
New Variants of Pattern Matching with Constants and

Variables

Yuki Igarashi, Diptarama, Ryo Yoshinaka, and Ayumi Shinohara

Graduate School of Information Sciences, Tohoku University, Sendai, Japan
{yuki igarashi, diptarama}@shino.ecei.tohoku.ac.jp

{ry, ayumi}@ecei.tohoku.ac.jp

November 15, 2018

Abstract

Given a text and a pattern over two types of symbols called constants and
variables, the parameterized pattern matching problem is to find all occurrences of
substrings of the text that the pattern matches by substituting a variable in the text
for each variable in the pattern, where the substitution should be injective. The
function matching problem is a variant of it that lifts the injection constraint. In this
paper, we discuss variants of those problems, where one can substitute a constant
or a variable for each variable of the pattern. We give two kinds of algorithms for
both problems, a convolution-based method and an extended KMP-based method,
and analyze their complexity.

1 Introduction

The parameterized pattern matching problem was proposed by Baker [4] about a quarter
of a century ago. Problem instances are two strings called a pattern and a text, which are
sequences of two types of symbols called constants and variables. The problem is to find
all occurrences of substrings of a given text that a given pattern matches by substituting
a variable in the text for each variable in the pattern, where the important constraint
is that the substitution should be an injective map. She presented an algorithm for this
problem that runs in O(n log n) time using parameterized suffix trees, where n is the
length of text.

By removing the injective constraint from the parameterized pattern matching prob-
lem, Amir et al. [1] proposed the function matching problem, where the same variable
may be substituted for different variables. Yet another but an inessential difference
between parameterized pattern matching and function matching is in the alphabets.
The function matching problem is defined to be constant-free in the sense that patterns
and texts are strings over variables. However, this simplification is inessential, since it
is known that the problem with variables and constants is linear-time reducible to the
constant-free case [2]. This reduction technique works for the parameterized pattern
matching as well. Their deterministic algorithm solves this problem in O(|Π|n logm)

1

ar
X

iv
:1

70
5.

09
50

4v
1

 [
cs

.D
S]

 2
6

M
ay

 2
01

7

Table 1: The time complexity of our proposed algorithms

Problem
Convolution-based

Method
Extended KMP-based Method
Preprocessing Query

PVC-matching
O(|ΣP |n logm)

O(|ΠP ||ΣP |m2) O(|ΠP |dmw en)
FVC-matching O(|ΠP |(|ΣP |+ |ΠP |)m2) O(|ΠP |2dmw en)

time, where n and m are the lengths of the text and pattern, respectively, and |Π| is the
number of different symbols in the pattern. After that, Amir and Nor [3] introduced the
generalized function matching problem, where one can substitute a string of arbitrary
length for a variable. In addition, both a pattern and a text may contain “don’t care”
symbols, which are supposed to match arbitrary strings.

The parameterized pattern matching problem and its extensions have been great
interests not only to the pattern matching community [12] but also to the database
community. Du Mouza et al. [6] proposed a variant of the function matching problem,
where texts should consist solely of constants and a substitution maps variables to
constants, which is not necessarily injective. Let us call their problem function matching
with variables-to-constants, FVC-matching in short.1 The function matching problem
is linear-time reducible to this problem by simply assuming the variables in a text
as constants. Therefore, this problem can be seen as a generalization of the function
matching problem. Unfortunately, as we will discuss in this paper, their algorithm is in
error.

In this paper, we introduce a new variant of the problem by du Mouza et al. with
the injective constraint, which we call parameterized pattern matching with variables-to-
constants mapping (PVC-matching). For each of the FVC-matching and PVC-matching
problems, we propose two kinds of algorithms2: a convolution-based method and an
extended KMP-based method. The convolution-based methods and extended KMP-
based methods are inspired by the algorithm of Amir et al. [1] for the function matching
problem and the one by du Mouza et al. [6] for the FVC-matching problem, respectively.
As a result, we fix the flaw of the algorithm by du Mouza et al. The convolution-based
methods for both problems run in O(|ΣP |n logm) time, where ΣP is the set of constant
symbols that occur in the pattern P . Our KMP-based methods solve the PVC-matching
and FVC-matching problems with O(|Π|(|ΣP | + |Π|)m2) and O(|Π|n)) preprocessing
time and O(|Π|dmw en) and O(|ΠP |2dmw en) query time, respectively, where Π is the set
of variables and w is the word size of a machine (Table 1).

2 Preliminaries

For any set Z, the cardinality of Z is denoted by |Z|. Let Σ be an alphabet. We denote
by Σ∗ the set of strings over Σ. The empty string is denoted by ε. The concatenation
of two strings X,Y ∈ Σ∗ is denoted by XY . For a string X, the length of X =

1They called the problem parameterized pattern queries. However, to avoid misunderstanding the
problem to have the injective constraint, we refrain from using the original name in this paper.

2Source codes for those algorithms are available at
https://github.com/igarashi/matchingwithvcmap.

2

X[1]X[2] · · ·X[n] is denoted by |X| = n. The substring of X beginning at i and ending
at j is denoted by X[i : j] = X[i]X[i + 1] · · ·X[j − 1]X[j]. Any substrings of the form
X[1 : j] and X[i : n] are called a prefix and a suffix of X. For any number k, we define
X[k : k − 1] = ε. The set of symbols from a subset ∆ of Σ occurring in X is denoted
by ∆X = {X[i] ∈ ∆ | 1 ≤ i ≤ n }.

This paper is concerned with matching problems, where strings consist of two kinds
of symbols, called constants and variables. Throughout this paper, the sets of constants
and variables are denoted by Σ and Π, respectively. Variables are supposed to be
replaced by another symbol, while constants are not.

Definition 1 For a function π : Π→ (Σ∪Π), we extend it to π̂ : (Π∪Σ)∗ → (Π∪Σ)∗

by

π̂(X) = π̂(X[1])π̂(X[2]) · · · π̂(X[n]),where π̂(X[i]) =

{
π(X[i]) (X[i] ∈ Π)

X[i] (otherwise)

Parameterized match [4] and function match [1]3 are defined as follows.

Definition 2 Let P and Q be strings over Σ∪Π of the same length. String P is said to
parameterized match (resp. function match) string Q if there exists an injection (resp.
function) π : Π→ Π, such that π̂(P) = Q.

The parameterized pattern matching problem (resp. function matching problem) is to
find all occurrences of substrings of a given text that a given pattern parameterized
match (resp. function match).

The problems we discuss in this paper allow variables to be mapped to constants
and variables.

Definition 3 Let P and Q be strings over Σ∪Π of the same length. String P is said to
parameterized match with variables-to-constants mapping (resp. function match with
variables-to-constants mapping), shortly PVC-match (resp. FVC-match), string Q if
there exists an injection (resp. function) π : Π→ (Σ ∪Π), such that π̂(P) = Q.

Problem 1 Let P and T be strings over Σ∪Π of length m and n, respectively. The pa-
rameterized pattern matching problem with variables-to-constants mapping (resp. func-
tion matching problem with variables-to-constants mapping), shortly PVC-matching
(resp. FVC-matching) asks for all the indices i where pattern P PVC-matches (resp.
FVC-matches) substring T [i : i+m− 1] of text T .

Table 2 summarizes those four problems. We can assume without loss of generality
that the text T solely consists of constants. This restriction is inessential since one can
regard variables occurring in T as constants. Under this assumption, the FVC-matching
problem is exactly parameterized pattern queries [6].

3Amir et al. [1] defined the problem so that strings are over a single type of symbols, which can be
seen as variables. This restriction is inessential [2].

3

Table 2: Definition of problems

Problems
Admissible mappings

Type Injection constraint

PVC-matching
Π→ (Π ∪ Σ)

Yes
FVC-matching [6] No

parameterized matching [4]
Π→ Π

Yes
function matching [1] No

Example 1 Let Σ = {a, b} and Π = {A, B}. Consider pattern P = ABAb and text
T = ababbbb. Then, the answer of PVC-matching problem is {1, 2}, since P PVC-
matches T [1 : 4] = abab, T [2 : 5] = babb. On the other hand, the answer of FVC-
matching problem is {1, 2, 4} since P FVC-matches T [1 : 4] = abab, T [2 : 5] = babb,
T [4 : 7] = bbbb. Note that we have π̂(P) = T [4 : 7] for π with π(A) = π(B) = b, which
is not injective.

Throughout this paper, we arbitrarily fix a pattern P ∈ (Σ ∪ Π)∗ of length m and a
text T ∈ Σ∗ of length n.

3 Convolution-based Methods

In this section, we show that the FVC-matching problem can be solved inO(|ΣP |n logm)
time by reducing the problem to the function matching problem and the wildcard match-
ing problem, for which several efficient algorithms are known. The PVC-matching prob-
lem can also be solved using the same reduction technique with a slight modification.

For strings P of lengthm over Σ∪Π and T of length n over Σ, we define Π′ = ΠP∪ΣT .
Let P∗ ∈ (Σ ∪ {∗})∗ be a string obtained from P by replacing all variable symbols in
Π with don’t care symbol ∗. Let PΠ ∈ Π′∗ be a string obtained from P by removing
all constant symbols in Σ. Moreover, for 1 ≤ i < n −m, let T ′i be a string defined by
T ′i = v(1)v(2) · · · v(m), where v(j) = T [i + j − 1] if P [j] ∈ Π and v(j) = ε otherwise.
Note that both the lengths of T ′i and PΠ are equal to the total number of variable
occurrences in P .

Example 2 For T = aabcbc and P = AaBBb over Π = {A, B} and Σ = {a, b, c}, we
have P∗ = ∗a∗∗b, PΠ = ABB, T ′1 = abc, and T ′2 = acb.

For both FVC-matching and PVC-matching problems, the following lemma is useful
to develop algorithms to solve them.

Lemma 1 P FVC-matches (resp. PVC-matches) T [i : i+m− 1] if and only if
1. P∗ wildcard matches T [i : i+m− 1], and

2. PΠ function matches (resp. parameterized matches) T ′i .

Lemma 1 suggests that the FVC-problem would be reducible to the combination of
wildcard matching problem and function matching problem.

The wildcard matching problem (a.k.a. Pattern matching with don’t care symbol) [7]
is one of the fundamental problems in pattern matching. There are many algorithms for

4

solving the wildcard matching problem. Fischer et al. [7] gave an algorithm for (a gen-
eralization of) this problem, which runs in O(|Σ|n logm) time. Cole and Hariharan [5]
improved it to O(n logm) time by using convolution. On the other hand, Pinter [13]
gave an O(n+m+α)-time algorithm, where α is the total number of occurrences of the
maximal consecutive constant substrings of the pattern in the text. This algorithm uses
Aho-Corasick algorithm instead of convolution. Iliopoulos and Rahman [10] proposed
an algorithm which utilizes suffix arrays for text. The algorithm preprocesses a text in
O(n) time and runs in O(m+ α) time.

However, Lemma 1 does not imply the existence of a single string T ′ such that P
FVC-matches T [i : i + m − 1] if and only if P∗ wildcard matches T [i : i + m − 1] and
PΠ function matches T ′[i : i + m − 1]. A naive application of Lemma 1 to compute T ′i
explicitly for each i requires O(mn) time in total.

We will present an algorithm to check whether PΠ function matches (parameterized
matches) T ′i for all 1 ≤ i < n −m in O(log |Σ|n logm) time in total. Without loss of
generality, we assume that Σ and Π are disjoint finite sets of positive integers in this
section, and for integers a and b, the notation a · b represents the multiplication of a
and b but not the concatenation.

Definition 4 For integer arrays A of length n and B of length m, we define an integer
array R by R[j] =

∑m
i=1A[i+ j − 1] ·B[i] for 1 ≤ j ≤ n − m + 1. We denote R as

A⊗B.

In a computational model with word size O(logm), the discrete convolution can be
computed in time O(n log n) by using the Fast Fourier Transform (FFT) [8]. The array
R defined in Definition 4 can also be computed in the same time complexity by just
reversing array B.

Amir et al. [1] proved the next lemma for function matching.

Lemma 2 ([1]) For any natural numbers a1, · · · , ak, the equation
k ·
∑k

i=1 (ai)
2 = (

∑k
i=1 ai)

2 holds if and only if ai = aj for any 1 ≤ i, j ≤ k.

Let T be the string of length n such that T[i] = (T [i])2 for every 1 ≤ i ≤ n. For a
variable x ∈ ΠP , let cx denote the number of occurrences of x in P , and let Px be the
string of length m such that Px[j] = 1 if P [j] = x and Px[j] = 0 otherwise, for every
1 ≤ j ≤ m. By Lemma 2, we can prove the following lemma.

Lemma 3 All the symbols (values) in T ′i at every position j satisfying PΠ[j] = x are
the same, if and only if the equation cx ·((T⊗ Px)[i]) = ((T ⊗ Px)[i])2 holds.

Thus, PΠ function matches T ′i if and only if the equation in Lemma 3 holds for all x ∈ ΠP .
Both the convolutions T⊗Px and T⊗Px can be calculated in O(n logm) time by simply
dividing T into 2× n

2m overlapping substrings of length 2m. For parameterized pattern
matching problem, we have only to check additionally whether the value (T ⊗ Px)[i]/cx
is unique among all x ∈ ΠP . A pseudo code for solving the PVC-matching problem
using convolution is shown as Algorithm 1 in Appendix A.

Theorem 1 The FVC-matching problem and PVC-matching problem can be solved in
O(|ΣP |n logm) time.

5

4 KMP-based Methods

Du Mouza et al. proposed a KMP-based algorithm for the FVC-matching problem,
which, however, is in error. In this section, we propose a correction of their algorithm,
which runs in O(|Π|2dmw en) query time with O(|Π|(|ΣP |+ |Π|)m2) preprocessing time,
where w denotes the word size of a machine. This algorithm will be modified so that
it solves the PVC-matching problem in O(|Π|dmw en) query time with O(|Π||ΣP |m2)
preprocessing time.

The KMP algorithm [11] solves the standard pattern matching problem in O(n)
time with O(m) preprocessing time. We say that a string Y is a border of X if Y is
simultaneously a prefix and a suffix of X. A border Y is nontrivial if Y is not X itself.
For the preprocessing of the KMP algorithm, we calculate the longest nontrivial border
bk for each prefix P [1 : k] of pattern P , and store them as border array B[k] = |bk| for
each 0 ≤ k ≤ m. Note that b0 = b1 = ε. In the matching phase, the KMP algorithm
compares symbols T [i] and P [k] from i = k = 1. We increment i and k if T [i] = P [k].
Otherwise we reset the index for P to be k′ = B[k−1] + 1 and resume comparison from
T [i] and P [k′].

4.1 Extended KMP Algorithm

This subsection discusses an algorithm for the FVC-matching problem. In the matching
phase, our extended KMP algorithm compares the pattern and a substring of the text
in the same manner as the classical KMP algorithm except that we must maintain a
function by which prefixes of the pattern match some substrings of the text. That is,
our extended KMP algorithm compares symbols T [i] and P [k] from i = k = 1 with the
empty function π. If P [k] is not in the domain dom(π̂) of π̂, we expand π by letting
π(P [k]) = T [i] and increment i and k. If π̂(P [k]) is defined to be T [i], we increment
i and k. Otherwise, we say that a mismatch occurs at position k with a function π.
Note that the mismatch position refers to that of P rather than T . When we find a
mismatch, we must calculate the appropriate position j of P and function π′ with which
we resume comparison. If instances are variable-free, the position is solely determined
by the longest border size of P [1 : k] and we have no function. In the case of FVC-
matching, the resuming position depends on the function π in addition to k.

Example 3 Let us consider the pattern P = AABaaCbC where Π = {A, B, C} and Σ =
{a, b} in Fig. 1. If the concerned substring of the text is T ′ = bbbaaabb, a mismatch
occurs at k = 8 with a function π such that π(A) = π(B) = b and π(C) = a. In this case,
we can resume comparison with P [7] and T ′[8], since we have π̂′(P [1 : 6]) = T ′[2 : 7] for
π′ such that π′(A) = π′(C) = b and π′(B) = a. On the other hand, for T ′′ = bbaaaabb,
the first mismatch occurs again at k = 8 with a function ρ such that ρ(A) = b and
ρ(B) = ρ(C) = a. In this case, one cannot resume comparison with P [7] and T ′′[8], since
there is no ρ′ such that ρ̂′(P [1 : 6]) = T ′′[2 : 7], since P [1] = P [2] but T ′′[2] 6= T ′′[3].
We should resume comparison between P [4] and T ′′[8] with ρ′ such that ρ′(A) = a and
ρ′(B) = b, for which we have ρ̂′(P [1 : 3]) = T ′′[5 : 7]. Note that ρ′(C) is undefined.

The goal of the preprocessing phase is to prepare a data structure by which one can
efficiently compute the failure function in the matching phase:

6

… b b a a a a b b b …Text	T′′

Mismatch

A A B a a …

Pattern

(i)	 7,6 -shifting

(ii)	 7,3 -shifting

(iii)	 7,2 -shifting

𝜋 𝜋𝜋

A A B a a C b C

A A B a …

A A B a a C b C

𝜋 𝜋

…

… b b b a a a b b b …Text	T1

Figure 1: Examples of possible shifts in the Extended KMP algorithm

Input: the position k + 1 (where a mismatch occurs) and a function π whose
domain is ΠP [1:k],

Output: the largest position j+ 1 < k+ 1 (at which we will resume comparison)
and the function π′ with domain ΠP [1:j] such that π̂′(P [1 : j]) = π̂(P [k−j+1 : k]).

We call such π a preceding function, π′ a succeeding function and the pair (π, π′) a (k, j)-
shifting function pair. The substrings P [1 : j] and P [k− j + 1 : k] may not be a border
of P [1 : k] but under preceding and succeeding functions they play the same role as a
border plays in the classical KMP algorithm. The succeeding function π′ is uniquely
determined by a preceding function π and positions k, j. The condition that functions
π and π′ form a (k, j)-shifting function pair can be expressed using the (k, j)-shifting
graph (on P), defined as follows.

Definition 5 Let Π′ be a copy of Π and P ′ be obtained from P by replacing every
variable in Π with its copy in Π′. For two numbers k, j such that 0 ≤ j < k ≤ m, the
(k, j)-shifting graph Gk,j = (Vk,j , Ek,j) is defined by

Vk,j = ΣP ∪ΠP [k−j+1:k] ∪Π′P ′[1:j],

Ek,j = { (P [k − j + i], P ′[i]) | 1 ≤ i ≤ j < k and P [k − j + i] 6= P ′[i] } .

We say that Gk,j is invalid if there are distinct p, q ∈ ΣP that belong to the same
connected component. Otherwise, it is valid.

Note that Gk,0 = (ΣP , ∅) is valid for any k. Figure 2 shows the (7, 6)-shifting and
(7, 3)-shifting graphs for P = AABaaCbC in Example 3. Using functions π and π′ whose
domains are dom(π) = ΠP [k−j+1:k] and dom(π′) = ΠP [1:j], respectively, let us label each
node p ∈ Σ, x ∈ Π, x′ ∈ Π′ of Gk,j with p, π(x), π′(x), respectively. Then (π, π′) is a
(k, j)-shifting pair if and only if every node in each connected component has the same
label. Obviously Gk,j is valid if and only if it admits a (k, j)-shifting function pair.

Thus, the resuming position should be j+1 for a mismatch at k+1 with a preceding
function π if and only if j is the largest such that Gk,j is valid and

7

a b

𝚷𝟐:𝟕 𝚷𝟏:𝟔'

A

B

C

A

B

C

𝚺

(a) (7, 6)-shifting graph

a b

𝚷𝟓:𝟕 𝚷𝟏:𝟑'

C

A

B

𝚺

(b) (7, 3)-shifting graph

Figure 2: The (7, 6)-shifting graph (a) and (7, 3)-shifting graph (b) on P = AABaaCbC,
which corresponds to Fig. 1(i) and (ii).

(a) if x ∈ Π and p ∈ Σ are connected in Gk,j , then π(x) = p,

(b) if x ∈ Π and y ∈ Π are connected in Gk,j , then π(x) = π(y).

In that case, we have π̂′(P [1 : j]) = π̂(P [k − j + 1 : k]) for π′ determined by

(c) π′(x) = π̂(y) if x′ ∈ Π′P [1:j] and y ∈ Π ∪ Σ are connected.

We call the conditions (a) and (b) the (k, j)-preconditions and (c) the (k, j)-postcondition.
Note that every element in Π′P ′[1:j] is connected to some element in ΠP [k−j+1:k] ∪ΣP in

Gk,j and thus π′ is well-defined.

Remark 1 The algorithm by du Mouza et al. [6] does not treat the condition induced
by two nodes of distance more than 1 correctly. For example, let us consider the pattern
P = AABaaCbC in Example 3. For a text T = bbaaaabbb, the first mismatch occurs at
k = 8, where ρ̂(P [1 : 7]) = bbaaaab for ρ(A) = b and ρ(B) = ρ(C) = a. To have (ρ, ρ′) a
(7, 6)-shifting pair for some ρ′, it must hold ρ(A) = ρ(B). That is, one can resume the
comparison at position 6 only when the preceding function assigns the same constant to
A and B. The preceding function ρ in this case does not satisfy this constraint. However,
their algorithm performs this shift and reports that P matches T at position 2.

To efficiently compute the failure function, our algorithm constructs another data struc-
ture instead of shifting graphs. The shifting condition table is a collection of func-
tions Ak,j : ΠP [k−j+1:k] → ΠP [k−j+1:k] ∪ ΣP and A′k,j : Π′P ′[1:j] → ΠP [k−j+1:k] ∪ ΣP for
1 ≤ j < k ≤ m such that Gk,j is valid. The functions Ak,j can be used to quickly check
the (k, j)-preconditions (a) and (b) and A′k,j is for the (k, j)-postcondition (c). Those
functions satisfy the following properties: for each connected component α ⊆ Vk,j , there
is a representative uα ∈ α such that

• if α ∩ Σ 6= ∅, then uα ∈ Σ,

• if α ∩ Σ = ∅, then uα ∈ Π,

8

• for all x ∈ α ∩Π, then Ak,j(x) = uα,

• for all x′ ∈ α ∩Π′, then A′k,j(x
′) ∈ α ∩ (Π ∪ Σ).

Recall that Gk−1,j−1 is a subgraph of Gk,j , where the difference is at most two nodes
and one edge. Hence, we can compute Ak,j and A′k,j in O(|Π|) time from Ak−1,j−1

and A′k−1,j−1 maintaining the inverse Uk,j of Ak,j whose domain is restricted to Π, i.e.,
Uk,j(x) = { y ∈ ΠP [k−j+1:k] | Ak,j(y) = x } for x ∈ ΠP [k−j+1:k]. Each set Uk,j(x) can
be implemented as a linked list. The updating time O(|Π|) is due to the size of Uk,j .
Moreover, when computing Ak,j and A′k,j , we can verify the validness of Gk,j . A pseudo
code for constructing the shifting condition table is shown as Algorithms 2 and 3 in
Appendix A.

Lemma 4 The shifting condition table can be calculated in O(|Π|m2) time.

Suppose that we have a mismatch at position k + 1 with a preceding function π. By
using the shifting condition table, a naive algorithm may compute the failure function in
O(k|Π|2) time by finding the largest j such that π satisfies the (k, j)-precondition and
then compute a function π′ satisfying the (k, j)-postcondition with which we resume
comparison at j + 1. The calculation of π′ can be done in O(|Π|) time just by referring
to the array A′k,j . We next discuss how to reduce the computational cost for finding j
by preparing an elaborated data structure in the preprocessing phase.

Du Mouza et al. [6] introduced a bitmap data structure concerning the precondition
(a), which can be constructed using Ak,j in the shifting condition table as follows. Here
we extend the domain of Ak,j to Π by defining Ak,j(x) = x for each x ∈ Π \ΠP [k−j+1:k].

Definition 6 ([6]) For every 0 ≤ j < k ≤ m, x ∈ Π and p ∈ ΣP , we define

rkx,p[j] =

{
0 (Gk,j is invalid or Ak,j(x) ∈ Σ \ {p})
1 (otherwise)

Lemma 5 ([6]) A preceding function π satisfies the (k, j)-precondition (a) if and only
if
∧
x∈Π r

k
x,π(x)[j] = 1.

We define a data structure corresponding to the (k, j)-precondition (b) as follows.

Definition 7 For every 0 ≤ j < k ≤ m and x, y ∈ Π, define

skx,y[j] =

{
0 (Gk,j is invalid or Ak,j(x) = y)

1 (otherwise)

Lemma 6 A preceding function π satisfies the (k, j)-precondition (b) if and only if∧x,y∈Π
π(x)6=π(y) s

k
x,y[j] = 1 .

Therefore, we should resume comparison at j + 1 for the largest j that satisfies the
conditions of Lemmas 5 and 6. To calculate such j quickly, the preprocessing phase
computes the following bit sequences. For every x ∈ Π, p ∈ ΣP and 1 ≤ k ≤ m, let rkx,p
be the concatenation of rkx,p[j] in ascending order of j:

rkx,p = rkx,p[0]rkx,p[1] · · · rkx,p[k − 1] ,

9

and for every x, y ∈ Π and 1 ≤ k ≤ m, let

skx,y = skx,y[0]skx,y[1] · · · skx,y[k − 1] .

Calculating rkx,p and skx,y for all x, y ∈ Π, p ∈ ΣP and 1 ≤ k ≤ m in the preprocessing
phase requires O(|Π|(|ΣP | + |Π|)m2) time in total. When a mismatch occurs at k + 1
with a preceding function π, we compute

J =
∧
x∈Π

rkx,π(x) ∧
∧

x,y∈Π
π(x)6=π(y)

skx,y .

Then the desired j is the right-most position of 1 in J . This operation can be done
in O(dmw e|Π|

2) time, where w denotes the word size of a machine. That is, with
O(|Π|(|ΣP | + |Π|)m2) preprocessing time, the failure function can be computed in
O(|Π|2dmw e) time. For most applications, we can assume that m is smaller than the
word size w, i.e. dmw e = 1.

Theorem 2 The FVC-matching problem can be solved in O(|Π|2dmw en) time with O(|Π|(|ΣP |+
|Π|)m2) preprocessing time.

4.2 Extended KMP Algorithm for PVC-match

In this section, we consider the PVC-matching problem. We redefine the (mis)match
and failure function in the same manner as described in the previous section except that
all the functions are restricted to be injective. We defineGk,j exactly in the same manner
as in the previous subsection. However, the condition represented by that graph should
be strengthened in accordance with the injection constraint on matching functions. We
say that Gk,j is injectively valid if for each ∆ ∈ {Σ,Π,Π′}, any distinct nodes from ∆
are disconnected. Otherwise, it is injectively invalid. There is a (k, j)-shifting injection
pair if and only if Gk,j is injectively valid.

For P = AABaaCbC in Example 3 (see Fig. 2), the (7, 6)-shifting graph G7,6 for
P = AABaaCbC is valid but injectively invalid, since A and B are connected. On the
other hand, G7,3 is injectively valid.

In the PVC-matching, the condition that an injection pair (π, π′) to be (k, j)-shifting
is described using the graph labeling by (π, π′) as follows:

• two nodes are assigned the same label if and only if they are connected.

Under the assumption that Gk,j is injectively valid, the (k, j)-precondition on a preced-
ing function π is given as

(a) if x ∈ Π and p ∈ Σ are connected, then π(x) = p,

(b’) if x ∈ Π and x′ ∈ Π′ are connected and y′ ∈ Π′ \ {x′} and p ∈ Σ are connected,
then π(x) 6= p.

Since each connected component of an injectively valid shifting graph Gk,j has at most
3 nodes, it is cheap to compute the function Fk,j : V → 2Vk,j such that Fk,j(u) =

10

{ v ∈ Vk,j | u and v are connected in Gk,j }. Note that Fk,j(u) = ∅ if u /∈ ΠP [k−j+1:k].
Using P [k], P [j], and Fk−1,j−1, one can decide whether Gk,j is injectively valid and can
compute Fk,j (if Gk,j is injectively valid) in constant time.

Suppose that we have a preceding function π at position k. By using the function
Fk,j , a naive algorithm can compute the failure function in O(k|Π|) time. We define a
bitmap tkx,p[j] to check if π satisfies preconditions (a) and (b’).

Definition 8 For every 0 ≤ j < k ≤ m, x ∈ Π and p ∈ ΣP , we define

tkx,p[j] =


0 (Gk,j is injectively invalid or Fk,j(x) ∩ Σ * {p}

or |Fk,j(x) ∩ Fk,j(p) ∩Π′| = 2)

1 (otherwise)

Lemma 7 The preceding function π satisfies the (k, j)-preconditions (a) and (b’) if and
only if

∧
x∈Π t

k
x,π(x)[j] = 1.

In the preprocessing phase, we calculate

tkx,p = tkx,p[0]tkx,p[1] · · · tkx,p[k − 1]

for all x ∈ Π, p ∈ ΣP and 1 ≤ k ≤ m, which requires O(|Π||ΣP |m2) time. When a
mismatch occurs at k + 1 with a function π, we compute

J =
∧
x∈Π

tkx,π(x)

where the desired j is the right-most position of 1 in J . We resume comparison at j+1.
The calculation of the failure function can be done in O(|Π|dmw e) time, where w denotes
the word size of a machine.

Theorem 3 The PVC-matching problem can be solved in O(|Π|dmw en) time with O(|Π||ΣP |m2)
preprocessing time.

5 Concluding Remarks

In this paper, we proposed efficient algorithms for the FVC-matching and PVC-matching
problems. The FVC-matching problem has been discussed by du Mouza et al. [6] as a
generalization of the function matching problem, while the PVC-matching problem is
newly introduced in this paper, which can be seen as a generalization of the parame-
terized pattern matching problem. We have fixed a flaw of the algorithm by du Mouza
et al. for the FVC-matching problem. There can be further variants of matching prob-
lems. For example, one may think of a pattern with don’t care symbols in addition
to variables and constants. This is not interesting when don’t care symbols appear
only in a pattern in function matching, since don’t care symbols can be assumed to
be distinct variables. However, when imposing the injection condition on a matching
function, don’t care symbols play a different role from variables. This generalization
was tackled in [9]. We can consider an even more general problem by allowing texts to

11

have variables, where two strings P and S are said to match if there is a function π such
that π̂(P) = π̂(S). This is a special case of the word equation problem, where a string
instead of a symbol can be substituted, and word equations are very difficult to solve
in general. Another interesting restriction of word equations may allow to use different
substitutions on compared strings, i.e., P and S match if there are functions π and ρ
such that π̂(P) = ρ̂(S). Those are interesting future work.

References

[1] Amir, A., Aumann, Y., Lewenstein, M., Porat, E.: Function matching. SIAM
Journal on Computing 35(5) (2006) 1007–1022

[2] Amir, A., Farach, M., Muthukrishnan, S.: Alphabet dependence in parameterized
matching. Information Processing Letters 49(3) (1994) 111–115

[3] Amir, A., Nor, I.: Generalized function matching. Journal of Discrete Algorithms
5(3) (2007) 514–523

[4] Baker, B.S.: Parameterized pattern matching: Algorithms and applications. Jour-
nal of computer and system sciences 52(1) (1996) 28–42

[5] Cole, R., Hariharan, R.: Verifying candidate matches in sparse and wildcard
matching. In: Proceedings of the thiry-fourth annual ACM symposium on Theory
of computing, ACM (2002) 592–601

[6] Du Mouza, C., Rigaux, P., Scholl, M.: Parameterized pattern queries. Data &
Knowledge Engineering 63(2) (2007) 433–456

[7] Fischer, M.J., Paterson, M.S.: String-matching and other products. Technical
report, DTIC Document (1974)

[8] Gormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C., et al.: Introduction to
algorithms. MIT Press 44 (1990) 97–138

[9] Igarashi, Y.: A study on the parameterized pattern matching problems for real
data (in Japanese). Bachelor thesis, Tohoku University (2017)

[10] Iliopoulos, C.S., Rahman, M.S.: Pattern matching algorithms with don’t cares. In:
Proc. 33rd SOFSEM, Citeseer (2007) 116–126

[11] Knuth, D.E., Morris, Jr, J.H., Pratt, V.R.: Fast pattern matching in strings. SIAM
journal on computing 6(2) (1977) 323–350

[12] Mendivelso, J., Pinzón, Y.J.: Parameterized matching: Solutions and extensions.
In: Stringology, Citeseer (2015) 118–131

[13] Pinter, R.Y.: Efficient string matching with don’t-care patterns. In: Combinatorial
Algorithms on Words. Springer (1985) 11–29

12

Appendix

A Algorithms

Algorithm 1: The convolution-based algorithm for the PVC-matching problem

Input: A string P of length m, a string T of length n
Result: Every position i such that P PVC-matches T [i : i+m− 1]

1 result← ∅
2 G = WildcardMatching(T, P∗) /* Solve the wildcard matching problem */

3 foreach b ∈ ΠP do
4 Fb ← T ⊗ ψb(PΠ)
5 F ′b ← T⊗ ψb(PΠ)
6 Let cb be the number of occurrences of b in the pattern P

7 for i← 1 to n do
8 used← ∅
9 failed← false

10 foreach b ∈ ΠP do
11 value← Fb[i] / cb
12 if cb · F ′b[i] 6= (Fb[i])

2 or value ∈ used then
13 failed← true
14 break

15 used← used ∪ {value}
16 if failed = false and i ∈ G then
17 result← result ∪ {i}

18 return result

13

Algorithm 2: The shifting condition table construction algorithm for the FVC-
matching problem

Input: A string P of length m
Result: The shifting condition table

1 Let table be a 2d array of length (m+ 1,m+ 1), where default value is NULL
2 Let A0 : Π→ (Σ ∪Π) be the function s.t. A0[x] = x for all x ∈ Π
3 Let A′0 : Π′ → (Σ ∪Π) be the function s.t. A′0[x′] = x′ for all x′ ∈ Π′

4 Let U0 : Π→ 2Π be the function s.t. U0[x] = {x} for all x ∈ Π
5 table[1][0]← (A0, A

′
0, U0) /* Copy */

6 for k ← 2 to m+ 1 do
7 table[k][0]← (A0, A

′
0, U0) /* Copy */

8 for j ← 1 to k − 1 do
9 if table[k − 1][j − 1] = NULL then

10 continue

11 (A,A′, U)← table[k − 1][j − 1] /* Copy */

12 α← P [j]
13 β ← P [k]
14 valid← true
15 if α ∈ Π then
16 if A′[α] 6= NULL and A′[α] 6= β then
17 if AddCondition(A,U,A′[α], β) 6= VALID then
18 valid← false

19 else
20 A′[α]← β

21 else /* α ∈ Σ */

22 if AddCondition(A,U, α, β) 6= VALID then
23 valid← false

24 if valid = true then
25 table[k][j]← (A,A′, U)

26 return table

14

Algorithm 3: AddCondition function for the FVC-matching problem

Input: Reference to function A and array U of (k, j)-shifting, symbols
a, b ∈ (Π ∪ Σ)

Result: Whether (k, j)-shifting is valid or invalid after modifying A and U
1 if a ∈ Π then
2 if b ∈ Π then /* a, b ∈ Π */

3 if A[a] = A[b] then
4 return VALID /* A[a], A[b] are equal */

5 if A[a] ∈ Σ and A[b] ∈ Σ then
/* A[a], A[b] are connected to distinct symbols in Σ */

6 return INVALID

7 else if A[b] ∈ Π then
8 foreach Z ∈ U [A[b]] do
9 A[Z]← A[a]

/* Append linked list U [A[a]] to the end of U [A[b]] */

10 U [A[a]]← U [A[a]] ∪ U [A[b]]
11 U [A[b]]← ∅ /* Remove old linked list pointer */

12 else /* A[a] ∈ Π, A[b] ∈ Σ */

13

14 foreach Z ∈ U [A[a]] do
15 A[Z]← A[b]

16 U [A[b]]← U [A[b]] ∪ U [A[a]]
17 U [A[a]]← ∅

18 else /* a ∈ Π, b ∈ Σ */

19 root← A[a]
20 if root ∈ Σ \ {b} then

/* a ∈ Π is already mapped to another symbol 6= b */

21 return INVALID

22 foreach Z ∈ U [root] do
23 A[Z]← b

24 U [root]← ∅

25 else
26 if b ∈ Π then /* a ∈ Σ, b ∈ Π */

27 return AddCondition(b, a)

28 else /* a, b ∈ Σ */

29 if a 6= b then
30 return INVALID

31 return VALID

15

	1 Introduction
	2 Preliminaries
	3 Convolution-based Methods
	4 KMP-based Methods
	4.1 Extended KMP Algorithm
	4.2 Extended KMP Algorithm for PVC-match

	5 Concluding Remarks
	A Algorithms

