studies AZd

as a topological space. Let us first make

A a topological space by endowing it with the discrete topology. Then AZd

is
considered to be a topological space with the product topology.

Open sets in this topology are for example sets of the following form. Let
D ⊂ Zd be finite and p : D → A arbitrary. Then

Cyl(p) :=
{
c ∈ AZd ∣∣ ∀v ∈ D : cv = pv

}
is an open set, also called a cylinder. In fact, the collection of cylinders Cyl(p)

for all possible p forms a subbase of the topology on AZd

.

For a vector u ∈ Zd, the shift operator τu : AZd → AZd

is defined by
(τu(c))v = cv−u. Informally, τu shifts a configuration in the direction of vec-
tor u.

The set AZd

is called the full shift. A subset X ⊂ AZd

is called a subshift if
it is a topologically closed set which is invariant under all shifts τu:

∀u ∈ Zd : c ∈ X ⇒ τu(c) ∈ X.
Subshifts are the central objects of study in symbolic dynamics.

Let c be a symbolic configuration. We denote by Xc the orbit closure of c, that
is, the smallest subshift which contains c. It can be shown that c contains exactly
those configurations c′ whose finite patterns are among the finite patterns of c.
In particular, for any c′ ∈ Xc and a finite domain D we have Pc′(D) ≤ Pc(D).

Example 1. Let us give an example of taking orbit closure. Let c ∈ {0, 1}Z2

be
such that cij = 1 if i = 0 or j = 0, and cij = 0 otherwise. When pictured,
the configuration c consists of a large cross with its center at (0, 0). The orbit
closure Xc then consist of four types of configurations: a cross, a horizontal
line, a vertical line and all zero configurations, with all possible translations, see
Figure 1. It is easy to see that any pattern which occurs in them also occurs in
c, and not difficult to prove that those are all such configurations. ut

Fig. 1: Four types of configurations in the orbit closure Xc from Example 1. The
gray color corresponds to value 1, white is 0.

3 Geometric notation and terminology

In the sequel we will be concerned with the geometry of Z2. Let us establish
some notation and terminology.
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We view Z2 as a subset of the vector space Q2. A direction is an equivalence
class of Q2 \ {(0, 0)} modulo the equivalence relation u ∼ v iff u = λv for some
λ > 0. By a slight abuse of notation, we identify a non-zero vector u ∈ Z2 with
the direction uQ+.

Let u ∈ Z2 be non-zero. An (undirected) line in Z2 is a set of the form

{v + qu | q ∈ Q } ∩ Z2

for some v ∈ Z2. We call both u and −u a direction of the line. We define a
directed line to be a line augmented with one of the two possible directions.

Let ` be a directed line in direction u going through v ∈ Z2. The half-plane
determined by ` is defined by

H` =
{
v + w

∣∣ w ∈ Z2, w1u2 − u1w2 ≥ 0
}
.

With the usual choice of coordinates it is the half-plane “on the right” from the
line. Let Hu denote the half-plane determined by the directed line in direction
u going through the origin.

We say that a non-empty D ⊂ Z2 is convex if D can be written as an
intersection of half-planes. Convex hull of D, denoted Conv(D), is the smallest
convex set containing D. Assume ` is a directed line in direction u such that
D ⊂ H` and `∩D is non-empty. If |`∩D| > 1 we call it the edge of D in direction
u, otherwise we call it the vertex of D in direction u. Note that a vertex is a
vertex for many directions, but an edge has a unique direction (as long as D is
not contained in a line). See Figure 2 for an example.

u1

u2

u3

v

e

Fig. 2: A convex set. The point v is a vertex of the set for both directions u1

and u2. The set of three marked points e is the edge in direction u3.

Let u be a direction and `, `′ two directed lines in direction u. If

S = H` \H`′

is non-empty, then S is called a stripe in direction u. We call `, `′ the inner and
outer boundary of S respectively. Let S◦ = S \ ` be the interior of S.

For A,B ⊂ Z2, we say that A fits in B if there exists a translation of A
which is a subset of B.
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4 Non-expansiveness and one-sided non-expansiveness

It can be verified that the topology on AZd

is compact and also metrizable.

Note that shift operators τu are continuous maps on AZd

. Expansiveness can
be defined in general for a continuous action on a compact metric space, the
definition is however too general for our purposes. We give a definition specific
to the case of AZ2

.
Let X ⊂ AZ2

be a subshift and u a direction. Then u is an expansive direction
for X if there exists a stripe S in direction u such that

∀c, e ∈ X : c�S= e�S ⇒ c = e.

Informally speaking, u is an expansive direction for X if a configuration in X is
uniquely determined by its coefficients in a wide enough stripe in direction u.

A two-dimensional configuration is doubly periodic if it has two linearly inde-
pendent period vectors. The following classical theorem links double periodicity
of a configuration with expansiveness. It is a corollary of a theorem by Boyle
and Lind [BL97].

Theorem 2. Let c be a symbolic configuration. Then c is doubly periodic iff all
directions are expansive for Xc. ut

Let X ⊂ AZ2

be a subshift and u a direction. Then u is a one-sided expansive
direction for X if

∀c, e ∈ X : c�Hu= e�Hu ⇒ c = e.

Equivalently, u is a one-sided expansive direction for X if there exists a wide
enough stripe S in direction u such that ∀c, e ∈ X : c�S= e�S⇒ c�H−u= e�H−u .
See Figure 3 for a comparison of the notion of expansiveness and one-sided
expansiveness.

` `

Fig. 3: The figure on the left illustrates expansiveness – values of the configuration
inside the stripe determine the whole configuration. On the right we see one-sided
expansiveness in direction (1, 2) – values in the half-plane H`, or equivalently in
a wide enough stripe, determine the values in the half-plane Z2 \H`.
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Example 2 (Ledrappier’s subshift). It is possible for a subshift to be one-sided
expansive but non-expansive in the same direction. Consider a subshift X ⊂
{0, 1}Z2

consisting of configurations c which satisfy cij ≡ ci,j+1+ci+1,j+1 (mod 2).
Upper half-plane of a configuration determines the whole, since any single row
determines the one below it. Therefore (−1, 0) is a one-sided expansive direction
for X. However, no stripe in direction (−1, 0) determines a configuration from
the subshift; for any row, there are always two possibilities for the row above it
(they are complements of each other). Any horizontal stripe can be extended to
the upper half-plane in infinitely many ways. ut

We are primarily interested in non-expansive directions. In our setup, it is
known that there are only finitely many of them, we omit the proof for space
reasons. (See Appendix.)

Lemma 1. Let c be a low complexity two-dimensional configuration. Then there
are at most finitely many one-sided non-expansive directions for Xc. ut

For later use it will be practical to define non-expansiveness explicitly. Let
X ⊂ AZ2

be a subshift and S a stripe in direction u. We say that S is an
ambiguous stripe in direction u if there exist c, e ∈ X such that

c�S◦= e�S◦ , but c�S 6= e�S . (1)

We say that c ∈ X contains an ambiguous stripe S if there exists e ∈ X satisfying
(1). Informally, a stripe is ambiguous if its interior does not determine the inner
boundary.

Definition. Let u be a direction and X ⊂ AZ2

a subshift. Then u is one-sided
non-expansive direction if there exists an ambiguous stripe in direction u of
arbitrary width.

We leave the proof that this is the converse of the earlier definition of one-
sided expansiveness to the reader.

5 Balanced sets

Let c be a fixed symbolic configuration.

Definition 1. Let B ⊂ Z2 be a finite and convex set, u a direction and E an
edge or a vertex of B in direction u. Then B is u-balanced if:

(i) Pc(B) ≤ |B|
(ii) Pc(B) < Pc(B \ E) + |E|

(iii) Intersection of B with all lines in direction u is either empty or of size at
least |E| − 1.
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The three conditions of the definition can be interpreted as follows. The first
one simply states that B is a low complexity shape. The second condition limits
the number of (B \ E)-patterns which do not extend uniquely to a B-pattern,
there is strictly less than |E| of them. The third condition is implied if the length
of the edge in direction u is smaller or equal to the length of the edge in the
opposite direction, as can be seen in the next proof.

Lemma 2. Let c be such that Pc(m,n) ≤ mn holds for some m,n ∈ N and u
be a direction. Then there exists a u-balanced or (−u)-balanced set. Moreover,
if u is horizontal or vertical, then there exists a u-balanced set.

Proof. Let D be an m × n rectangle, we have Pc(D) ≤ |D|. Let us define a
sequence of convex shapes D = D0 ⊃ D1 ⊃ · · · ⊃ Dk = ∅ such that Di \Di+1 is
the edge of Di in direction (−1)iu. Informally, the sequence represents shaving
off an edge (or a vertex) of the shape alternately in directions u and −u. See
Figure 4 for an illustration.

Consider the expression Pc(Di)− |Di| as a function of i. For i = 0 its value
is non-positive and for i = k its value is 1. Let i ∈ [0, k − 1] be smallest such
that 0 < Pc(Di+1)− |Di+1|, then we have

Pc(Di)− |Di| ≤ 0 < Pc(Di+1)− |Di+1|.

Denote E = Di \ Di+1, it is an edge or a vertex of Di in direction u or −u.
Adding |Di| to the inequality and rewriting gives P (Di) ≤ |Di| < P (Di\E)+|E|.

We show that B = Di is a balanced set by showing that (iii) of Definition 1
holds. Without loss of generality let the direction of E be u. Then, by construc-
tion, the length of E is smaller or equal to the edge in direction −u. In fact, if
we consider the convex hull of B in Q2, any line in direction u intersects it in
a line segment longer or equal to d, the length of the edge. Any line segment of
length at least d in direction u intersects either none or at least |E| − 1 integer
points, and we are done.

If u is either horizontal or vertical, instead of alternating the direction of
shaved off edges, we can always shave off the edge in direction u. It will be
always the shortest edge in direction u, therefore verification of part (iii) goes
through. ut

Next we present Lemma 4 which connects non-expansiveness and balanced
sets with periodicity, based on the method of Cyr and Kra. Periodicity in the
proof first arises in a stripe from the use of Morse–Hedlund theorem. This part of
the proof follows Lemma 2.24 from [CK15]. The periodicity is then extended to
the whole configuration by the following lemma, which is a corollary of Lemma
39 from [KS16]. We omit the proof for space reasons. (See Appendix.)

Lemma 3. Let c be a two-dimensional configuration and D a non-empty finite
subset of Z2 such that Pc(D) ≤ |D|. Let S be a stripe in direction u such that
D fits in S. If S◦ is periodic with a period in direction u then also c is periodic
with a period in direction u. ut
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1

2

3

4

5

Fig. 4: Shaving off edges or vertices of a 5× 5 rectangle alternately in directions
(2, 1) and (−2,−1). Small numbers indicate the order in which the edges or
vertices were removed.

Lemma 4. Let c be a configuration and B a u-balanced set. Assume that c
contains an ambiguous stripe for Xc in direction u such that B fits in the stripe.
Then c is periodic in direction u.

Proof. Let E be the edge or vertex of B in direction u, denote S the stripe
and let ` be the inner boundary of S in direction u. Without loss of generality
assume B ⊂ S, E ⊂ `, and that u is not an integer multiple of a smaller vector.
Let e ∈ Xc be such that Equation 1 holds.

Denote points in E consecutively by e1, . . . , en (see Figure 5). Define a se-
quence B = Dn ⊃ · · · ⊃ D1 ⊃ D0 = B \ E by setting Di−1 = Di \ {ei}.
Consider the values P (Di) − |Di|. Since B is a balanced set, by (ii) we have
Pc(Dn)− |Dn| < Pc(D0)− |D0|, let k ∈ [0, n− 1] be such that

Pc(Dk+1)− |Dk+1| < Pc(Dk)− |Dk|.

Adding |Dk+1| to both sides yields Pc(Dk+1) < Pc(Dk) + 1. On the other
hand, Pc(Dk) ≤ Pc(Dk+1) since Dk ⊂ Dk+1, and therefore we have Pc(Dk) =
P (Dk+1). In other words, a Dk-pattern uniquely determines the value at position
ek+1.

We will show that ∀i : c�Dk+iu 6= e�Dk+iu. For the contrary, assume that there
is j such that c�Dk+ju= e�Dk+ju. Using the property of Dk, we have c�ek+1+ju=
e�ek+1+ju. Therefore c�Dk+(j+1)u= e�Dk+(j+1)u and we can proceed by induction
to show c�Dk+j′u= e�Dk+j′u for all j′ > j. Analogously, by constructing sets
Di by removing edge points from the other end, it can be shown that also
c�Dk+j′u= e�Dk+j′u for all j′ < j. We proved c�S= e�S , which is a contradiction
with ambiguity of S.

We have that all (B \ E)-patterns c �(B\E)+iu have at least two possible
extensions into a B-pattern. Part (ii) of Definition 1 implies that there are at
most |E| − 1 such patterns. Let T be a thinner stripe in direction u defined by
T =

⋃
i∈Z(B\E)+iu. Using part (iii) of Definition 1, values of c on every line λ ⊂

T in direction u contain at most |E| − 1 distinct subsegments of length at least
|E| − 1. By Morse–Hedlund theorem, the values on the line repeat periodically.
Therefore c�T is periodic in direction u.
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B fits in the stripe T ∪ ` and its interior T is periodic in direction u. By
Lemma 3 also c is periodic in direction u. ut

B

S

`
e1

u

e2
e3

D2`
e1

u

e2
e3

T

Fig. 5: Illustration of the proof of Lemma 4.

6 Main result

Theorem (Theorem 1). Let c be a two-dimensional configuration satisfying
Pc(m,n) ≤ mn for some m,n ∈ N. If c is a sum of two periodic configurations
then it is periodic.

Proof. For contradiction assume c is non-periodic and denote c1, c2 periodic
configurations such that c = c1 + c2. Let u1,u2 be their respective vectors
of periodicity. If they are linearly dependent, c is periodic and we are done.
Otherwise, define a parallelogram

D =
{
au1 + bu2

∣∣ a, b ∈ [0, 1)
}
∩ Z2.

We can choose u1,u2 large enough so that an m × n rectangle fits in. We can
also assume that u2 ∈ Hu1 . Denote Dj = D + ju2 and define a sequence of
stripes Sj =

⋃
i∈ZDj + iu1. The setup is illustrated in Figure 6.

Assume that there are j 6= j′ such that c�Dj
= c�Dj′ . We claim that then

c�Sj
= c�Sj′ . Note that since c = c1 + c2, for v ∈ Z2 we have

(c(v+u1)+ju2
− c(v+u1)+j′u2

)− (cv+ju2 − cv+j′u2) = 0.

In particular, if cv+ju2 = cv+j′u2 , then also c(v+u1)+ju2
= c(v+u1)+j′u2

. Since
cv+ju2 = cv+j′u2 holds for v ∈ D, it also holds for v ∈ D+u1, and by induction
c�Sj= c�Sj′ .

Since c is finitary there are only finitely many possible D-patterns, let N be
an upper bound on their number. There are also finitely many stripe patterns
c�Sj

since the pattern in Sj is determined by the pattern in Dj . Because c is not
periodic, there exists k ∈ Z such that c�Sk

6= c�Sk−N!
.

By Lemma 2, there is either a u1-balanced or (−u1)-balanced set B, without
loss of generality assume the former. Since c is non-periodic, by Lemma 4 there
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is no ambiguous stripe in c in direction u1 in which B fits. B fits in any stripe
Sj , therefore values in any stripe Sj determine the values in the whole half-plane
on the side of the inner boundary of Sj .

By pigeonhole principle, there are j < j′ ∈ [0, N ] such that c�Sk+j
= c�Sk+j′ .

The two stripes extend uniquely to the half-planes on the side of their inner
boundary. Therefore the half-plane H =

⋃
i≤j′ Si has period (j′ − j)u2. Since

j′−j divides N ! and Sk, Sk−N ! ⊂ H, we have a contradiction with c�Sk
6= c�Sk−N!

.
ut

u1

u2
D0

D1

D2

S0

S1

S2

Fig. 6: Proof of Theorem 1.

Corollary 1. If a non-periodic configuration c is a sum of two periodic ones,
then Pc(m,n) ≥ mn+ 1 for all m,n ∈ N. ut

We finish the exposition by reproving the result of Cyr and Kra from [CK15].
To do that, we need additional theory from [KS16]. Multiplication of a two-
dimensional configuration c by a polynomial f ∈ C[x1, x2] is well defined. If
fc = 0, we call f an annihilator of c. The following two lemmas we state without
a proof, they are direct corollaries of Corollary 24 and Lemma 32 of [KS16],
respectively.

Lemma 5. Let c be a low complexity two-dimensional integral configuration.
Then there exists k ∈ N and polynomials φ1, . . . , φk ∈ C[x1, x2] with the following
properties:

Every annihilator of c is divisible by φ1 · · ·φk. Furthermore, c can be written
as a sum of k, but no fewer periodic configurations. If g is a product of 0 ≤ ` < k
of the polynomials φi, then gc can be written as a sum of k − `, but no fewer
periodic configurations. ut

Any polynomial in C[x1, x2] can be written as f =
∑

v∈Z2 avX
v. The support

of f , denoted supp(f), is defined as the finite set of vectors v ∈ Z2 such that
av 6= 0. We say that f fits in a subset D ⊂ Z2 if its support fits in D.

Lemma 6. Let c be a finitary configuration. Then the symbols of A can be
changed to suitable integers such that if Pc(D) ≤ |D| for some D ⊂ Zd, then
there exists an annihilator f which fits in −D. ut
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Theorem 3. Let c be a configuration such that Pc(m,n) ≤ mn/2 for some
m,n ∈ N. Then c is periodic.

Proof. Assume that the symbols of A have been renamed as in Lemma 6, then
there exists f an annihilator of c which fits in an m×n rectangle. By Lemma 5,
we can write f = φ1 · · ·φkh. If k ≤ 2 then c is periodic by Theorem 1. Assume
k ≥ 3, we will show that it leads to a contradiction.

Let g = φ3 · · ·φk, c′ = gc and let mg, ng ∈ N be smallest such that g fits in an
(mg+1)×(ng+1) rectangle, see Figure 7. Note that an (m−mg)×(n−ng) block
in c′ is determined by multiplication by g from an m × n block in c. Therefore
Pc(m,n) ≥ Pc′(m−mg, n− ng).

By Lemma 5, c′ is a sum of two but no fewer periodic configurations. Thus
it is not periodic, and by Theorem 1,

Pc(m,n) ≥ Pc′(m−mg, n− ng) > (m−mg)(n− ng).

Let v be an arbitrary vertex of the convex hull of − supp(g). Consider all
translations of − supp(g) which are a subset of the rectangle JmK× JnK, denote
R the locus of v under these translations. There are (m − mg)(n − ng) such
translations, therefore the size of R is the same number.

Now let us define a shape U = JmK × JnK \ R. It is a shape such that no
polynomial multiple of g fits in −U . In particular no annihilator of c fits in −U ,
and thus by Lemma 6,

Pc(m,n) ≥ Pc(U) > |U |.

Since either (m−mg)(n−ng) = |R| ≥ mn/2 or |U | ≥ mn/2, we have Pc(m,n) >
mn/2, a contradiction. ut

m−mg

n− ng
ng

mg

v

Fig. 7: Proof of Theorem 3. The quadrilateral depicts the convex hull of− supp(g)
for a polynomial g, positioned in the bottom left corner of an m× n block. The
white points form the set R and the shaded points form the set U . We have
|U | ≥ mn/2 or |R| ≥ mn/2.
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A Appendix

Proofs in the appendix use definitions from section 6.

A.1 Proof of Lemma 1

The lemma also follows from existence of generating sets introduced by Cyr and
Kra [CK15]. Here we show a proof using polynomials:

Proof. By Lemma 5 of [KS16], there exists a non-trivial annihilator of the con-
figuration. Let F denote convex hull of it support. It has finitely many edges.
We claim that only directions of the edges can be one-sided non-expansive for
Xc.

Let u be a direction such that F has a vertex v in direction u. Let ` be the
line in direction u which is the closest to Hu but lies outside of Hu. Then F
can be translated such that F \ {v} lies in Hu and v ∈ `. Linear combination
given by the annihilator determines the value of cv from values in Hu, and by
translation in the whole line `. Moving to the next and next line in direction u,
all the values of c are determined. We proved that u is a one-sided expansive
direction for Xc. ut

A.2 Proof of Lemma 3

The proof is by reduction to Lemma 39 of [KS16]:

Lemma (Lemma 39). Let c be a counterexample candidate and v ∈ Z2 a non-
zero vector. Let S be an infinite stripe in the direction of v of maximal width
such that φ does not fit in. Then c restricted to the stripe S is non-periodic in
the direction of v.

We assume the reader is comfortable with notions used in its statement. Let
us however briefly describe some of them. A two-dimensional configuration is a
counterexample candidate if it is normalized non-periodic finitary integral config-
uration which has a non-trivial annihilator. Without going into further details,
normalized configurations have the property from Lemma 6 and any configura-
tion can be made normalized by changing the symbols in A. The polynomial φ
is the largest polynomial (w.r.t. polynomial division) which divides every anni-
hilator, it is product of polynomials φi from the statement of Lemma 5.

Proof (of Lemma 3). Without loss of generality assume that c is normalized
and for the contrary assume that it is non-periodic, then c is a counterexample
candidate. By Lemma 6 there is an annihilator which fits in −D and therefore
also in S. Then also φ fits in S. Let T ⊂ S◦ be a stripe in direction u of
maximal width such that φ does not fit in. Since c�T is periodic in direction u,
by Lemma 39 also c is. ut
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