Skip to main content

Stress-Velocity Mixed Least-Squares FEMs for the Time-Dependent Incompressible Navier-Stokes Equations

  • Conference paper
  • First Online:
Book cover Large-Scale Scientific Computing (LSSC 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10665))

Included in the following conference series:

Abstract

In this article a mixed least-squares finite element method (LSFEM) for the time-dependent incompressible Navier-Stokes equations is proposed and investigated. The formulation is based on the incompressible Navier-Stokes equations consisting of the balance of momentum and the continuity equations. In order to obtain a first-order system the Cauchy stress tensor is introduced as an additional variable to the system of equations. From this stress-velocity-pressure approach a stress-velocity formulation is derived by adding a redundant residual to the functional without additional variables in order to strengthen specific physical relations, e.g. mass conservation. We account for implementation aspects of triangular mixed finite elements especially regarding the approximation used for H(div\() \times H^1\) and the discretization in time using the Newmark method. Finally, we present the flow past a cylinder benchmark problem in order to demonstrate the derived stress-velocity least-squares formulation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bochev, P.B., Gunzburger, M.D.: Least-Squares Finite Element Methods, vol. 166. Springer, New York (2009). https://doi.org/10.1007/b13382

    MATH  Google Scholar 

  2. Jiang, B.-N., Chang, C.L.: Least-squares finite elements for the Stokes problem. Comput. Meth. Appl. Mech. Eng. 78, 297–311 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bochev, P.B.: Analysis of least-squares finite element methods for the Navier-Stokes equations. SIAM J. Numer. Anal. 34, 1817–1844 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  4. Jiang, B.-N.: The Least-Squares Finite Element Method. Scientific Computation. Springer, Berlin (1998). https://doi.org/10.1007/978-3-662-03740-9

    Book  MATH  Google Scholar 

  5. Bell, B.C., Surana, K.S.: p-version least squares finite element formulation for two-dimensional, incompressible, non-Newtonian isothermal and non-isothermal fluid flow. Int. J. Numer. Meth. Fluids 18, 127–162 (1994)

    Article  MATH  Google Scholar 

  6. Bochev, P.B., Gunzburger, M.D.: Least-squares methods for the velocity-pressure-stress formulation of the Stokes equations. Comput. Meth. Appl. Mech. Eng. 126, 267–287 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  7. Ding, X., Tsang, T.T.H.: On first-order formulations of the least-squares finite element method for incompressible flows. Int. J. Comput. Fluid Dyn. 17, 183–197 (2003)

    Article  MATH  Google Scholar 

  8. Cai, Z., Manteuffel, T.A., McCormick, S.F.: First-order system least squares for the Stokes equation, with application to linear elasticity. SIAM J. Numer. Anal. 34, 1727–1741 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bochev, P.B., Cai, Z., Manteuffel, T.A., McCormick, S.F.: Analysis of velocity-flux least-squares methods for the Navier-Stokes equations, part I. SIAM J. Numer. Anal. 35, 990–1009 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  10. Bochev, P.B., Manteuffel, T., McCormick, S.: Analysis of velocity-flux least squares methods for the Navier-Stokes equations, part II. SIAM J. Numer. Anal. 36, 1125–1144 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  11. Nisters, C., Schwarz, A., Schröder, J.: Efficient stress-velocity least-squares finite element formulations for the incompressible Navier-Stokes equations (in revision)

    Google Scholar 

  12. Cai, Z., Lee, B., Wang, P.: Least-squares methods for incompressible Newtonian fluid flow: linear stationary problems. SIAM J. Numer. Anal. 42, 843–859 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  13. Kayser-Herold, O., Matthies, H.G.: A unified least-squares formulation for fluid-structure interaction problems. Comput. Struct. 85, 998–1011 (2007)

    Article  MathSciNet  Google Scholar 

  14. Schäfer, M., Turek, S., Durst, F., Krause, E., Rannacher, R.: Benchmark computations of laminar flow around a cylinder. In: Hirschel, E.H. (ed.) Flow Simulation with High-Performance Computers II. NNFM, vol. 48, pp. 547–566. Springer, Heidelberg (1996). https://doi.org/10.1007/978-3-322-89849-4_39

    Chapter  Google Scholar 

  15. Schwarz, A., Nickaeen, M., Serdas, S., Nisters, C., Ouazzi, A., Schröder, J., Turek, S.: A comparative study of mixed least-squares FEMs for the incompressible Navier-Stokes equations. Int. J. Comput. Sci. Eng. (2017, in press)

    Google Scholar 

  16. Schwarz, A., Steeger, K., Schröder, J.: Weighted overconstrained least-squares mixed finite elements for static and dynamic problems in quasi-incompressible elasticity. Comput. Mech. 54, 603–612 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  17. Münzenmaier, S., Starke, G.: First-order system least squares for coupled Stokes-Darcy flow. SIAM J. Numer. Anal. 49, 387–404 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  18. Deang, J.M., Gunzburger, M.D.: Issues related to least-squares finite element methods for the Stokes equations. SIAM J. Sci. Comput. 20, 878–906 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  19. Raviart, P.A., Thomas, J.M.: A mixed finite element method for 2-nd order elliptic problems. In: Galligani, I., Magenes, E. (eds.) Mathematical Aspects of Finite Element Methods. LNM, vol. 606, pp. 292–315. Springer, Heidelberg (1977). https://doi.org/10.1007/BFb0064470

    Chapter  Google Scholar 

Download references

Acknowledgement

This work was supported by the German Research Foundation (DFG) under grant SCHW1355/3-1 and SCHR570/31-1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Schwarz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Schwarz, A., Nisters, C., Averweg, S., Schröder, J. (2018). Stress-Velocity Mixed Least-Squares FEMs for the Time-Dependent Incompressible Navier-Stokes Equations. In: Lirkov, I., Margenov, S. (eds) Large-Scale Scientific Computing. LSSC 2017. Lecture Notes in Computer Science(), vol 10665. Springer, Cham. https://doi.org/10.1007/978-3-319-73441-5_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-73441-5_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-73440-8

  • Online ISBN: 978-3-319-73441-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics