Skip to main content

Global Depth Refinement Based on Patches

  • Conference paper
  • First Online:
Book cover Machine Learning and Intelligent Communications (MLICOM 2017)

Abstract

Current stereo matching methods can be divided into 1D label algorithms and 3D label algorithms. 1D label algorithms are simple and fast, but they can’t aovid fronto-parallel bias. 3D label algorithms can solve fronto-parallel bias. However, they are very time-consuming. In order to avoid fronto-parallel bias efficiently, this paper introduces a new global depth refinement based on patches. The method transforms the depth optimization problem into a quadratic function computation, which has a low time complexity. Experiments on Motorcycle imagery and Wuhan university imagery verify the correctness and the effectiveness of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Scharstein, D., Szeliski, R.: A taxonomy and evaluation of dense two-frame stereo correspondence algorithms. Int. J. Comput. Vision 47(1), 7–42 (2002)

    Article  Google Scholar 

  2. Olsson, C., Ulen, J., Boykov, Y.: In defense of 3D-label stereo. In: Computer Vision and Pattern Recognition, pp. 1730–1737. IEEE press, Portland (2013)

    Google Scholar 

  3. Li, L., Zhang, S., Yu, X., Zhang, L.: PMSC: PatchMatch-based superpixel cut for accurate stereo matching. IEEE Trans. Circ. Syst. Vid. PP(99), 1–14 (2016)

    Google Scholar 

  4. Zhang, C., Li, Z., Cheng, Y., et al.: MeshStereo: a global stereo model with mesh alignment regularization for view interpolation. In: International Conference on Computer Vision, pp. 2057–2065. Santiago (2015)

    Google Scholar 

  5. Park, H., Mu Lee, K.: Look wider to match image patches with convolutional neural networks. IEEE Signal Process. Lett. PP(99), 1–5 (2016)

    Google Scholar 

  6. Kim, K.R., Kim, C.S.: Adaptive smoothness constraints for efficient stereo matching using texture and edge information. In: International Conference on Image Processing, pp. 3429–3434. IEEE press, Phoenix (2016)

    Google Scholar 

  7. Bontar, J., Lecun, Y.: Stereo matching by training a convolutional neural network to compare image patches. J. Mach. Learn. Res. 17(1), 2287–2318 (2016)

    Google Scholar 

  8. Hirschmuller, H.: Stereo processing by semiglobal matching and mutual information. IEEE Trans. Pattern Anal. 30(2), 328–341 (2008)

    Article  Google Scholar 

  9. Yang, Q.X.: Stereo matching using tree filtering. IEEE Trans. Pattern Anal. 37(4), 834–846 (2015)

    Article  Google Scholar 

  10. Pham, C.C., Jeon, J.W.: Domain transformation-based efficient cost aggregation for local stereo matching. IEEE Trans. Circ. Syst. Vid. 23(7), 1119–1130 (2013)

    Article  Google Scholar 

  11. Kolmogorov, V., Zabih, R.: Computing visual correspondence with occlusions using graph cuts. In: International Conference on Computer Vision, pp. 508–515. Vancouver (2001)

    Google Scholar 

  12. Huang, X., Zhang, Y., Yue, Z.: Image-guided Non-local dense matching with three-steps optimization. In: ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences, Prague, pp. 67–74 (2016)

    Google Scholar 

  13. Zhang, Y., Gong, M., Yang, Y.: Local stereo matching with 3D adaptive cost aggregation for slanted surface modeling and sub-pixel accuracy. In: International Conference on Pattern Recognition, pp. 1–4. Springer press, Tampa (2008)

    Google Scholar 

  14. Žbontar, J., LeCun, Y.: Stereo matching by training a convolutional neural network to compare image patches. J. Mach. Learn. Res. 17, 1–32 (2016)

    MATH  Google Scholar 

  15. Bleyer, M., Rhemann, C., Rother, C.: PatchMatch stereo - stereo matching with slanted support windows. In: British Machine Vision Conference, Dundee, pp. 14.1–14.11 (2011)

    Google Scholar 

  16. Heise, P., Klose, S., Jensen, B., et al.: PM-Huber: PatchMatch with huber regularization for stereo matching. In: International Conference on Computer Vision, pp. 2360–2367. IEEE press, Sydney (2013)

    Google Scholar 

  17. Barnes, C., Shechtman, E., Finkelstein, A., et al.: PatchMatch: a randomized correspondence algorithm for structural image editing. ACM Trans. Graph. 28(3), 341–352 (2009)

    Article  Google Scholar 

  18. Klaus, A., Sormann, M., Karner, K.: Segment-based stereo matching using belief propagation and a self-adapting dissimilarity measure. In: International Conference on Image Processing, pp. 15–18. IEEE press, Hong Kong (2006)

    Google Scholar 

  19. Veldandi, M., Ukil, S., Govindarao, K.A.: Robust segment-based stereo using cost aggregation. In: British Machine Vision Conference, Nottingham, pp. 1–11 (2014)

    Google Scholar 

  20. Bleyer, M., Gelautz, M.: A layered stereo matching algorithm using image segmentation and global visibility constraints. ISPRS J. Photogram. 59(3), 128–150 (2005)

    Article  Google Scholar 

  21. Guney, F., Geiger, A.: Displets: resolving stereo ambiguities using object knowledge. In: Computer Vision and Pattern Recognition, pp. 4165–4175. IEEE press, Boston (2015)

    Google Scholar 

  22. Yamaguchi, K., McAllester, D., Urtasun, R.: Efficient joint segmentation, occlusion labeling, stereo and flow estimation. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 756–771. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_49

    Chapter  Google Scholar 

  23. Yamaguchi, K., Hazan, T., McAllester, D., Urtasun, R.: Continuous markov random fields for robust stereo estimation. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7576, pp. 45–58. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33715-4_4

    Chapter  Google Scholar 

  24. Taniai, T., Matsushita, Y., Naemura, T.: Graph cut based continuous stereo matching using locally shared labels. In: Computer Vision and Pattern Recognition, pp. 1613–1620. IEEE press, Columbus (2014)

    Google Scholar 

  25. Xu, S., Zhang, F., He, X., et al.: PM-PM: PatchMatch with potts model for object segmentation and stereo matching. IEEE Trans. Image Process. 24(7), 2182–2196 (2015)

    Article  MathSciNet  Google Scholar 

  26. Li, Y., Min, D., Brown, M. S., Do, M. N., Lu, J.: SPM-BP: sped-up PatchMatch belief propagation for continuous MRFs. In: International Conference on Computer Vision, pp. 4006–4014. IEEE press, Santiago (2015)

    Google Scholar 

  27. Besse, F., Rother, C., Fitzgibbon, A., Kautz, J.: PMBP: PatchMatch belief propagation for correspondence field estimation. Int. J. Comput. Vis. 110(1), 2–13 (2014)

    Article  Google Scholar 

  28. Bleyer, M., Rother, C., Kohli, P.: Surface stereo with soft segmentation. In: Computer Vision and Pattern Recognition, pp. 1570–1577. IEEE press, San Francisco (2010)

    Google Scholar 

  29. Lempitsky, V., Rother, C., Roth, S., Blake, A.: Fusion moves for markov random field optimization. IEEE Trans. Pattern Anal. 32(8), 1392–1405 (2009)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Chinese Parasol Entrepreneurial Partner Project of Wuhan Engineering Science & Technology Institute (Grant No. gkwt006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xu Huang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Huang, X., Zhang, Y., Zhou, G., Liu, L., Cai, G. (2018). Global Depth Refinement Based on Patches. In: Gu, X., Liu, G., Li, B. (eds) Machine Learning and Intelligent Communications. MLICOM 2017. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 226. Springer, Cham. https://doi.org/10.1007/978-3-319-73564-1_42

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-73564-1_42

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-73563-4

  • Online ISBN: 978-3-319-73564-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics