Skip to main content

On the Robust Power of Morphogenetic Systems for Time Bounded Computation

  • Conference paper
  • First Online:
Membrane Computing (CMC 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10725))

Included in the following conference series:

Abstract

The time appears ripe to enrich the original idea of membrane computing with principles of self-assembly in space. To this effect, a first step was taken with the introduction of a new such family of models M systems (for morphogenetic system) that own a number of basic macro-properties exhibited by higher living organisms (such as self-assembly, cell division akin to mitosis and self-healing), while still only leveraging local interactions of simple atomic components and explicit geometric constraints of their constituting elements. Here we further demonstrate that, experimentally in silico, M systems are in general also capable of demonstrating these properties robustly after being assembled from scratch from some atomic components and entering a homeostatic regime. The results are obtained through a series of experiments carried out with an M system simulator designed to implement this kind of model by researchers interested in exploring new capabilities. We further define probabilistic complexity classes for M systems and we show that the model is theoretically capable of solving NP-complete problems in P-time, despite apparent problems of an implementation, such as kinetic and concentration bottlenecks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Banu-Demergian, I., Stefanescu, G.: The geometric membrane structure of finite interactive systems scenarios. In: Alhazov, A., Cojocaru, S., Gheorghe, M., Rogozhin, Y. (eds.) 14th International Conference on Membrane Computing, pp. 63–80. Institute of Mathematics and Computer Science, Academy of Sciences of Moldova, Chisinau (2013)

    Google Scholar 

  2. Barbuti, R., Maggiolo-Schettini, A., Milazzo, P., Pardini, G.: Spatial calculus of looping sequences. Theor. Comput. Sci. 412(43), 5976–6001 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  3. Barbuti, R., Maggiolo-Schettini, A., Milazzo, P., Pardini, G.: Simulation of spatial P system models. Theor. Comput. Sci. 529, 11–45 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  4. Barbuti, R., Maggiolo-Schettini, A., Milazzo, P., Pardini, G., Tesei, L.: Spatial P systems. Nat. Comput. 10(1), 3–16 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bernardini, F., Brijder, R., Cavaliere, M., Franco, G., Hoogeboom, H.J., Rozenberg, G.: On aggregation in multiset-based self-assembly of graphs. Nat. Comput. 10(1), 17–38 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bernardini, F., Brijder, R., Rozenberg, G., Zandron, C.: Multiset-based self-assembly of graphs. Fundamenta Informaticae 75(1–4), 49–75 (2007)

    MathSciNet  MATH  Google Scholar 

  7. Bernardini, F., Gheorghe, M., Krasnogor, N., Giavitto, J.-L.: On self-assembly in population P systems. In: Calude, C.S., Dinneen, M.J., Păun, G., Pérez-Jímenez, M.J., Rozenberg, G. (eds.) UC 2005. LNCS, vol. 3699, pp. 46–57. Springer, Heidelberg (2005). https://doi.org/10.1007/11560319_6

    Chapter  Google Scholar 

  8. Blount, P., Sukharev, S.I., Moe, P.C., Schroeder, M.J., Guy, H., Kung, C.: Membrane topology and multimeric structure of a mechanosensitive channel protein of escherichia coli. EMBO J. 15(18), 4798–4805 (1996)

    Google Scholar 

  9. Bourgine, P., Lesne, A.: Morphogenesis: Origins of Patterns and Shapes. Springer complexity. Springer, Heidelberg (2010)

    Google Scholar 

  10. Cardelli, L., Gardner, P.: Processes in space. In: Ferreira, F., Löwe, B., Mayordomo, E., Mendes Gomes, L. (eds.) CiE 2010. LNCS, vol. 6158, pp. 78–87. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13962-8_9

    Chapter  Google Scholar 

  11. Cavaliere, M., Mardare, R., Sedwards, S.: A multiset-based model of synchronizing agents: computability and robustness. Theor. Comput. Sci. 391(3), 216–238 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  12. Krasnogor, N., Gustafson, S., Pelta, D., Verdegay, J.: Systems Self-Assembly: Multidisciplinary Snapshots. Studies in Multidisciplinarity. Elsevier Science, Amsterdam (2011)

