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Abstract

Deep stacked RNNs are usually hard to train.
Adding shortcut connections across different
layers is a common way to ease the training
of stacked networks. However, extra short-
cuts make the recurrent step more compli-
cated. To simply the stacked architecture, we
propose a framework called shortcut block,
which is a marriage of the gating mecha-
nism and shortcuts, while discarding the self-
connected part in LSTM cell. We present
extensive empirical experiments showing that
this design makes training easy and improves
generalization. We propose various shortcut
block topologies and compositions to explore
its effectiveness. Based on this architecture,
we obtain a 6% relatively improvement over
the state-of-the-art on CCGbank supertagging
dataset. We also get comparable results on
POS tagging task.

1 Introduction

In natural language processing, sequence tagging
mainly refers to the tasks of assigning discrete la-
bels to each token in a sequence. Typical examples
include Part-of-Speech (POS) tagging and Combi-
natory Category Grammar (CCG) supertagging. A
regular feature of sequence tagging is that the in-
put tokens in a sequence cannot be assumed to be
independent since the same token in different con-
texts can be assigned to different tags. Therefore,
the classifier should have memories to remember the
contexts to make a correct prediction.

Bidirectional LSTMs
(Graves and Schmidhuber, 2005) become dom-

inant in sequence tagging problems due to
the superior performance (Wang et al., 2015;
Lample et al., 2016). The horizontal hierarchy of
LSTMs with bidirectional processing can remember
the long-range dependencies without affecting the
short-term storage. Although the models have
a deep horizontal hierarchy (the depth refers to
sequence length), the vertical hierarchy is often
shallow, which may not be efficient at representing
each token. Stacked LSTMs are deep in both
dimensions, but become harder to train due to the
feed-forward structure of stacked layers.

Shortcut connections (shortcuts, or skip con-
nections) enable unimpeded information flow
by adding direct connections across differ-
ent layers (Raiko et al., 2012; Graves, 2013;
Hermans and Schrauwen, 2013). Recent works
have shown the effectiveness of using short-
cuts in deep stacked models (He et al., 2015;
Srivastava et al., 2015; Wu et al., 2016b). These
works share a common way of adding shortcuts as
increments to the original network.

We focus on the refinement of shortcut stacked
models to make the training easy. Particularly, for
stacked LSTMs, the shortcuts make the computation
of LSTM blocks more complicated. We replace the
self-connected parts in LSTM cells with the short-
cuts to simplify the updates. Based on this construc-
tion, we introduce the shortcut block, which can be
viewed as a marriage of the gating mechanism and
the shortcuts, while discard the self-connected units
in LSTMs.

Our contribution is mainly in the exploration of
shortcut blocks. We propose a framework of stacked
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LSTMs within shortcuts, using deterministic or
stochastic gates to control the shortcut connections.
We present extensive experiments on the Combina-
tory Category Grammar (CCG) supertagging task to
compare various shortcut block topologies, gating
functions, and combinations of the blocks. We also
evaluate our model on Part-of-Speech (POS) tag-
ging task to test the generalization performance. Our
model obtains the state-of-the-art results on CCG su-
pertagging and comparable results on POS tagging.

2 Recurrent Neural Networks for
Sequence Tagging

Consider a recurrent neural network applied to
sequence tagging: Given a sequencex =
(x1, . . . , xT ), the RNN computes the hidden state
h = (h1, . . . , hT ) and the outputy = (y1, . . . , yT )
by iterating the following equations:

ht = f(xt, ht−1; θh) (1)

yt = g(ht; θo) (2)

wheret ∈ {1, . . . , T} represents the time.xt repre-
sents the input at timet, ht−1 andht are the previ-
ous and the current hidden state, respectively.f and
g are the transition function and the output function,
respectively.θh andθo are network parameters.

We use a negative log-likelihood cost to evaluate
the performance, which can be written as:

C = −
1

N

N
∑

n=1

log ytn (3)

wheretn ∈ N is the true target for samplen, and
ytn is thet-th output in thesoftmax layer given the
inputsxn.

Stacked RNN is one type of deep RNNs, which
refers to the hidden layers are stacked on top of each
other, each feeding up to the layer above:

hlt = f l(hl−1
t , hlt−1) (4)

wherehlt is thet-th hidden state of thel-th layer.

3 Explorations of Shortcuts

Shortcuts(skip connections) are cross-layer connec-
tions, which means the output of layerl − 1 is not
only connected to the layerl, but also connected to

layer l+ 1, . . . , L. In this section, we first introduce
the traditional stacked LSTMs. Based on this archi-
tecture, we propose a shortcut block structure, which
is the basic element of our stacked models.

3.1 Tranditional Stacked LSTMs

Stacked LSTMs without skip connections can be de-
fined as:
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clt = f ⊙ clt−1 + i⊙ slt

hlt = o⊙ tanh(clt)
(6)

During the forward pass, LSTMs need to calculateclt
andhlt, which is the cell’s internal state and the cell
outputs state, respectively.clt is computed by adding
two parts: one is the cell incrementslt, controlled by
the input gateilt, the other is the self-connected part
clt−1, controlled by the forget gatef l

t . The cell out-
putshlt are computed by multiplying the activated
cell state by the output gateolt, which learns when
to access memory cell and when to block it. “sigm”
and “tanh” are the sigmoid and tanh activation func-
tion, respectively.W l ∈ R

4n×2n is the weight ma-
trix needs to be learned.

3.2 Shortcut Blocks

The hidden units in stacked LSTMs have two forms.
One is the hidden units in the same layer{hlt, t ∈
1, . . . , T}, which are connected through an LSTM.
The other is the hidden units at the same time step
{hlt, l ∈ 1, . . . , L}, which are connected through a
feed-forward network. LSTM can keep the short-
term memory for a long time, thus the error sig-
nals can be easily passed through{1, . . . , T}. How-
ever, when the number of stacked layers is large, the
feed-forward network will suffer the gradient van-
ishing/exploding problems, which make the gradi-
ents hard to pass through{1, . . . , L}.

Shortcut connections can partly solve the above
problem by adding a direct link between layers. An
intuitive explanation is that such link can make the
error signal passing jump the layers, not just one by
one. This may lead to faster convergence and better
generalization. To clarify notations, we introduce



the shortcut block, which is composed of the differ-
ent layers connected through shortcuts.

Our shortcut block is mainly based on Wu et al.
(2016b), which introduce gated shortcuts connected
to cell outputs. The main difference is we replace the
self-connected parts with shortcuts to compute the
internal state. LSTM block (1997) composes mem-
ory cells sharing the same input and output gate. He
et al. (2015) create a residual block which adds
shortcut connections across different CNN layers.
All these inspired us to build a shortcut block across
different LSTM layers. Our shortcut block is defined
as follows:
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m = i⊙ slt + g ⊙ h−l
t

hlt = o⊙ tanh(m) + g ⊙ h−l
t

(8)

whereh−l
t is the output from one of the previous lay-

ers1, . . . , l−1. g is the gate which is used to access
the skipped outputh−l

t or block it.

Comparison with LSTMs. LSTMs introduce a
memory cell with a fixed self-connection to make
the constant error flow. They compute the follow-
ing increment to the self-connected cell at each time
step:

ct = ct−1 + st (9)

Here we remove the multiplicative gates to simplify
the explanation. The self-connected cellct can keep
the recurrent information for a long time.st is the
increment to the cell. While in our shortcut block,
we only consider the increment part. Since in se-
quence tagging problem, the input sequence and the
output sequence are exactly match. Specifically, the
input tokenxi, i ∈ {1, . . . , n} in a input sequence
with lengthn provides the most relevant information
to predict the corresponding labelyi, i ∈ {1, . . . , n}
in a output sequence. We want to focus the infor-
mation flow in the vertical direction through short-
cuts, rather than in the horizontal direction through
the self-connected units. Therefore, we only con-
sider the increment to the cell and ignore the self-
connected part. Our cell state becomes:

m = h−l
t + st (10)

Why Only Increments? Obviously, we can keep
the self-connected part with the increments in the
cell state. But the most important reason to this de-
sign is that it is much easier to compute. We do
not need extra space to preserve the cell state. This
makes deep stacked models much easier to train.

Discussion. The shortcut block can be seen as a
generalization of several multiscale RNN architec-
tures. It is up to the user to define the block topol-
ogy. For example, whenh−l

t := hl−1
t , this is simi-

lar to recurrent highway networks (Zilly et al., 2016)
and highway LSTMs (Zhang et al., 2016). When
h−l
t := hl−2

t , this becomes the traditional shortcuts
for RNNs:

m = i⊙ slt + g ⊙ hl−2
t

hlt = o⊙ tanh(m) + g ⊙ hl−2
t

(11)

3.3 Gates Sesign

Shortcut gates are used to make the skipped path
deterministic (Srivastava et al., 2015) or stochastic
(Huang et al., 2016). We explore many ways to
compute the shortcut gates (denoted byglt). The
simplest case is to useglt as a linear operator. In
this case,glt is a weight matrix, and the element-wise
productglt⊙h−l

t in Eq. (7) becomes a matrix-vector
multiplication:

glt ⊙ h−l
t := W lh−l

t (12)

We can also getglt under a non-linear mapping,
which is similar to the computation of gates in
LSTM:

glt = σ(W lhl−1
t ) (13)

Here we use the output of layerl−1 to control the
shortcuts, e.g.hl−2

t . Notice that this non-linear map-
ping is not unique, we just show the simplest case.

Furthermore, inspired by the dropout
(Srivastava et al., 2014) strategy, we can sam-
ple from a Bernoulli stochastic variable to getglt. In
this case, a deterministic gate is transformed into a
stochastic gate.

glt ∼ Bernoulli(p) (14)

whereglt is a vector of independent Bernoulli ran-
dom variables each of which has probabilityp of be-
ing 1. We can either fixp with a specific value or



learn it with a non-linear mapping. For example, we
can learnp by:

p = σ(H lhl−1
t ) (15)

At test time,h−l
t is multiplied byp.

Discussion. The gates of LSTMs are essential
parts to avoid weight update conflicts, which are
also invoked by the shortcuts. In experiments, we
find that using deterministic gates is better than the
stochastic gates. We recommend using the logistic
gates to computeglt.

3.4 Compositions of Shortcut Blocks

In the previous subsections, we introduce the short-
cut blocks and the computation of gating functions.
To build deep stacked models we need to compose
these blocks together. In this section, we discuss
several kinds of compositions, as shown in Figure
1. The links with⊙ represent the gated identity con-
nections across layers. There are two types of con-
nections in Figure 1: one is the direct connections
between adjacent layers, the other is the gated con-
nections across different layers.

In Figure 1, Type 1 is to connect the input of the
first hidden layerh1t to all the following layersL =
2, 3, 4, 5. Type 2 and Type 3 are composed of the
shortcut blocks with span 1 and 2, respectively. Type
4 and Type 5 are the nested shortcut blocks. We wish
to find an optimal composition to pass information
in deep stacked models.

4 Neural Architecture for sequence
Tagging

Sequence tagging can be formulated asP (t|w; θ),
wherew = [w1, . . . , wT ] indicates theT words in
a sentence, andt = [t1, . . . , tT ] indicates the cor-
respondingT tags. In this section we introduce an
neural architecture forP (·), which includes an input
layer, a stacked hidden layers and an output layer.
Since the stacked hidden layers have already been
introduced in the previous section, we only intro-
duce the input and the output layer here.

4.1 Network Inputs

Network inputs are the representation of each token
in a sequence. There are many kinds of token repre-
sentations, such as using a single word embedding,

using a local window approach, or a combination of
word and character-level representation. Following
Wu et al. (2016b), we use a local window approach
together with a concatenation of word representa-
tions, character representations, and capitalization
representations.

Formally, we can represent the distributed word
featurefwt using a concatenation of these embed-
dings:

fwt = [Lw(wt);La(at);Lc(cw)] (16)

wherewt, at represent the current word and its cap-
italization. cw := [c1, c2, . . . , cTw ], whereTw is the
length of the word andci, i ∈ {1, . . . , Tw} is thei-th
character for the particular word.Lw(·) ∈ R

|Vw|×n,
La(·) ∈ R

|Va|×m andLc(·) ∈ R
|Vc|×r are the look-

up tables for the words, capitalization and charac-
ters, respectively.fwt ∈ R

n+m+r represents the dis-
tributed feature ofwt. A context window of sized
surrounding the current word is used as an input:

xt = [fwt−⌊d/2⌋
; . . . ; fwt+⌊d/2⌋

] (17)

wherext ∈ R
(n+m+r)×d is a concatenation of the

context features. In the following we discuss thewt,
at andcw in detail.

Word Representations. All words in the vocabu-
lary share a common look-up table, which is initial-
ized with random initializations or pre-trained em-
beddings. Each word in a sentence can be mapped
to an embedding vectorwt. The whole sentence is
then represented by a matrix with columns vector
[w1, w2, . . . , wT ]. Following Wu et al. (2016a), we
use a context window of sized surrounding with
a wordwt to get its context information. Rather,
we add logistic gates to each token in the con-
text window. The word representation is computed
as wt = [rt−⌊d/2⌋wt−⌊d/2⌋; . . . ; rt+⌊d/2⌋wt+⌊d/2⌋],
where rt := [rt−⌊d/2⌋, . . . , rt+⌊d/2⌋] ∈ R

d is
a logistic gate to filter the unnecessary contexts,
wt−⌊d/2⌋, . . . , wt+⌊d/2⌋ is the word embeddings in
the local window.

Capitalization Representations. We lowercase
the words to decrease the size of word vocabulary
to reduce sparsity, but we need an extra capitaliza-
tion embeddings to store the capitalization features,
which represent whether or not a word is capitalized.
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Figure 1: Compositions of shortcut blocks. We call a shortcut block with span 1 whenh−l

t := hl−2

t .

Character Representations. We concate-
nate character embeddings in a word to get the
character-level representation. Concretely, given
a word w consisting of a sequence of characters
[c1, c2, . . . , clw ], where lw is the length of the
word andL(·) is the look-up table for characters.
We concatenate the leftmost most 5 character
embeddingsL(c1), . . . , L(c5) with its rightmost 5
character embeddingsL(clw−4), . . . , L(clw) to get
cw. When a word is less than five characters, we
pad the remaining characters with the same special
symbol.

4.2 Network Outputs

For sequence tagging, we use asoftmax activation
functiong(·) in the output layer:

yt = g(W hy[
−→
ht ;
←−
ht ]) (18)

whereyt is a probability distribution over all possi-
ble tags.yk(t) =

exp(hk)∑
k′ exp(hk′ )

is thek-th dimension
of yt, which corresponds to thek-th tag in the tag
set.W hy is the hidden-to-output weight.

5 Experiments

5.1 Combinatory Category Grammar
Supertagging

Combinatory Category Grammar (CCG) supertag-
ging is a sequence tagging problem in natural lan-
guage processing. The task is to assign supertags
to each word in a sentence. In CCG the supertags
stand for the lexical categories, which are com-
posed of the basic categories such asN , NP and
PP , and complex categories, which are the com-
bination of the basic categories based on a set

of rules. Detailed explanations of CCG refer to
(Steedman, 2000; Steedman and Baldridge, 2011).

Another similar task is POS tagging, in which
the tags are part of speeches. Technically, the two
kinds of tags classify the words in different ways:
CCG tags implicate the semantics of words, while
the POS tags represent the syntax of words. Al-
though these distinctions are important in linguis-
tics, here we all treat them as the activations of
neurons, using distributed representations to encode
these tags. This high-level abstraction greatly im-
proves the generalization, and heavily reduces the
cost of the model redesign.

5.1.1 Dataset and Pre-processing

Our experiments are performed on CCG-
Bank (Hockenmaier and Steedman, 2007),
which is a translation from Penn Treebank
(Marcus et al., 1993) to CCG with a coverage
99.4%. We follow the standard splits, using sections
02-21 for training, section 00 for development and
section 23 for the test. We use a full category set
containing 1285 tags. All digits are mapped into the
same digit ‘9’, and all words are lowercased.

5.1.2 Network Configuration

Initialization. There are two types of
weights in our experiments: recurrent and
non-recurrent weights. For non-recurrent
weights, we initialize word embeddings with
the pre-trained 100-dimensional GolVe vectors
(Pennington et al., 2014). Other weights are initial-
ized with the Gaussian distributionN (0, 1√

fan-in
)

scaled by a factor of 0.1, wherefan-in is the number
of units in the input layer. For recurrent weight



matrices, following (Saxe et al., 2013) we initialize
with random orthogonal matrices through SVD
to avoid unstable gradients. All bias terms are
initialized with zero vectors.

Hyperparameters. Our context window size is
set to 3. The dimension of character embedding and
capitalization embeddings are 5. The size of the in-
put layer after concatenation is 465 ((word embed-
ding 100 + cap embedding 5 + character embedding
50)× window size 3). The number of cells of the
stacked bidirectional LSTM is also set to 465 for
orthogonal initialization. All stacked hidden layers
have the same number of cells. The output layer has
1286 neurons, which equals to the number of tags in
the training set with aRARE symbol.

Training. We train the networks using the back-
propagation algorithm, using stochastic gradient de-
scent (SGD) algorithm with an initial learning rate
0.02. The learning rate is then scaled by 0.5 when
the following condition satisfied:

|ep − ec|

ep
<= 0.005 andlr >= 0.0005

whereep is the error rate on the validation set on
the previous epoch.ec is the error rate on the cur-
rent epoch. The explanation of the rule is when the
growth of the performance become lower, we need
to use a smaller learning rate to adjust the weights.
We use on-line learning in our experiments, which
means the parameters will be updated on every train-
ing sequences, one at a time.

Regularization. Dropout (Srivastava et al., 2014)
is the only regularizer in our model to avoid over-
fitting. Other regularization methods such as weight
decay and batch normalization do not work in our
experiments. We add a binary dropout mask to the
local context windows with a drop ratep of 0.25.
We also apply dropout to the output of the first hid-
den layer and the last hidden layer, with a 0.5 drop
rate. At test time, weights are scaled with a factor
1− p.

5.1.3 Comparison with Other Systems

Table 1 shows the comparison with other models
for supertagging. The comparison does not include
any externally labeled data or POS tags. We eval-
uate the models composed of shortcut blocks with

Model Dev Test

Clark and Curran (2007) 91.5 92.0
MLP (Lewis et al. (2014)) 91.3 91.6
Bi-LSTM (Lewis et al. (2016)) 94.1 94.3
Elman-RNN (Xu et al. (2015)) 93.1 93.0
Bi-RNN (Xu et al. (2016)) 93.49 93.52
Bi-LSTM (Vaswani et al. (2016)) 94.24 94.5
9-stacked Bi-LSTM (Wu et al. (2016b))94.55 94.69
7-stacked shortcut block (Ours) 94.74 94.95
9-stacked: shortcut block (Ours) 94.82 94.99
11-stacked: shortcut block (Ours) 94.66 94.86
13-stacked: shortcut block (Ours) 94.73 94.97

Table 1: 1-best supertagging accuracy on CCGbank

different depths. We present experiments trained on
the training set and evaluated on the test set using
the highest 1-best supertagging accuracy on the de-
velopment set.

Our 9-stacked model presents state-of-the-art re-
sults (94.99 on test set) comparing with other sys-
tems. Notice that 9 is the number of stacked Bi-
LSTM layers. The total layer of the networks con-
tains 11 (9 + 1 input-to-hidden layer + 1 hidden-
to-output layer) layers. We find the network with
stacked depth 7 or 9 achieves better performance
than depth 11 or 13, but the difference is tiny. Our
stacked models follow Eq. (11) and gating functions
refer to Eq. (13).

5.1.4 Exploration of Shortcuts

To get a better understanding of the shortcut archi-
tecture proposed in Eq. (7), we experiment with its
variants to compare the performance. Our analysis
mainly focuses on three parts: the topology of short-
cut blocks, the gating mechanism, and their compo-
sitions. The default number of the stacked layers is
7. We also use the shared gates and Type 2’s archi-
tecture as our default configurations, which are de-
scribed in Eq. (11). The comparison is summarized
as follows:

Shortcut Topologies. Table 2 shows the compar-
ison of shortcut topologies. Here we design two
kinds of models for comparison: one is bothclt and
hlt connected through shortcuts (Case 1), the other
is usingm to replaceclt (Case 2), as defined in the
shortcut block. We find the skip connections to both
the internal states and the cell outputs with multi-
plicative gating achieves the highest accuracy (case



Case Variant Dev Test

hlt updated (Wu et al., 2016b) with gate:hlt = h̃lt + g ⊙ hl−2
t 94.51 94.67

bothclt andhlt updated (Case 1)

no gate: clt = c̃lt + hl−2
t , hlt = h̃lt + hl−2

t 93.84 93.84
with gate: clt = c̃lt + g ⊙ hl−2

t , hlt = h̃lt + g ⊙ hl−2
t 94.72 95.08

highway gate:
clt = (1− g)⊙ c̃lt + g ⊙ hl−2

t

hlt = (1− g)⊙ h̃lt + g ⊙ hl−2
t

94.49 94.62

shortcuts for bothclt andhlt:
clt = c̃lt + gc ⊙ cl−2

t

hlt = h̃lt + gh ⊙ hl−2
t

94.72 94.98

shortcut block (Case 2)

no gate inhlt: h
l
t = o⊙ tanh(m) + hl−2

t 94.15 94.29
no gate inm: m = i⊙ slt + hl−2

t 94.77 94.97
share gate:hlt = o⊙ tanh(m) + o⊙ hl−2

t 94.68 94.83
no shortcut in internal:hlt = o⊙ tanh(it ⊙ st) + g ⊙ hl−2

t 93.83 94.01
no shortcut in cell output:hlt = o⊙ tanh(m) 93.58 93.82

Table 2: Comparsion of shortcut topologies. We useh̃l
t to represent the original cell output of LSTM block, which

equalso⊙ tanh(cl
t
), similar toc̃l

t
:= i⊙ sl

t
+ f ⊙ ct−1.

1, 95.08%) on the test set. But case 2 can get a better
validation accuracy (94.77%). We prefer to use case
2 since it generalizes well and much easier to train.

5.1.5 Comparison of Gating Functions

We experiment with several gating functions pro-
posed in Section 3.3. Detailed discussions are de-
scribed below.

Identity Mapping. We use thetanh function to
the previous outputs to break the identity link. The
result is 94.81% (Table 3), which is poorer than the
identity function. We can infer that the identity func-
tion is more suitable than other scaled functions such
as sigmoid or tanh to transmit information.

Exclusive Gating. We find deterministic gates
performs better than stochastic gates. Further, non-
linear mappingglt = σ(W lhl−1

t ) achieves the best
test accuracy (Table 3, 94.79%), while other types
such as linear or stochastic gates are not generalize
well.

5.1.6 Comparison of Shortcut Block
Compositions

We experiment with several kinds of composi-
tions of shortcut blocks, as shown in Table 4. We
find that shortcut block with span 1 (Type 2 and 5)
perform better than other spans (Type 1, 3 and 4). In
experiments, we use Type 2 as our default configu-
ration since it is much easier to compute than Type
5.

Type Dev Test

1 94.22 94.38
2 94.79 94.94
3 94.53 94.80
4 94.55 94.70
5 94.76 94.95

Table 4: Comparsion of shortcut block combinations.
Dense compositions (Type 2 and 5) performs better than
sparse ones.

5.1.7 Comparison of Hyper-parameters

As described in Section 4.1, we use a complex in-
put encoding for our model. Concretely, we use a
context window approach, together with character-
level information to get a better representation for
the raw input. We give comparisons for the system
with/without this approaches while keeping the hid-
den and the output parts unchanged.

Table 5 shows the effects of the hyper-parameters
on the task. We find that the model does not perform
well (94.06%) without using local context windows.
Although LSTMs can memorize recent inputs for a
long time, it is still necessary to use a convolution-
like operator to convolve the input tokens to get a
better representation. Character-level information
also plays an important role for this task (13% rela-
tively improvement), but the performance would be
heavily damaged if using characters only.



Case Variant Dev Test

scaled mapping replacehl−2
t with tanh(hl−2

t ) 94.60 94.81
linear mapping glt ⊙ h−l

t = wl ⊙ h−l
t 92.07 92.15

non-linear mapping
gll = σ(W lhl−1

t ) 94.79 94.91
gll = σ(U lhlt−1) 94.21 94.56
gll = σ(V lhl−2

t ) 94.60 94.78

stochastic sampling
glt ∼ Bernoulli(p), p = 0.5 91.12 91.47
glt ∼ Bernoulli(p), p = σ(H lhl−1

t ) 93.90 94.06

Table 3: Comparsion of gating functions. The non-linear mappinggl
l
= σ(W lhl−1

t
) is the preferred choice.

Case Variant Dev Test

window size
k = 0 93.96 94.06
k = 5 94.27 94.81
k = 7 94.52 94.71

character-level

character only 92.17 93.0
lw = 0 93.59 93.71
lw = 3 94.21 94.41
lw = 7 94.43 94.75

Table 5: Comparsion of hyper-parameters

5.2 Part-of-Speech Tagging

Part-of-speech tagging is another sequence tagging
task, which is to assign POS tags to each word in a
sentence. It is very similar to the supertagging task.
Therefore, these two tasks can be solved in a unified
architecture. For POS tagging, we use the same net-
work configurations as supertagging, except for the
word vocabulary size and the tag set size. We con-
duct experiments on the Wall Street Journal of the
Penn Treebank dataset, adopting the standard splits
(sections 0-18 for the train, sections 19-21 for vali-
dation and sections 22-24 for testing).

Although the POS tagging result presented in Ta-
ble 6 is slightly below the state-of-the-art, we nei-
ther do any hyper-parameter tunings nor change the
network architectures, just use the one getting the
best test accuracy on the supertagging task. This
proves the generalization of the model and avoids
heavy work of model re-designing.

6 Related Work

Skip connections have been widely used for train-
ing deep neural networks. For recurrent neural net-
works, Schmidhuber (1992); El Hihi and Bengio
(1995) introduce deep RNNs by stacking hidden lay-
ers on top of each other. Raiko et al. (2012); Graves
(2013); Hermans and Schrauwen (2013) propose the

Model Test

Søgaard (2011) 97.5
Ling et al. (2015) 97.36
Wang et al. (2015) 97.78
Vaswani et al. (2016) 97.4
Wu et al. (2016b) 97.48
7-stacked mixed + non-linear gate 97.48
9-stacked mixed + non-linear gate 97.53
13-stacked mixed + non-linear gate97.51

Table 6: Accuracy for POS tagging on WSJ

use of skip connections in stacked RNNs. However,
the researchers have paid less attention to the anal-
ysis of various kinds of skip connections, which is
our focus in this paper.

Recently, deep stacked networks have been
widely used for applications. Srivastava et al. (2015)
and He et al. (2015) mainly focus on feed-forward
neural network, using well-designed skip connec-
tions across different layers to make the informa-
tion pass more easily. The Grid LSTM proposed
by Kalchbrenner et al. (2015) extends the one di-
mensional LSTMs to many dimensional LSTMs,
which provides a more general framework to con-
struct deep LSTMs.

Yao et al. (2015) and Zhang et al. (2016) pro-
pose highway LSTMs by introducing gated direct
connections between internal states in adjacent lay-
ers. Zilly et al. (2016) introduce recurrent highway
networks (RHNs) which use a single recurrent layer
to make RNN deep in a vertical direction. These
works do not use skip connections, and the hier-
archical structure is reflected in the LSTM internal
states or cell outputs. Wu et al. (2016b) propose a
similar architecture for the shortcuts in stacked Bi-
LSTMs. The difference is we propose generalized
shortcut block architectures as basic units for con-



structing deep stacked models. We also discuss the
compositions of these blocks.

There are also some works using stochastic gates
to transmit the information. Zoneout (2016) pro-
vides a stochastic link between the previous hid-
den states and the current states, forcing the current
states to maintain their previous values during the re-
current step. Chung et al. (2016) proposes a stochas-
tic boundary state to update the internal states and
cell outputs. These stochastic connections are con-
nected between adjacent layers, while our construc-
tions of the shortcuts are mostly cross-layered. Also,
the updating mechanisms of LSTM blocks are dif-
ferent.

7 Conclusions

In this paper, we propose the shortcut block as a ba-
sic architecture for constructing deep stacked mod-
els. We compare several gating functions and find
that the non-linear deterministic gate performs the
best. We also find the dense compositions perform
better than the sparse ones. These explorations can
help us to train deep stacked Bi-LSTMs success-
fully. Based on this shortcuts structure, we achieve
the state-of-the-art results on CCG supertagging and
comparable results on POS tagging. Our explo-
rations could easily be applied to other sequence
processing problems, which can be modeled with
RNN architectures.
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