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Abstract. To achieve state-of-the-art performance, keyphrase extrac-
tion systems rely on domain-specific knowledge and sophisticated fea-
tures. In this paper, we propose a neural network architecture based
on a Bidirectional Long Short-Term Memory Recurrent Neural Network
that is able to detect the main topics on the input documents without the
need of defining new hand-crafted features. A preliminary experimental
evaluation on the well-known INSPEC dataset confirms the e↵ectiveness
of the proposed solution.

1 Introduction

Keyphrases (herein KPs) are phrases that “capture the main topic discussed
on a given document” [31]. More specifically, KPs are phrases typically one to
five words long that appear verbatim in a document, and can be used to briefly
summarize its content.

The task of finding such KPs is called Automatic Keyphrase Extraction
(herein AKE). It it has received a lot of attention in the last two decades [11]
and recently it has been successfully used in many Natural Language Processing
(hence NLP) tasks, such as text summarization [34], document clustering [10],
or non-NLP tasks such as social network analysis [23] or user modeling [24]. Au-
tomatic Keyphrase Extraction approaches have been also applied in Information
Retrieval of relevant documents in digital document archives which can contain
heterogeneous types of items, such as books articles, papers etc [15].

The first approaches to solve Automatic Keyphrase Extraction were based
on supervised machine learning (herein ML) algorithms, like Naive Bayes [32]
or C4.5 decision trees [31]. Since then, several researchers explored di↵erent ML
techniques such as Multilayer Perceptrons [19,2], Support Vector Machines [19],
Logistic Regression [2,9], and Bagging [14]. Since no algorithm stands out as the
“best” ML algorithm, often authors test many techniques in a single experiment,
and then they choose as best ML algorithm the best performing one [2,9] and/or
even the least computationally expensive one [19].

⇤Indicates equal contribution.
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However, AKE algorithms based on unsupervised approaches have been de-
veloped over the years as well. For example, Tomokiyo et al. [30] proposed to use
a language model approach to extract KPs, and Mihalcea et al. [21] presented
a graph-based ranking algorithm to find keyphrases. Nevertheless, supervised
approaches have been the best performing ones in challenges: for example, [19],
a supervised approach, was the best performing algorithm in the SEMVAL 2010
Keyphrase Extraction Task [16].

In the last years, most attention is devoted to the features used in these
supervised algorithms. The numbers of features used can range from just two
[32] to more than 20 [9]. These features can be divided in categories identified
with di↵erent kinds of knowledge they encode into the model:

– statistical knowledge. number of appearances of the KP in the document,
TF-IDF, number of sentences containing the KP, etc.;

– positional knowledge. position of the first occurrence of the KP in the docu-
ment, position of the last occurrence, appearance in the title, appearance in
specific sections (abstract, conclusions), etc.;

– linguistic knowledge: part-of-speech tags of the KP [14], anaphoras pointing
to the KP [2], etc.;

– external knowledge: presence of the KP as a page on Wikipedia [6] or in
specialized domain ontologies [19], etc.

However, given the wide variety of lexical, linguistic and semantic aspects
that can contribute to define a keyphrase, it di�cult to design hand-crafted
feature, and even the best performing algorithms hardly reach F1-Scores of 50%
on the most common evaluation sets [14,16]. For this reason, AKE is still far
from being a solved problem in the NLP community.

In recent years, Deep Learning techniques have shown impressive results in
many Natural Language Processing tasks, e.g., Named Entity Recognition, Au-
tomatic Summarization, Question Answering, and so on [18,27,25,29]. In Named
Entity Recognition, for example, researchers have proposed several Neural Net-
work Architectures

To best of our knowledge, only recently some first attempts to address AKE
task with Deep Learning techniques, has been presented [33,20]. In [33], the
authors present an approach based on Recurrent Neural Networks, specifically
designed for a particular domain, i.e., Twitter data. On the other hand, in [20]
the authors use more datasets to evaluate their RNN for keyphrase extraction,
and they propose a study of the keyphrases generated by their network as well.

In this paper, we present a Deep Learning architecture for AKE. In particular,
we investigate an approach based on based on Bidirectional Long Short-Term
Memory RNN (hence Bi-LSTM), which is able to exploit previous and future
context of a given word. Our system, since it does not require specific features
carefully optimized for a specific domain, can be applied to a wide range of
scenarios. To evaluate the proposed method, we conduct experiments on the
well-known INSPEC dataset [14]. The experimental result showed the proposed
solution performs significantly better than competitive methods.
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Some methods use 1D radial profiles obtained 
from circular averaging of experimental PSD  
or by elliptical averaging. An inadequacy of 
circular averaging is that it neglects 
astigmatism. Astigmatism distorts the circular 
shape of the Thon rings and thus decreases 
their modulation depth in the obtained 1D 
profile.
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Fig. 1. Overview of the proposed system.

2 Proposed Approach

To extract KPs we implemented the following steps, as presented in Figure 1.
First, we split the document into sentences, and then we tokenize the sentences
in words using NLTK [3]. Then, we associate a word embedding representation
that maps each input word into a continuous vector representation. Finally, we
feed our word embeddings into a Bi-LSTM units, which it can e↵ectively deal
with the variable lengths of sentences and it is able to analyze word features
and their context (for example, distant relation between words). The Bi-LSTM
is connected to a fully connected hidden layer, which in turn is connected to a
softmax output layer with three neurons for each word. Between the Bi-LSTM
layer and the hidden layer, and between the hidden layer and the output layer,
we use dropout [28] to prevent overfitting.

As in the techniques used for Named Entity Recognition, the three neurons
are mapped to three possible output classes: NO KP, BEGIN KP, INSIDE KP, which
respectively mark tokens that are not keyphrases, the first token of a keyphrase,
and the other tokens of a keyphrase.

For example, if our input sentence is “We train a neural network using
Keras”, and the keyphrases in that sentence are “neural network” and “Keras”,
the tokens’ classes will be We/NO KP train/NO KP a/NO KP neural/BEGIN KP

network/INSIDE KP using/NO KP Keras/BEGIN KP’.

2.1 Word Embeddings

The input layer of our model is a vector representation of the individual words
contained in input document. Several recent studies [5,22] showed that such
representations, called word embeddings, are able to represent the semantics of
words better than an “one hot” encoding word representation, when trained
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on large corpus. However, the datasets for AKE are relatively small, therefore
it is di�cult to train word embeddings to capture the word semantics. Hence,
we adopt Stanford’s GloVe Embeddings, which are trained on 6 billion words
extracted from Wikipedia and Web texts [26].

2.2 Model Architecture

Let {x1, . . . , xn} the word embeddings representing the input tokens, a Recurrent
Neural Network (hence RNN) computes the output vector yt of each token xt

by iterating the following equations from t = 1 to n:

ht = H(Wxhxt +Whhht�1 + bh) (1)

yt = Whyht + by (2)

where ht is the hidden vector sequence, W denotes weight matrices (for
example Wxh is the matrix of the weights connecting the input layer and the
hidden layer), b denotes bias vectors, and H is activation function of the hidden
layer. Equation 1 represents the connection between the previous and the current
hidden states, thus RNNs can make use of previous context.

In practice however, the RNN is not able to use e↵ectively the all input
history due to the vanishing gradient problem [12]. Hence, a better solution to
exploit long range context is the Long Short-Term Memory (LSTM) architec-
ture [13]. The LSTM is conceptually defined like an RNN, but hidden layer
updates are replaced by specific units called memory cells. Specifically, a LSTM
is implemented by the following functions [7]:

it = �(Wxixt +Whiht�1 +Wcict�1 + bi) (3)

ft = �(Wxfxt +Whfht�1 +Wcfct�1 + bf ) (4)

ct = ftct�1 + it tanh(Wxcxt +Whcht�1 + bc) (5)

ot = �(Wxoxt +Whoht�1 +Wcoct + bo) (6)

ht = ot tanh(ct) (7)

where � is the logistic sigmoid function, i, f , o, and c are the input gate,
forget gate, output gate and cell activation vectors, and all b are learned biases.

Another shortcoming of RNNs is that they consider only previous context,
but in AKE we want to exploit future context as well. For example, consider the
phrase “John Doe is a lawyer; he likes fast cars”. When we first encounter “John
Doe” in the phrase, we still don’t know whether he’s going to be an important
entity; then, we find the word “lawyer” and the pronoun “he”, which clearly
refer to him, stressing his importance in the context. “Lawyer” and “he” are
called anaphoras and the technique to find this contextual information is called
anaphora resolution, which has been exploited to perform keyphrase extraction
in [2].

In order to use future context, in our approach we adopt a Bidirectional
LSTM network [8]. In fact, with this architecture we are able to make use of both
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Table 1. Performance with di↵erent vector sizes of the GloVe Word Embeddings: 50,
100, 200 and 300 (we called them GloVe-(SIZE), respectively).

Embedding Size Precision Recall F1-score Epochs
GloVe-50 50 0.331 0.518 0.404 20
GloVe-100 100 0.340 0.578 0.428 14
GloVe-200 200 0.352 0.539 0.426 18
GloVe-300 300 0.364 0.500 0.421 8
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3 Experimental Results

We present experiments on a well-known keyphrase extraction dataset: the IN-
SPEC dataset [14]. It is composed by 2000 abstract papers in English extracted
from journal papers from the disciplines Computer and Control, Information
Technology. It consists of 1000 documents for training, 500 for validation and
the remaining 500 for testing. We choose this dataset since it’s well known in
the AKE community, so there are many other available results to compare with;
moreover, is much bigger than the dataset used in the SEMEVAL 2010 [16] com-
petition, which contains only 144 documents for training, 40 for validation, and
100 for testing.

In order to implement our approach, we used Keras with Theano [1] as back
end, which in turn allowed us to use CUDA to train our networks using a GPU.
Experiments are run on a GeForce GTX Titan X Pascal GPU. The network is
trained to minimize the Crossentropy loss. We train our network using the Root
Mean Square Propagation optimization algorithm [17] and batch size 32. After
trying di↵erent configurations for the network, we obtained the best results with
a size of 150 neurons for the Bi-LSTM layer, 150 neurons for the hidden dense
layer, and a value of 0.25 for the dropout layers in between.

To test the impact of word embeddings, we perform experiments with the
pre-trained Stanford’s GloVe Embeddings using all the word embedding sizes
available, i.e., 50, 100, 200 and 300. The training of the network takes about
30 seconds to perform a full epoch with all the GloVe Embeddings. To stop the
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Table 2. Comparison results on INSPEC dataset

Method Precision Recall F1-score
Proposed approach 0.340 0.578 0.428
n-grams with tag [14] 0.252 0.517 0.339
NP Chunking with tag [14] 0.297 0.372 0.330
Pattern with tag [14] 0.217 0.399 0.281
TopicRank [4] 0.348 0.404 0.352

training, we used Keras’ own embedded early stopping rule, which halts training
when the training loss does not decrease for two consecutive epochs. The number
of epochs requested to converge in all the four settings is displayed in Table 1,
along with precision, recall and F1-score obtained by our system when trained
using di↵erent sizes of the word embeddings. We can note that the best results
are obtained with embedding size of 100; however, the embedding sizes of 200
and 300 obtain a very close result in term of F1-Score. The scores seem to show
an interesting pattern: in fact, looking at the results, we see that the precision
increases with embedding size, while recall decreases from size 100 onwards.

Table 2 compares the performances in term of precision, recall, and F-score
our approach with other competitive systems, based both on supervised and
unsupervised machine learning techniques. The first three systems are the ones
presented in [14], with three di↵erent candidate keyphrase generation techniques:
n-grams, Noun Phrase (NP) chunking, and patterns. The fourth system is Top-
icRank [4], a graph-based keyphrase extraction method that relies on a topical
representation of the document. Our proposed solution achieves best perfor-
mance in term of F1-score and Recall. Although TopicRank obtains best per-
formance in precision, its recall results are significantly worse than the ones
obtained by us; moreover, we have to stress that we’re able to obtain better
precision when using an embedding size of 200 and 300, albeit with a slightly
lower overall F1-Score. Finally, it’s worth noting that we perform better than the
results presented in [20], which is to the best of our knowledge the only one DL
AKE algorithm evaluated on the INSPEC dataset. In fact, we obtain a F1@10
score of 0.422, while the best F1@10 score obtained by [20] is 0.342.

4 Conclusion

In this work, we proposed a Deep Long-Short Term Memory Neural Network
model to perform automatic keyphrase extraction, evaluating the proposed method
on the INSPEC dataset. Since word representation is a crucial step for success, we
perform experiments with di↵erent pre-trained word representations. We show
that without requiring hand-crafted features, the proposed approach is highly
e↵ective and achieves better results with respect to other competitive methods.
For the future, we plan to test additional network architectures and to evaluate
our algorithms on more datasets, in order to demonstrate its robustness.
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