    Google Scholar 

  13. Manca, V., Pardini, G.: Morphogenesis through moving membranes. Nat. Comput. 13(3), 403–419 (2014)

    Article  MathSciNet  Google Scholar 

  14. Pérez-Jiménez, M., Romero-Jiménez, A., Sancho-Caparrini, F.: Complexity classes in models of cellular computing with membranes. Nat. Comput. 2, 265–285 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  15. Păun, A., Popa, B.: P systems with proteins on membranes. Fundamenta Informaticae 72(4), 467–483 (2006)

    MathSciNet  MATH  Google Scholar 

  16. Păun, A., Popa, B.: P systems with proteins on membranes and membrane division. In: Ibarra, O.H., Dang, Z. (eds.) DLT 2006. LNCS, vol. 4036, pp. 292–303. Springer, Heidelberg (2006). https://doi.org/10.1007/11779148_27

    Chapter  Google Scholar 

  17. Păun, G.: Membrane Computing - An Introduction. Springer, Berlin (2002)

    Book  MATH  Google Scholar 

  18. Păun, G., Rozenberg, G., Salomaa, A. (eds.): The Oxford Handbook of Membrane Computing. Oxford University Press, Oxford (2010)

    MATH  Google Scholar 

  19. Robinson, K., Messerli, M.: Left/right, up/down: the role of endogenous electrical fields as directional signals in development, repair and invasion. Bioessays 25, 759766 (2003)

    Google Scholar 

  20. Schrödinger, E.: What is Life? The Physical Aspect of the Living Cell. Trinity College, Dublin (1944)

    MATH  Google Scholar 

  21. Sosík, P., Smolka, V., Drastík, J., Moore, T., Garzon, M.: Morphogenetic and homeostatic self-assembled systems. In: Patitz, M.J., Stannett, M. (eds.) UCNC 2017. LNCS, vol. 10240, pp. 144–159. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-58187-3_11

    Chapter  Google Scholar 

  22. Tangirala, K., Caragea, D.: Generating features using burrows wheeler transformation for biological sequence classification. In: Pastor, O., et al. (eds.) Proceedings of the International Conference on Bioinformatics Models, Methods and Algorithms, pp. 196–203. SciTePress (2014)

    Google Scholar 

  23. Tomita, M.: Whole-cell simulation: a grand challenge of the 21st century. Trends Biotechnol. 19(6), 205–210 (2001)

    Article  Google Scholar 

  24. Turing, A.: The chemical basis of morphogenesis. Philos. Trans. R. Soc. Lond. B 237, 7–72 (1950)

    Google Scholar 

  25. Watson, J., Crick, F.: A structure for deoxyribose nucleic acid. Nature 171, 737–738 (1953)

    Article  Google Scholar 

  26. Winfree, E.: Models of experimental self-assembly. Ph.D. thesis, Caltech (1998)

    Google Scholar 

  27. Winfree, E.: Self-healing tile sets. In: Chen, J., Jonoska, N., Rozenberg, G. (eds.) Nanotechnology: Science and Computation. Natural Computing Series, pp. 55–66. Springer, Heidelberg (2006). https://doi.org/10.1007/3-540-30296-4_4

    Chapter  Google Scholar 

  28. Maxwell-Boltzmann distribution, Wikipedia (cit 2017-1-29). https://en.wikipedia.org/wiki/Maxwell-Boltzmann_distribution

  29. Ziegler, G.: Lectures on Polytopes. Graduate Texts in Mathematics. Springer, New York (1995)

    Book  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by The Ministry of Education, Youth and Sports Of the Czech Republic from the National Programme of Sustainability (NPU II) project IT4Innovations Excellence in Science - LQ1602, and by the Silesian University in Opava under the Student Funding Scheme, project SGS/13/2016.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petr Sosík .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sosík, P., Smolka, V., Drastík, J., Bradík, J., Garzon, M. (2018). On the Robust Power of Morphogenetic Systems for Time Bounded Computation. In: Gheorghe, M., Rozenberg, G., Salomaa, A., Zandron, C. (eds) Membrane Computing. CMC 2017. Lecture Notes in Computer Science(), vol 10725. Springer, Cham. https://doi.org/10.1007/978-3-319-73359-3_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-73359-3_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-73358-6

  • Online ISBN: 978-3-319-73359-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics