Skip to main content

Gain-Phase Error Calculation in DOA Estimation for Mixed Wideband Signals

  • Conference paper
  • First Online:
Machine Learning and Intelligent Communications (MLICOM 2017)

Abstract

Gain-phase error is inevitable in direction of arrival (DOA) estimation, it will lead to the mismatch between actual and ideal array manifold. Therefore, a novel gain-phase error calculation approach in DOA estimation for mixed wideband signals is provided in this paper. First, the signals are transformed on the focusing frequency. Then peak searching is employed for determining the far-field sources. Finally, gain-phase error can be calculated according to the orthogonality of far-field signal subspace and noise subspace, simulation results manifest the effectiveness of the proposed approach.

J. Zhen—This work was supported by the National Natural Science Foundation of China under Grant No. 61501176 and 61505050, University Nursing Program for Young Scholars with Creative Talents in Heilongjiang Province (UNPYSCT-2016017), China Postdoctoral Science Foundation (2014M561381), Heilongjiang Province Postdoctoral Foundation (LBH-Z14178), Heilongjiang Province Natural Science Foundation (F2015015), Outstanding Young Scientist Foundation of Heilongjiang University (JCL201504) and Special Research Funds for the Universities of Heilongjiang Province (HDRCCX-2016Z10).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Luis, S., Luis, M., Jose, A.G.: SmartSantander: IoT experimentation over a smart city testbed. Comput. Netw. 61, 217–238 (2014)

    Article  Google Scholar 

  2. Li, J., Zhao, Y.J., Li, D.H.: Accurate single-observer passive coherent location estimation based on TDOA and DOA. Chin. J. Aeronaut. 27, 913–923 (2014)

    Article  Google Scholar 

  3. Giuseppe, F., Andrew, H.: A multipath-driven approach to HF geolocation. Signal Process. 93, 3487–3503 (2013)

    Article  Google Scholar 

  4. He, Z.Q., Shi, Z.P., Huang, L.: Underdetermined DOA estimation for wideband signals using robust sparse covariance fitting. IEEE Signal Process. Lett. 22, 435–439 (2015)

    Article  Google Scholar 

  5. Tan, Z., Yang, P., Nehorai, A.: Joint-sparse recovery method for compressed sensing with structure dictionary mismatches. IEEE Trans. Signal Process. 62, 4997–5008 (2014)

    Article  MathSciNet  Google Scholar 

  6. Azais, J.M., Castro, Y.D., Gamboa, F.: Spike detection from inaccurate samplings. Appl. Comput. Harmon. Anal. 38, 177–195 (2015)

    Article  MathSciNet  Google Scholar 

  7. Jagannath, R., Hari, K.V.S.: Block sparse estimator for grid matching in single snapshot DoA estimation. IEEE Signal Process. Lett. 20, 1038–1041 (2013)

    Article  Google Scholar 

  8. Amin, M.G., Wang, X.R., Zhang, Y.D.: Sparse arrays and sampling for interference mitigation and DOA estimation in GNSS. Proc. IEEE 104, 1302–1317 (2016)

    Article  Google Scholar 

  9. Schmidt, R.O.: Multiple emitter location and signal parameter estimation. IEEE Trans. Antennas Propag. 34, 276–280 (1986)

    Article  Google Scholar 

  10. Roy, R., Kailath, T.: ESPRIT-estimation of signal parameters via rotational invariance techniques. IEEE Trans. Acoust. Speech Signal Process. 37, 984–995 (1989)

    Article  Google Scholar 

  11. Ziskind, I., Wax, M.: Maximum likelihood localization of multiple sources by alternating projection. IEEE Trans. Acoust. Speech Signal Process. 36, 1553–1560 (1988)

    Article  Google Scholar 

  12. Friedlander, B.: A sensitivity analysis of the MUSIC algorithms. IEEE Trans. Acoust. Speech Signal Process. 38, 1740–1751 (1990)

    Article  Google Scholar 

  13. Weiss, A.J., Friedlander, B.: Effects of modeling errors on the resolution threshold of the MUSIC algorithm. IEEE Trans. Signal Process. 42, 1519–1526 (1994)

    Article  Google Scholar 

  14. Su, W.M., Gu, H., Ni, J.L.: A statistical performance analysis of the MUSIC algorithm in the presence of amplitude and phase perturbation. Acta Electron. Sin. 28, 105–107 (2000)

    Google Scholar 

  15. Wang, D., Wang, C., Wu, Y.: Analysis of the effects of the amplitude-phase errors on spatial spectrum and resolving performance of the MUSIC algorithm. J. Commun. 31, 55–63 (2010)

    Google Scholar 

  16. Lee, J., Chen, Y., Yeh, A.: A covariance approximation method for near-field direction-finding using a uniform linear array. IEEE Trans. Signal Process. 43, 1293–1298 (1995)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiaqi Zhen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhen, J., Liu, Y., Li, Y. (2018). Gain-Phase Error Calculation in DOA Estimation for Mixed Wideband Signals. In: Gu, X., Liu, G., Li, B. (eds) Machine Learning and Intelligent Communications. MLICOM 2017. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 226. Springer, Cham. https://doi.org/10.1007/978-3-319-73564-1_60

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-73564-1_60

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-73563-4

  • Online ISBN: 978-3-319-73564-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics