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Abstract. Finding the most common words in a text file is a famous
“programming pearl”, originally posed by Jon Bentley (1984). Several
interesting solutions have been proposed by Knuth (an exquisite mo-
del of literate programming, 1986), McIlroy (an engineering example of
combining a timeless set of tools, 1986), Hanson (an alternate efficient
solution, 1987). Here we propose a concise efficient solution based on the
fast parallel and associative capabilities of cP systems. We also check
their parallel sorting capabilities and propose a dynamic version of the
classical pigeonhole algorithm.
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1 Introduction and Background

cP systems share the fundamental features of the traditional cell-like (tree-based)
and tissue (graph-based) P systems: top-cells are organised in graph/digraph net-
works, top-cells contain nested (and labelled) sub-cells, the evolution is governed
by multiset rewriting rules, possibly running in maximal parallel modes.

Although not strictly necessary – but also shared with other versions of the
traditional P systems – our typical rulesets are state based and run in a weak
priority mode.

There are two main innovations in cP systems. First, unlike in traditional
cell-like P systems, sub-cells do NOT have own rules. Basically, the sub-cells are
just nested passive repositories of other sub-cells or atomic symbols; therefore,
they can also be viewed as nested complex objects (or terms).

This seems a severe limitation. However, it is more than compensated by the
provision of higher level rules, which extend the classical multiset rewriting rules
with concepts borrowed from logic programming, namely Prolog unification. In
other words, cP systems may be seen as adapting the classical Prolog unification
from structured terms to multisets – which again is a novel feature.

However, unlike traditional Prolog, where rules are applied in a backward-
chaining mode, with possible backtracks, cP rules work in a forward mode, like
all known P system rules. This may perhaps allow better parallelism capabilities
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than the past and actual parallel versions of Prolog – but this topic will not be
further followed here.

The net result is a powerful system which can crisply and efficiently solve
complex problems, with small fixed-size alphabets and small, fast fixed-size ru-
lesets. In particular, cP systems enable a reasonably straightforward creation
and manipulation of high-level data structures typical of high-level languages,
such as: numbers, relations (graphs), associative arrays, lists, trees, strings.

In this sense, cP systems have been successfully used to develop parallel and
distributed models in a large variety of domains, such as distributed algorithms,
graph theory, image processing, NP complete problems.

In this paper, we further assess the “computer science” capabilities of our
cP systems by solving a version of a famous programming pearl, initially posed
by Jon Bentley (1984): printing the most common words in a text file, more
precisely (but still a bit vague) [1]:

Given a text file and an integer k, print the k most common words in
the file (and the number of their occurrences) in decreasing frequency.

Additionally, the integer N is typically used for the number of words, d is
the number of distinct words, and f is the highest frequency count. Of course,
one typically assumes that N > d > k and N − d + 1 ≥ f ≥ N/d, but some
solutions are optimised for the more special case N � d� k.

Several interesting solutions have been proposed by Knuth in 1986 – an
exquisite model of literate programming [1], McIlroy in 1986 – an engineering
example of combining a timeless set of tools [1], Hanson in 1987 – an alternate
efficient solution [12]. All these three solutions can be considered as great literate
programming sample models, if we take “literal programming” in a generic sense
– not just Knuth’s WEB/TANGLE implementation [2].

Here we propose a concise efficient solution, following Hanson’s revised for-
mulation [12] of the original problem specification, which clarifies the slight am-
biguity of the original:

Given a text file and an integer k, you are to print the words (and their
frequencies of occurrence) whose frequencies of occurrence are among
the k largest in order of decreasing frequency.

A tiny but artificial example may clarify these specifications. Assume that
k = 2 and the input text is:

ccc aa aa aa ccc bb d aa d

Note that, here, N = 9, d = 4, f = 4. Bentley’s original formulation, used
by Knuth and McIlroy [1], essentially requires – a bit ambiguously – one of the
following two outputs:

4 aa

2 ccc
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or

4 aa

2 d

In contrast, Hanson’s revised formulation [12], requires the following output
– which is unambiguous, if the order of word sublists is not relevant (i.e. ccc d
≡ d ccc):

4 aa

2 ccc d

Schematically, all these there solutions follow four main phases: (I) reading
and splitting the text file into words (parsing it); (II) computing the word fre-
quencies; (III) sorting according to frequencies; and (IV) printing the required
output.

Knuth and Hanson provide large monolithic solutions, which include all four
phases. Moreover, they combine phases I and II, by using associative data struc-
tures: Knuth uses a custom hash-trie and Hanson a custom hashtable with splay
(move to front) lists. For phase III, both authors try to use efficient sorting met-
hods. Knuth uses a fast sorting method, assuming that N � d � k and that
most frequent words tend to appear from the beginning of the text – however,
as McIlroy points out, this does not always hold. Hanson offers a more universal
fast sorting method based on the pigeonhole algorithm, with f holes.

McIlroy’s solution is a textbook example for the separation-of-concerns prin-
ciple, via a pipeline of staple general-purpose utilities initially developed for
UNIX. Each of the four phases is implemented via just one or two commands.
Together, phases II and III take exactly three lines in the pipe [1]:

(3) sort |

(4) uniq -c |

(5) sort -rn |

Line (3) sorts the N input words (lexicographically). Line (4) counts then
discards the duplicates, keeping d unique exemplars and their frequency counts
(as count/word pairs). Line (5) sorts d count/word pairs, in reverse count order
(numerically).

Intentionally not given here are pipe lines (1), (2) and (6), which deal with
phases I and IV. Reading, splitting into words and printing can be defined in a
seemingly endless multiplicity of ways, which may not be worth discussing here.
In particular, the concept of ”word” itself may be highly interpretable: does it
include ASCII letters, UNICODE letters, digits, punctuation signs, does it have
a length limit, etc. Here, we will stay away from this discussion.

McIlroy’s solution is also reasonably fast – not as fast as the other two – but
it is extremely crisp and clear, and can be flexibly adapted to other input and
output formats. Such a solution can be developed and deployed in just a few
minutes – this sounds amazing, but does not account for the many man-months
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required to develop and tune the used building blocks (UNIX tools). McIlroy
also notes that his solution could be sped up by replacing the more costlier lines
(3) and (4) by a hypothetical tool based on associative arrays – in fact, this
would bring his solution closer to Hanson’s solution for phase II.

Our cP solution – which uses one single top-level cell with data-only subcells
– follows the spirit of McIlroy’s and Hanson’s solutions. It is based on associative
data types and a sorting idea close to Hanson’s pigeonhole algorithm. It also uses
a small fixed number of rules – close to McIlroy’s pipeline size – but, in contrast,
it is built from scratch (not on higher building block as the UNIX commands).

We offer two alternate solutions: (i) a solution which solves Hanson’s version
of the problem – where the result is a sorted sequence of word multisets; and (ii)
a solution which solves the original problem, as posed by Bentley and used by
Knuth and McIlroy – where the result is a sorted sequence of words.

In this process, we propose and use a dynamic pigeonhole algorithm, adap-
table to other platforms with strong associative capabilities, where – metapho-
rically - pigeonholes are only opened one at at time, instantly attracting objects
with matching keys.

In our case, we must first adapt the above problem formulation to typical
P systems, where cells contain multisets of symbols, not ordered structures.
What is a sorted multiset? Ordered structures must be constructed in terms of
multisets – in cP systems, we can create the required high-level structures by
deep nesting of complex symbols (subcells).

As above mentioned, we chose to skip over the reading phase (I) and we
assume that all words are “magically” present at start-time in our single cell.
Our focus is on phases II and III, where all operations are clearly defined and
can be efficiently performed by cP systems.

Finally – as used in our first solution (i) – we simulate the printing phase IV,
by sequentially sending out the required results, in order, over a designated line.
Alternatively – as used in our second solution (ii) – we actually build an ordered
list containing the required results.

For completeness, Section 2 introduces a few high-level data structures in
cP systems and Appendix A offers a more complete definition of the cP systems
– both these sections incrementally update the results and definitions given in
our earlier paper [7]. The remaining sections discuss our solution.

2 Data structures in cP systems

We assume that the reader is familiar with the membrane extensions collecti-
vely known as complex symbols, proposed by Nicolescu et al. [8, 9, 6]. However,
to ensure some degree of self-containment, our revised extensions, (still) called
cP systems, are reproduced in Appendix A.

In this section we sketch the design of high-level data structures, similar
to the data structures used in high-level pseudocode or high-level languages:
numbers, relations, functions, associative arrays, lists, trees, strings, together
with alternative more readable notations.
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Natural numbers. Natural numbers can be represented via multisets contai-
ning repeated occurrences of the same atom. For example, considering that 1
represents an ad-hoc unary digit, the following complex symbols can be used to
describe the contents of a virtual integer variable a: a() = a(λ) — the value of a
is 0; a(13) — the value of a is 3. For concise expressions, we may alias these num-
ber representations by their corresponding numbers, e.g. a() ≡ a(0), b(13) ≡ b(3).
Nicolescu et al. [8, 9] show how the basic arithmetic operations can be efficiently
modelled by P systems with complex symbols.

Here follows a list of simple arithmetic expressions, assignments and compa-
risons:

x = 0 ≡ x(λ)
x = 1 ≡ x(1)
x = 2 ≡ x(11)
x = n ≡ x(1n)
x← y + z ≡ y(Y ) z(Z) → x(Y Z) destructive add
x← y + z ≡ → x(Y Z) | y(Y ) z(Z) preserving add
x = y ≡ x(X) y(X)
x ≤ y ≡ x(X) y(XY )
x < y ≡ x(X) y(X1Y )

Relations and functions. Consider the binary relation r, defined by: r =
{(a, b), (b, c), (a, d), (d, c)} (which has a diamond-shaped graph). Using com-
plex symbols, relation r can be represented as a multiset with four r items,
{r(κ(a) υ(b)), r(κ(b) υ(c)), r(κ(a) υ(d)), r(κ(d) υ(c))}, where ad-hoc atoms κ
and υ introduce domain and codomain values (respectively). We may also alias

the items of this multiset by a more expressive notation such as: {(a
r

� b),

(b
r

� c), (a
r

� d), (d
r

� c)}.
If the relation is a functional relation, then we can emphasise this by using

another operator, such as “mapsto”. For example, the functional relation f =
{(a, b), (b, c), (d, c)} can be represented by multiset {f(κ(a) υ(b)), f(κ(b) υ(c)),

f(κ(d) υ(c))} or by the more suggestive notation: {(a f7→ b), (b
f7→ c), (d

f7→ c)}.
To highlight the actual mapping value, instead of a

f7→ b, we may also use the
succinct abbreviation f [a] = b.

In this context, the � and 7→ operators are considered to have a high asso-
ciative priority, so the enclosing parentheses are mostly used for increasing the
readability.

Associative arrays. Consider the associative array x, with the following key-
value mappings (i.e. functional relation): {1 7→ a; 13 7→ c; 17 7→ g}. Using
complex symbols, array x can be represented as a multiset with three items,
{x(κ(1) υ(a)), x(κ(13) υ(c)), x(κ(17) υ(g))}, where ad-hoc atoms κ and υ intro-
duce keys and values (respectively). We may also alias the items of this multiset

by the more expressive notation {1 x7→ a, 13
x7→ c, 17

x7→ g}.
Lists. Consider the list y, containing the following sequence of values: [u; v;w].
List y can be represented as the complex symbol y( γ(u γ(v γ(w γ())))), where
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the ad-hoc atom γ represents the list constructor cons and γ() the empty list.
We may also alias this list by the more expressive equivalent notation y(u | v |w)
– or by y(u | y′), y′(v |w) – where operator | separates the head and the tail of
the list. The notation z(|) is shorthand for z(γ()) and indicates an empty list, z.

Trees. Consider the binary tree z, described by the structured expression
(a, (b), (c, (d), (e))), i.e. z points to a root node which has: (i) the value a; (ii) a
left node with value b; and (iii) a right node with value c, left leaf d, and right
leaf e. Tree z can be represented as the complex symbol z(a φ(b) ψ(c φ(d) ψ(e))),
where ad-hoc atoms φ, ψ introduce left subtrees, right subtrees (respectively).

Strings. Consider the string s = “abc”, where a, b, and c are atoms. Obviously,
string s can interpreted as the list s = [a; b; c], i.e. string s can be represented as
the complex symbol s( γ(a γ(b γ(c γ())))), etc.

3 The parallel cP algorithm – solution (i)

3.1 Initial state

We need one single cell with one designated output line. Required data structures
are built as complex symbols (data-only subcells), using the interpretations and
notations defined in Section 2. In particular, the N input words are strings built
via functor w; these complex symbols are already extant when the systems starts.
Figure 1 illustrates the initial cell contents for the sample given in Section 1.

“ccc” “aa” “aa” “aa” “ccc” “bb” “d” “aa” “d”

(a) High-level strings.

w(cw(cw(cw()))) w(aw(aw())) w(aw(aw())) w(aw(aw()))

w(cw(cw(cw()))) w(bw(bw())) w(dw()) w(aw(aw())) w(dw())

(b) Underlying complex symbols.

Fig. 1: Sample initial word multiset.

3.2 Phase II

Using an associative relation, α, each word is tagged with an initial “frequency”
count of 1 and then we merge all word duplicates and sum their associated
counts. In the end, we get d words, each one with its actual frequency count.
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Figure 2 shows the three rules for phase II. This ruleset starts in state S0.
Rule (0) establishes relation α between extant strings given by w(X) and the
initial frequency count 1; it runs in max mode, so it completes its job in 1 cP step.

Rule (1) repeatedly merges word duplicates and sums their associated counts;
it runs in max mode, so it completes its job in log(d) cP steps – this rule is non-
deterministic but confluent.

After rule (1) completes, rule (2) moves to the final state of this ruleset, S2.
Table 1 illustrates the evolution of the cell contents for our initial sample.

S0 w(W ) →max S1 α(w(W ) f(1)) (0)

S1 α(w(W ) f(F )) α(w(W ) f(F ′)) →max S1 α(w(W ) f(FF ′)) (1)

S1 →min S2 (2)

Fig. 2: Ruleset for phase II.

Apply State Cell contents

(0) S0 “ccc” “aa” “aa” “aa” “ccc” “bb” “d” “aa” “d”

(1) S1 α(“ccc”f(1)) α(“aa”f(1)) α(“aa”f(1)) α(“aa”f(1)) ...

(1) S1 α(“ccc” f(2)) α(“aa” f(2)) α(“aa” f(2)) α(“bb” f(1)) α(“d” f(2))

(2) S1 α(“ccc” f(2)) α(“aa” f(4)) α(“bb” f(1)) α(“d” f(2))

– S2 α(“ccc” f(2)) α(“aa” f(4)) α(“bb” f(1)) α(“d” f(2))

Table 1: Phase II evolution of the sample word multiset.

3.3 Phase III

We create maximal word multisets by merging all words sharing the same fre-
quency counts.

Figure 3 shows the two rules for phase III. This ruleset starts in state S2, the
final state for phase II (3.2). Rule (3) merges word multisets sharing the same
frequency counts; it runs in max mode, so it completes its job in log(f) cP steps
– this rule is non-deterministic but confluent.

After rule (3) completes, rule (4) moves to the final state of this ruleset, S3.
Table 2 illustrates the evolution of the cell contents for the initial sample.
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S2 α(W f(F )) α(W ′ f(F )) →max S2 α(W W ′ f(F )) (3)

S2 →min S3 (4)

Fig. 3: Ruleset for phase III.

Apply State Cell contents

(3) S2 α(“ccc” f(2)) α(“aa” f(4)) α(“bb” f(1)) α(“d” f(2))

(4) S2 α(“ccc” “d”f(2)) α(“aa” f(4)) α(“bb” f(1))

– S3 α(“ccc” “d”f(2)) α(“aa” f(4)) α(“bb” f(1))

Table 2: Phase III evolution of the sample word multiset.

3.4 Phase IV

We send out all existing word multisets, sequentially, in decreasing order of
their frequency counts. We propose and use a dynamic version of the classical
pigeonhole algorithm (adaptable to other platforms with strong associative ca-
pabilities), where – metaphorically - pigeonholes are only opened one at at time,
instantly attracting objects with matching keys.

First, we determine the highest frequency count. Next, we repeatedly output
the word multiset having the current highest frequency count – if any – and then
decrement this count, until we reach 0. This current highest frequency count is
the “enabled pigeonhole” which “attracts” the word multiset having the same
frequency count. For simplicity, we do not consider the parameter k, but it is
straightforward to include it in this ruleset.

Figure 4 shows the rules for phase IV. This ruleset starts in state S3, the
final state for phase III (3.3). Rule (5) extracts frequency counts; it runs in max

mode, so it completes its job in 1 cP steps.
Rule (6) determines the highest frequency count by taking pairwise maxi-

mums (note that all extant frequency counts are different); it runs in max mode,
so it completes its job in log(f) cP steps – this rule is non-deterministic but
confluent.

After rule (6) completes, rule (7) moves to the next state of this ruleset, S5.
Rule (8) outputs the word multiset having the current (highest) non-zero fre-
quency count – if any – and then decrements this count; rule (9) just decrements
this count, if there is no matching word multiset; this pair of rules complete their
job in log(f) cP steps.

After all the word multisets are sent out, the cell remains idle in the final
state, S5 – alternatively, one more rule could clear the remaining f(0) counter
and transit to another state (e.g. S6). Table 3 illustrates the evolution of the
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cell contents for the initial sample. Essentially, in this scenario we output the
sequence [(“aa”, 4); (“ccc” “d”, 2); (“bb”, 1)],

S3 α(W f(F )) →max S4 α(W f(F )) f(F ) (5)

S4 f(F ) f(F1F ′) →max S4 f(F1F ′) (6)

S4 →min S5 (7)

S5 α(W f(F1)) f(F1) →min S5 α(W f(F1)) ↓ f(F ) (8)

S5 f(F1) →min S5 f(F ) (9)

Fig. 4: Ruleset for phase IV.

Apply State Cell contents

(5) S3 α(“ccc” “d”f(2)) α(“aa” f(4)) α(“bb” f(1))

(6) S4 α(“ccc” “d”f(2)) α(“aa” f(4)) α(“bb” f(1)) f(2) f(4) f(1)

(6) S4 α(“ccc” “d”f(2)) α(“aa” f(4)) α(“bb” f(1)) f(4) f(1)

(7) S4 α(“ccc” “d”f(2)) α(“aa” f(4)) α(“bb” f(1)) f(4)

(8) S5 α(“ccc” “d”f(2)) α(“aa” f(4)) α(“bb” f(1)) f(4)

(9) S5 α(“ccc” “d”f(2)) α(“bb” f(1)) f(3)

(8) S5 α(“ccc” “d”f(2)) α(“bb” f(1)) f(2)

(8) S5 α(“bb” f(1)) f(1)

– S5 f(0)

Table 3: Phase IV evolution of the sample word multiset – each time it is applied,
the highlighted rule (8) outputs one word multiset and its associated frequency
count.

4 The parallel cP algorithm – alternate solution (ii)

Here we sketch an alternate implementation, which actually builds a sorted list
of words, ordered on their frequency counts. This solution could be applied to
get a sorted list of word multisets, but here we use it to get a sorted list of words,
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i.e. a result closer to the original problem formulation posed by Bentley and used
by Knuth and McIlroy [1].

Conceptually, we start from the interim results of phase II of solution (i) (3.2),
but this time we give a complete solution (not explicitly split into phases).

We create a list of words, sorted in decreasing order of their frequency counts.
As in the earlier phase II (3.2) each word is tagged with an initial “frequency”
count of 1 and then we merge all word duplicates and sum their associated
counts. In the end, we get d words, each one with its actual frequency count.

Then, as in the earlier phase IV (3.4), we use a dynamic version of the classical
pigeonhole algorithm, but this time we stack the “attracted” words in a result
list (instead of sending them out).

First, we “enable a pigeonhole” for frequency 1 and create an empty result
list. Next, we repeatedly stack all words having the current pigeonhole frequency
count – if any – and then increment this count, until we exhaust all extant words.
For simplicity, we again do not consider the parameter k, but it is straightforward
to include it in this ruleset.

Figure 5 shows all rules for this alternate solution. Rules (0) and (1) are
exactly as in the earlier phase II. Rule (2) is modified: to “enable a pigeonhole”
for frequency 1 and to create an empty result list, ρ.

Rule (3) repeatedly stacks onto ρ all words having the current frequency
count – if any; the standalone f acts as a promoter. Rule (4) increments this
frequency count, if there are no (more) matching words for this count, but there
are still other words to process; any extant α(...) acts as a promoter. The rules
pair (3) and (4) complete their job in log(f) cP steps.

After all the words are stacked, the cell remains idle in the final state, S2. The
evolution is non-deterministic, which exactly corresponds to the slight vagueness
of the original problem formulation. Table 4 illustrates a possible evolution of
the cell contents for the initial sample. Essentially, in this scenario we obtain the
list [(“aa”, 4); (“d” 2); (“ccc” 2); (“bb”, 1)], but we could have also obtained
the list [(“aa”, 4); (“ccc” 2); (“d” 2); (“bb”, 1)].

5 Reflections and open problems

Both our solutions seem to have an optimal runtime complexity, or close to it,
essentiallyO(log(d)+log(f)) cP steps, which, in the worst case, isO(log(N)), but
typically is much smaller. This optimality is not proven, but seems a believable
hypothesis.

Also, our solutions seem to have a very decent static complexity, comparable
to the the best known solution in this regard, proposed by McIlroy: 10 or 5 rules
– in our two solutions – vs. 4 lines – the combination of 4 powerful UNIX com-
mands in McIlroy’s excellent solution. Moreover, in contrast to this, our solutions
are build from “scratch” (including the associative sorting!), not on other com-
plex utilities. Also, as presented, McIlroy’s solution runs in O(N log(N)) steps
(because of the initial sorting), which makes it slower than ours. In all fairness,
McIlroy mentions potential speed-ups, but these do not seem yet available.
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S0 w(W ) →max S1 α(w(W ) f(1)) (0)

S1 α(w(W ) f(F )) α(w(W ) f(F ′)) →max S1 α(w(W ) f(FF ′)) (1)

S1 →min S2 f(1) ρ() (2)

S2 α(w(W ) f(F )) ρ(R) →max S2 ρ(α(w(W ) f(F )) ρ(R)) (3)

| f(F )

S2 f(F ) →min S2 f(F1) (4)

| α( )

Fig. 5: Ruleset for alternate solution (ii).

Apply State Cell contents

(0) S0 “ccc” “aa” “aa” “aa” “ccc” “bb” “d” “aa” “d”

(1) S1 α(“ccc”f(1)) α(“aa”f(1)) α(“aa”f(1)) α(“aa”f(1)) ...

(1) S1 α(“ccc” f(2)) α(“aa” f(2)) α(“aa” f(2)) α(“bb” f(1)) α(“d” f(2))

(2) S1 α(“ccc” f(2)) α(“aa” f(4)) α(“bb” f(1)) α(“d” f(2))

(3) S2 f(1) α(“ccc” f(2)) α(“aa” f(4)) α(“bb” f(1)) α(“d” f(2)) ρ()

(4) S2 f(1) α(“ccc” f(2)) α(“aa” f(4)) α(“d” f(2)) ρ(α(“bb” f(1)) ρ())

(3) S2 f(2) α(“ccc” f(2)) α(“aa” f(4)) α(“d” f(2)) ρ(α(“bb” f(1)) ρ())

(3) S2 f(2) α(“aa” f(4)) α(“d” f(2)) ρ(α(“ccc” f(2)) ρ(α(“bb” f(1)) ρ()))

(4) S2 f(2) α(“aa” f(4)) ρ(α(“d” f(2)) ρ(α(“ccc” f(2)) ρ(α(“bb” f(1)) ρ())))

(4) S2 f(3) α(“aa” f(4)) ρ(α(“d” f(2)) ρ(α(“ccc” f(2)) ρ(α(“bb” f(1)) ρ())))

(3) S2 f(4) α(“aa” f(4)) ρ(α(“d” f(2)) ρ(α(“ccc” f(2)) ρ(α(“bb” f(1)) ρ())))

– S2 f(4) ρ(α(“aa” f(4)) ρ(α(“d” f(2)) ρ(α(“ccc” f(2)) ρ(α(“bb” f(1)) ρ()))))

Table 4: Alternate solution (ii): possible evolution of the sam-
ple word multiset. Here the final result is the sorted list
[α(“aa” f(4));α(“d” f(2));α(“ccc” f(2));α(“bb” f(1))].

In fact, these comparisons may be misleading, as our solution runs on a highly
parallel engine – cP systems – while the other solutions are purely sequential. It
may be interesting to evaluate other parallel solutions to this problem, including
other P systems solutions, but we are not aware of any.
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As earlier mentioned, cP systems rules generalise the traditional P systems
rules by powerful Prolog-like unifications, but the classical Prolog unification
algorithms do not work on multisets. More work is needed to design efficient
unification algorithms which work on multisets and and scale out well on parallel
architectures.

It is also interesting to note that our solutions seem to struggle a bit when
they are constrained to run in a purely sequential mode, as in phase IV of solu-
tion (i), but feel more comfortable when they can unleash the parallel associative
potential of cP systems, as in solution (ii).

To the best of our knowledge, this paper proposes a novel sorting algorithm,
with a remarkable crisp expression: a dynamic version of the classical pigeonhole
algorithm, apparently suitable for any platform with strong associative features
(such as many or most versions of P systems).

Finally, as an open problem, it might be worthwhile to invest more effort
into developing a real literate model for P systems and to develop a set of tools
corresponding to Knuth’s WEB toolset – perhaps P-WEB or cP-WEB?
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A Appendix
cP Systems : P Systems with Complex Symbols

We present the details of our cP framework, simplified from our earlier papers [5,
6].

A.1 Complex symbols as subcells

Complex symbols or subcells, play the roles of cellular micro-compartments or
substructures, such as organelles, vesicles or cytoophidium assemblies (“snakes”),
which are embedded in cells or travel between cells, but without having the full
processing power of a complete cell. In our proposal, subcells represent nested
labelled data compartments which have no own processing power: they are acted
upon by the rules of their enclosing cells.

Our basic vocabulary consists of atoms and variables, collectively known as
simple symbols. Complex symbols are similar to Prolog-like first-order terms, re-
cursively built from multisets of atoms and variables. Together, complex symbols
and simple symbols (atoms, variables) are called symbols and can be defined by
the following formal grammar:

<symbol> ::= <atom> | <variable> | <term>

<term> ::= <functor> ’(’ <argument> ’)’

<functor> ::= <atom>

<argument> ::= λ | ( <symbol> )+

Atoms are typically denoted by lower case letters (or, occasionally, digits),
such as a, b, c, 1. Variables are typically denoted by uppercase letters, such as
X, Y , Z. Functors are term (subcell) labels; here functors can only be atoms,
not variables.

For improved readability, we also consider anonymous variables, which are
denoted by underscores (“ ”). Each underscore occurrence represents a new un-
named variable and indicates that something, in which we are not interested,
must fill that slot.

Symbols that do not contain variables are called ground, e.g.:

– Ground symbols: a, a(λ), a(b), a(bc), a(b2c), a(b(c)), a(bc(λ)), a(b(c)d(e)),
a(b(c)d(e)), a(b(c)d(e(λ))), a(bc2d).
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– Symbols which are not ground: X, a(X), a(bX), a(b(X)), a(XY ), a(X2),
a(XdY ), a(Xc()), a(b(X)d(e)), a(b(c)d(Y )), a(b(X2)d(e(Xf2))); also, using
anonymous variables: , a(b ), a(X ), a(b(X)d(e( ))).

– This term-like construct which starts with a variable is not a symbol (this
grammar defines first-order terms only): X(aY ).

Note that we may abbreviate the expression of complex symbols by removing
inner λ’s as explicit references to the empty multiset, e.g. a(λ) = a().

In concrete models, cells may contain ground symbols only (no variables).
Rules may however contain any kind of symbols, atoms, variables and terms
(whether ground and not).

Unification. All symbols which appear in rules (ground or not) can be (asym-
metrically) matched against ground terms, using an ad-hoc version of pattern
matching, more precisely, a one-way first-order syntactic unification (one-way,
because cells may not contain variables). An atom can only match another copy
of itself, but a variable can match any multiset of ground terms (including λ).
This may create a combinatorial non-determinism, when a combination of two or
more variables are matched against the same multiset, in which case an arbitrary
matching is chosen. For example:

– Matching a(b(X)fY ) = a(b(cd(e))f2g) deterministically creates a single set
of unifiers: X,Y = cd(e), fg.

– Matching a(XY 2) = a(de2f) deterministically creates a single set of unifiers:
X,Y = df, e.

– Matching a(b(X)c(1X)) = a(b(12)c(13)) deterministically creates one single
unifier: X = 12.

– Matching a(b(X)c(1X)) = a(b(12)c(12)) fails.

– Matching a(XY ) = a(df) non-deterministically creates one of the following
four sets of unifiers: X,Y = λ, df ; X,Y = df, λ; X,Y = d, f ; X,Y = f, d.

A.2 High-level or generic rules

Typically, our rules use states and are applied top-down, in the so-called weak
priority order.

Pattern matching. Rules are matched against cell contents using the above
discussed pattern matching, which involves the rule’s left-hand side, promoters
and inhibitors. Moreover, the matching is valid only if, after substituting vari-
ables by their values, the rule’s right-hand side contains ground terms only (so
no free variables are injected in the cell or sent to its neighbours), as illustrated
by the following sample scenario:

– The cell’s current content includes the ground term:
n(aφ(b φ(c)ψ(d))ψ(e))

– The following (state-less) rewriting rule is considered:
n(X φ(Y φ(Y1)ψ(Y2))ψ(Z)) → v(X) n(Y φ(Y2)ψ(Y1)) v(Z)
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– Our pattern matching determines the following unifiers:
X = a, Y = b, Y1 = c, Y2 = d, Z = e.

– This is a valid matching and, after substitutions, the rule’s right-hand side
gives the new content :
v(a) n(b φ(d)ψ(c)) v(e)

Generic rules format. We consider rules of the following generic format (we
call this format generic, because it actually defines templates involving variables):

current-state symbols . . . →α target-state (in-symbols) . . .

(out-symbols)δ . . .

| promoters . . . ¬ inhibitors . . .

Where:

– current-state and target-state are atoms or terms;

– symbols, in-symbols, promoters and inhibitors are symbols;

– in-symbols become available after the end of the current step only, as in
traditional P systems (we can imagine that these are sent via an ad-hoc fast
loopback channel);

– subscript α ∈ {min, max}, indicates the application mode, as further discussed
in the example below;

– out-symbols are sent, at the end of the step, to the cell’s structural neig-
hbours. These symbols are enclosed in round parentheses which further in-
dicate their destinations, above abbreviated as δ. The most usual scenarios
include:
• (a) ↓i indicates that a is sent over outgoing arc i (unicast);
• (a) ↓i,j indicates that a is sent over outgoing arcs i and j(multicast);
• (a) ↓∀ indicates that a is sent over all outgoing arcs (broadcast).

All symbols sent via one generic rule to the same destination form one single
message and they travel together as one single block (even if the generic rule
is applied in mode max).

Example. To explain our rule application mode, let us consider a cell, σ, contai-
ning three counter-like complex symbols, c(12), c(12), c(13), and the two possible
application modes of the following high-level “decrementing” rule:

(ρα) S1 c(1X)→α S2 c(X),where α ∈ {min,max}.

The left-hand side of rule ρα, c(1X), can be unified in three different ways, to
each one of the three c symbols extant in cell σ. Conceptually, we instantiate this
rule in three different ways, each one tied and applicable to a distinct symbol:

(ρ1) S1 c(1
2)→ S2 c(1),

(ρ2) S1 c(1
2)→ S2 c(1),

(ρ3) S1 c(1
3)→ S2 c(1

2).
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1. If α = min, rule ρmin non-deterministically selects and applies one of these
virtual rules ρ1, ρ2, ρ3. Using ρ1 or ρ2, cell σ ends with counters c(1), c(12),
c(13). Using ρ3, cell σ ends with counters c(12), c(12), c(12).

2. If α = max, rule ρmax applies in parallel all these virtual rules ρ1, ρ2, ρ3. Cell
σ ends with counters c(1), c(1), c(12).

Special cases. Simple scenarios involving generic rules are sometimes seman-
tically equivalent to loop-based sets of non-generic rules. For example, consider
the rule

S1 a(x(I) y(J)) →max S2 b(I) c(J),

where the cell’s contents guarantee that I and J only match integers in ranges
[1, n] and [1,m], respectively. Under these assumptions, this rule is equivalent to
the following set of non-generic rules:

S1 ai,j → S2 bi cj , ∀i ∈ [1, n], j ∈ [1,m].

However, unification is a much more powerful concept, which cannot be ge-
nerally reduced to simple loops.

Benefits. This type of generic rules allow (i) a reasonably fast parsing and pro-
cessing of subcomponents, and (ii) algorithm descriptions with fixed-size alpha-
bets and fixed-sized rulesets, independent of the size of the problem and number
of cells in the system (often impossible with only atomic symbols).

Synchronous vs asynchronous. In our models, we do not make any syntactic
difference between the synchronous and asynchronous scenarios; this is strictly
a runtime assumption [4]. Any model is able to run on both the synchronous
and asynchronous runtime “engines”, albeit the results may differ. Our asyn-
chronous model matches closely the standard definition for asynchonicity used
in distributed algorithms; however, this is not needed in this paper so we don’t
follow this topic here.


