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Preface

In this book you, the reader, are going to see some results on the space complexity of
some propositional proof systems. This book is a revised version of my PhD thesis1

and indeed it is not intended to be a survey of all the results known on the space
complexity of propositional proof systems. It will rather be a long walk touching
some topics in proof complexity, mostly about space of course, but not exclusively.
Hopefully this could be used too as a rather reader-friendly exposition of some game
theoretic methods used in proof complexity. This is indeed an underground theme
connecting most of the results we show. Of course there will be some survey(-ish)
parts but mainly the focus will be on the new game theoretic techniques and their
application to the analysis of the space complexity of propositional proof systems.
That is the results arising from my PhD thesis [Bon15] and some earlier works
[BG13, BGT14, BT15, BG15, BBG+17, BT16a, BT16b, BGT16, Bon16].

This is a work about proof complexity, so let’s start by introducing it informally.
Proof complexity is a research area that studies the concept of complexity from the
point of view of logic. In particular, in proof complexity we are interested in questions
such as: “how difficult is it to prove a theorem?” Or, more precisely, given a formal
system, we are interested in measuring the complexity of a theorem, that is answering
questions such as “what is the shortest proof of the theorem in a given formal system?”
This mirrors questions in computational complexity about, for example, the number
of steps that a Turing machine needs to compute a given function f ; or the size of
circuits needed to compute f .2

In this book we investigate the space complexity of propositional proof systems,
so what is the space of a proof? We could state this question pictorially as “what
is the smallest blackboard a teacher needs to present the proof of a theorem to a
class of students?”3 As before, this notion is analogous to the space complexity

1 This revised version is due to the fact that my thesis was awarded “Best Italian PhD Thesis in
Theoretical Computer Science” for the year 2016 by the Italian chapter of the European Association
for Theoretical Computer Science (EATCS).
2 On the other hand, we could also measure the complexity of a theorem as the strength of a theory
needed to prove the theorem. This also has a counterpart in computational complexity, it is linked
with questions about the smallest complexity class to which a given function belongs.
3 We suppose here that the students can understand just proofs written on the blackboard in some
given formal system and they do not have any additional memory except the minimal one to
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in the context of uniform computations, measured, for example, as the size of a
working-tape needed by a Turing machine to compute a given function.

Propositional proof complexity, that is the complexity of propositional proofs,
plays a role in the context of feasible proofs as important as the role of Boolean
circuits in the context of efficient computations. Although the original motivations to
study the complexity of propositional proofs came from proof-theoretical questions
about first-order theories, it turns out that, essentially, the complexity of propositional
proofs deals with the following question: “what can be proved by a prover with
bounded computational abilities?” For example, if its computational abilities are lim-
ited to small circuits from some circuit class. Hence, propositional proof complexity
mirrors non-uniform computational complexity and indeed there is a very productive
cross-fertilization of techniques between the two fields. Our understanding of propo-
sitional proof systems is, unfortunately, similar to the general situation in complexity
theory. In both fields we can prove lower bounds in very special cases and indeed
there are several major open problems that are very basic, way more basic than the
well-known question P

?
= NP. The situation is similar in the sense that we can prove

super-polynomial lower bounds on the length of proofs only for restricted proof
systems. Indeed, by a result of [CR79], proving super-polynomial lower bounds on
the length of proofs for every propositional proof system is equivalent to showing
that NP �= coNP, which in turn is one of the open and very important problems in
computational complexity. Propositional proof complexity is important also from
the practical point of view. The implementations of state-of-the-art SAT algorithms
ultimately rely on rather simple propositional proof systems. Hence the study of
those systems helps in clarifying the limitations of such algorithms that are essential
in various aspects of computer science, cf. [Nor15].

We will focus on the space complexity of two particular proof systems: resolution,
a well studied proof system that is at the core of state-of-the-art SAT-solvers; and
polynomial calculus, a proof system that uses polynomials to refute propositional
formulas that are contradictions. We will show some generic combinatorial techniques
to prove space lower bounds in both those systems and then we will apply those
techniques to show concrete space lower bounds for refutations of several particular
(unsatisfiable) propositional formulas. Since the very first exponential size lower
bound for resolution size in [Hak85], game theoretic methods and combinatorial
characterisations of hardness measures have a long history in proof complexity. This
book could be seen as the latest contribution to this topic.

For resolution the new techniques we introduce allowed for the first time to
obtain—in a quite easy way actually—lower bounds for the space of proofs when the
space is measured as the total number of variables to be kept in memory (total space).
For polynomial calculus the techniques we introduce—which is more involved than
those for resolution—allow us to address space lower bounds when the space takes
into account the number of distinct monomials to be kept in memory (monomial
space). Notably those techniques allow us to prove, among other results, that almost

understand the content of the blackboard. Moreover the teacher has to write with fonts of a fixed
size.
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all k-CNF formulas are hard with respect to total space in resolution and monomial
space in polynomial calculus. That is we prove asymptotically optimal lower bounds
for the monomial space (and total space in resolution) for random k-CNF formulas
in n variables and a linear number of clauses. This was an open problem mentioned
for the first time in [BS01, ABRW02] and since then reported many times in the
literature.

Book Structure After an introduction to propositional proof complexity (Chap. 1),
this work consists of 3 parts. Each chapter ends with a section containing open
questions and a History section collecting some facts about the main theorems of
the chapter and how they fit in the previous literature.

In Part I there are two chapters on resolution: one containing results already
known in the literature before this work (Chap. 2) and one just focused on space in
resolution (Chap. 3). More precisely on the combinatorial techniques to prove total
space lower bounds. Then we move to polynomial calculus and its space complexity
(Chap. 4). The focus will be now on the combinatorial technique to prove monomial
space lower bounds.

In Part II we collect the main applications of the techniques we built previously.
First there is a short chapter about the proof complexity and space complexity of the
pigeon principles (PHPm

n and its variations), cf. Chap. 5. Then there is an interlude
on some new type of games, the cover games, defined on bipartite graphs (Chap. 6).
This chapter is essentially independent from the rest of the book and it collects some
results on graph theory. The motivation behind this chapter though is that the results
in it will be needed in Chap. 7 to prove the space lower bound for random k-CNF
formulas and other graph-based propositional formulas.

In the last part, Part III, we analyse the size of resolution proofs in connection
with the Strong Exponential Time Hypothesis (SETH) in complexity theory. More
precisely we prove strong size lower bounds for a restricted version of resolution we
call δ -regular resolution. Although not directly related to space, the results we show
here rely on some combinatorial characterisations and games analogous to the one
used to prove space lower bounds.
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Notation

In this section we give the notation that shall be standard throughout this book.

Sets

We use the standard set-theoretic notations.

• |S| is the size of the set S
• [n] is the set of natural numbers {1, . . . ,n}
• /0 is the empty set
• A∪B = {x : x ∈ A or x ∈ B}
• A∩B = {x : x ∈ A and x ∈ B}
• A∪̇B = A∪B in the case A∩B = /0
• A\B = {x : x ∈ A and x �∈ B}
• A ⊆ B if every element of A is also an element of B
• (a,b) is an ordered pair of elements
• A×B = {(x,y) : x ∈ A and y ∈ B}
• (S

2

)
is the set of subsets of the set S of size 2

Arithmetic

As customary, N is the set of all natural numbers, R is the set of real numbers, F is a
generic field and Fp is a finite Galois field with p elements. Given a field F, char(F)
is the smallest integer a such that for every element x of F, x+ · · ·+ x︸ ︷︷ ︸

a

= 0.

If not stated otherwise e will be the base of natural logarithms, e = 2.718 . . .
We denote as ln(·) the natural logarithm and with log(·) the logarithm over base 2.
Given a real number x, �x	 is the largest integer smaller or equal to x. The binomial
coefficient

(m
n

)
is m!

n!(m−n)! . We use sometimes the inequality
(m

n

)
�
( em

n

)n.
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Asymptotic notations. Given two functions f ,g from N to N we say that f =O(g) if
there are some absolute constants c1,c2 such that for every n ∈N, f (n)� c1g(n)+c2.
We say that f = Ω (g) if g = O( f ) and f =Θ (g) if both f = Ω (g) and f = O(g).
We say that f = Õ(g) if there exists a k ∈ N such that f = O

(
g logk g

)
. We say that

f = o(g) if f (n)
g(n) → 0 as n → ∞. We say that f = ω(g) if g = o( f ). We say that f is

super-polynomial in n if f = nω(1).

Logic

Propositional formulas. A Boolean variable x and its negation ¬x are sometimes
denoted respectively as x1 and x0. A literal � is a Boolean variable or the negation
of a Boolean variable. A disjunction of literals

∨
i∈I �i is a clause. Its size |C| is the

number of distinct literals in C. If |C|� k we say that C is a k-clause. A conjunction
of clauses {Ci : i ∈ [m]} is a formula in Conjunctive Normal Form (CNF formula)
and it is denoted also as C1 ∧ ·· · ∧Cm. If all the clauses are k-clauses then we say
that the formula is a k-CNF formula. Given a CNF formula F , the set of Boolean
variables mentioned in F is vars(F). The number of clauses mentioned in the CNF
formula F is |F |.

We often consider families of formulas (Fn)n∈N where usually n = |vars(Fn)| or
n is polynomially related to |vars(Fn)|. With a slight abuse of notation a family of
formulas (Fn)n∈N is denoted simply as Fn.
Boolean assignments. Given a set of variables X , a Boolean assignment over X
is a map α : X → {0,1,�}, where X is a set of variables. The domain of α is
dom(α) = α−1({0,1}). We say that α is assigning a value to x if and only if
x ∈ dom(α). With λ we denote the unique Boolean assignment with empty domain.

Given a Boolean assignments α over X and α ′ over X ′, their union α ∪α ′ is the
following Boolean assignment over X ∪X ′

α ∪α ′(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
α(x) if x ∈ dom(α)\dom(α ′)
α ′(x) if x ∈ dom(α ′)\dom(α)

α(x) if x ∈ dom(α)∩dom(α ′) and α(x) = α ′(x)
� otherwise .

(0.1)

Given a Boolean assignment α over X and Y ⊆ X , the restriction α�Y is the
Boolean assignment

α�Y (x) =

{
α(x) if x ∈ Y
� otherwise .

(0.2)

Given two Boolean assignments α and α ′, we say that α ⊆ α ′, if α ′�dom(α) = α .
Evaluation of CNF formulas. Given a CNF formula F and a Boolean assignment
α over vars(F), we can apply α to F obtaining a new CNF formula F�α in this way:
for each variable x ∈ dom(α) substitute x in F with the value α(x), otherwise leave
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x untouched. Then simplify the resulting formula with the usual rules: 0∨C ≡ C,
1∨C ≡ 1, 0∧C ≡ 0, 1∧C ≡ C. We say that α satisfies F if F�α = 1. We denote
this as α � F . Similarly, for a family A of Boolean assignments we write A � F if for
each α ∈ A, α � F .

Algebra

Given a field F and a set of variables X , the ring F[X ] is the ring of polynomials
in the variables X with coefficients in F. An ideal I in F[X ] is any subset of F[X ]
closed under addition, p,q ∈ I implies that p+q ∈ I, and closed under multiplication
with elements of F[X ], p ∈ I and q ∈ F[X ] implies that pq ∈ I. Given a set of
polynomials P, 〈P〉 is the ideal generated by P in F[X ]. Given two ideals I,J in F[X ],
I + J = {a+b : a ∈ I and b ∈ J}.
Evaluations of polynomials. Given a polynomial p in F[X ] and a Boolean assign-
ment α we define the restriction p�α , as follows: for each variable x ∈ dom(α)
substitute x in p with the value α(x), or otherwise leave the variable untouched. Then
simplify the result with the usual simplification rules including: 0 ·m ≡ 0, 1 ·m ≡ m
and m−m ≡ 0 where m is any term in p, that is any monomial with a coefficient
from F in front of it.

Graphs

A graph G is a pair (V,E) where V is a set and E ⊆ (V
2

)
. The elements of V are called

vertices of G and the elements of E are called edges of G. Given a vertex v ∈ G,
the neighbor of v in G is NG(v) = {w ∈V : {v,w} ∈ E}. The size of NG(v) is the
degree of v in G.

A graph G is a bipartite graph if there exists two disjoint sets L and U such that
V = L∪̇U and E ⊆ {{v,w} : v ∈ L and w ∈U}. The pair (L,U) is a bipartition of
the bipartite graph G.

A matching in G is a set M ⊆ E such that all the edges in M are pair-wise disjoint.
A matching covers S ⊆V if for each v ∈ S there exists e ∈ M such that v ∈ e.

A standard result about matchings in bipartite graphs is Hall’s theorem: given
any bipartite graph G with bipartition (L,U), the following are equivalent

1. G has a matching covering L;
2. for every subset S ⊆ L, |NG(S)|� |S|.

Bipartite expansion. Let r ∈ N and c ∈ R. A bipartite graph G with bipartition
(L,U) is a (r,c)-bipartite expander if and only if

∀A ⊆ L(G), |A|� r → |NG(A)|� c |A| . (0.3)
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