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Abstract. This paper proposes a deep neural network model for jointly
modeling Natural Language Understanding and Dialogue Management
in goal-driven dialogue systems. There are three parts in this model. A
Long Short-Term Memory (LSTM) at the bottom of the network encodes
utterances in each dialogue turn into a turn embedding. Dialogue embed-
dings are learned by a LSTM at the middle of the network, and updated
by the feeding of all turn embeddings. The top part is a forward Deep
Neural Network which converts dialogue embeddings into the Q-values
of different dialogue actions. The cascaded LSTMs based reinforcement
learning network is jointly optimized by making use of the rewards re-
ceived at each dialogue turn as the only supervision information. There
is no explicit NLU and dialogue states in the network. Experimental re-
sults show that our model outperforms both traditional Markov Decision
Process (MDP) model and single LSTM with Deep Q-Network on meet-
ing room booking tasks. Visualization of dialogue embeddings illustrates
that the model can learn the representation of dialogue states.

Keywords: Cascaded LSTMs · Deep Reinforcement Learning · Goal-
driven Dialogue

1 Introduction

A goal-driven dialogue system usually has three components[1]: Natural Lan-
guage Understanding (NLU), Dialogue Management (DM), Natural Language
Generation (NLG). Each component includes several subtasks. For example,
DM has dialogue state tracking (ST) and action selection (AS). The subtasks
are traditionally modeled independently and concatenated in a pipeline way.

There are some important limitations exist in the traditional pipeline system
[2]. First, the information cannot be shared between different subtasks due to
the separated training methods, for example, the error in the DM could not pass
to the NLU. Second, different modules are trained in different ways because they
usually use different models, when one of them, for example, NLU is updated
with more data, the other modules will fail to adapt to the new parameters in
NLU. Third, it is necessary to explicitly define the dialogue states and actions.
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As the number of slots increases in dialogue tasks, state and action spaces will
increase exponentially, this requires significant human efforts.

In order to break these limitations, many researchers have proposed models to
deal with the subtasks mentioned above jointly. Some of them jointly modeled
subtasks in NLU [3,4], some of them jointly modeled subtasks from NLU to
ST [5]. Although there are few successful cases on jointly modeling NLU, ST
and AS, similar ideas are already applied in computer games. Mnih et al. [6,7]
proposed a deep reinforcement learning (DRL) model for implementing a video
game playing agent. By utilizing Deep Q-Network (DQN), screen understanding
and game operation selection are blended into an end-to-end model.

Understanding the screen images and text descriptions is similar to NLU,
game action selection is similar to AS. The goal of game agent is to achieve max-
imum long-term rewards [8] during gameplay, this principle is similarly analogy
to the goal in the goal-driven dialogue. Although there are several similarities
between a game and a dialogue, a DRL model for game control cannot be simply
applied to dialogue control. Different from a game controller, a dialogue agent
for goal-driven tasks should not only learn dialogue policies but also track and
update a series of explainable dialogue states by merging current utterances with
dialogue history.

There are few works on jointly modeling from text input to action selection
for goal-driven dialogue in a DRL framework. Narasimhan et al. (2015) [9] pro-
posed a LSTM based DQN (LSTM-DQN) model for playing text-based games.
There are two differences between their model and ours. First, the text provided
to the player in the game is the description of its current state. Differently, in
goal-driven dialogue, the agent does not have complete information about the
environment and the states in dialogues should have been tracked and updated
by the agent itself. a single LSTM structure cannot be applied to dialogue do-
main easily, but the cascaded LSTMs structure in our model can deal with the
variable-length dialogues more flexibly and efficiently. Zhao and Eskenazi (2016)
[2] proposed a framework which is similar to above LSTM-DQN for jointly mod-
eling both state tracking and dialogue policy. The LSTM in their model received
a current turn embedding and a history vector as the inputs at each time, while
our model employs a shared LSTM to encode both the user utterances and
the agent utterances into a turn embedding at each turn, and then use another
LSTM to encode all turn embeddings into a dialogue embedding.

Inspired by the proposed ideas about DRL [6,7,9], this paper proposes a cas-
caded LSTMs based deep reinforcement learning network for building a dialogue
agent which jointly models all subtasks through NLU to AS. To the best of our
knowledge, it is the first cascaded LSTMs reinforcement learning model. The
major contributions of the work are: 1) A cascaded LSTMs structure is designed
for firstly encoding user and agent utterances at each dialogue turn into a turn
embedding, and then merging turn embeddings into dialogue embedding. Al-
though we do not define any internal delexicalized dialogue states, experimental
results showed that dialogue embeddings correlate with some explainable dia-
logue states well. 2) A deep neural network (DNN) maps dialogue embeddings
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to the Q-values of different actions. The parameters of cascaded LSTMs and
DNN are learned jointly using only the rewards of dialogues. Experimental re-
sults showed that our model outperforms a MDP model with fully correct NLU
and state tracking and it also outperforms some previous models.

The rest of this paper is organized as follows. The proposed network and
its learning algorithm are described in Section 2. Section 3 gives experimental
results and analysis. Some conclusions are drawn in Section 4.

2 Model

This section is organized as follows. Section 2.1 gives an overview of our model.
Details of turn embedding and dialogue embedding are described in Section 2.2.
The learning method is presented at Section 2.3.

2.1 Overview

By using all historical information and observations at each moment, our model
uses the cascaded LSTMs to model the internal dialogue states without using
probabilistic method. The main concepts in our framework are detailed as fol-
lows:

1. Let D = {D1, D2, ..., DT } be the set of user input utterances, where Dt =
dt1d

t
2...d

t
n is user input at time t (or t-th turn), dti is the i-th word of Dt.

2. Let M = {M1,M2, ...,MT } be the set of agent outputs, where M t =
mt

1m
t
2...m

t
k is the agent output at time t (or t-th turn), mt

i is the i-th word of
M t.

3. Let S be the set of states, st be the dialogue state at time t.
4. Let A be the set of agent’s actions. at is the action at time t.
5. Let R be the set of rewards, rt is the reward at time t. A small negative

reward is assigned for each turn. The last turn of a successful dialogue receives
a positive reward.

The goal of the dialogue agent is to find an action at belonging to A according
to state st at time t, which maximizes the expected long-term discounted reward
of a dialogue, i.e., to find an optimal policy π : st → at satisfying Formula (1).

Q∗(s, a) = max
π

E{
∞∑
t=0

γtrt|st = s, at = a, π} (1)

where γ ∈ (0, 1) is the discount factor that controls how much the agent pri-
oritizes long-term or short-term rewards, Q∗ represents the maximum sum of
rewards rt discounted by factor γ at each time step. Dialogue state st should be
estimated and tracked before action selection.

The model we propose here jointly models NLU, ST and AS three subtasks.
As shown in Fig. 1, there are three parts in the network. At the bottom, it is
a turn embedding generator which encodes sentences at each turn into a turn
embedding. The middle part is dialogue embedding generator which receives



4 Y. Ma et al.

D-LSTM

Linear Linear

Linear Linear

ReLU ReLU

dialogue

embedding

middle part

bottom part

top part

T-LSTM T-LSTM!

D-LSTM

Linear Linear

Linear Linear

ReLU ReLU

T-LSTM T-LSTM!

turn

embedding

wt−1
1 wt−1

z wt
zwt

1

turn

embedding

dialogue

embedding

Fig. 1. The model structure

previous turn embeddings up to current time and encodes them into a current
dialogue embedding. The top part is an action scorer based on DNN which
maps dialogue embeddings to the Q-value of each action. All these three parts
are cascaded and trained jointly.

2.2 Turn embedding and Dialogue embedding

We utilize LSTM [10] networks as generators of turn embeddings and dialogue
embeddings. LSTM is a recurrent network with the ability to connect and rec-
ognize long-range patterns between words in text.

At each turn, the same LSTM (named T-LSTM) is used to encode both
agent and user utterances into a turn embedding. The input of T-LSTM is a
concatenation of agent utterances and user utterances. For t-th turn, let It =
wt1w

t
2...w

t
kw

t
k+1w

t
k+2 · · ·wtz−1wtz = mt

1m
t
2 · · ·mt

k#dt1d
t
2 · · · dtn@ denote the input

of T-LSTM, where a symbol “#” is appended to agent word sequence and a
“@” is appended to user word sequence in order to distinguish user and agent
utterances. z = n+k+2. wti denotes mt

i for 1 ≤ i ≤ k, and wti denotes dti−k−1 for
k + 2 ≤ i ≤ z − 1. Let ht = [ht1h

t
2 · · ·htz] denotes the hidden states of T-LSTM,

ct = [ct1c
t
2 · · · ctz] is the output of T-LSTM cells. Formulas 2 give details of the

network computing.

htz, c
t
z = T − LSTM(htz−1, wz) (2)

The final output ctz is turn embedding of It and then passed to dialogue embed-
ding generator.

A LSTM (named D-LSTM) is used to track dialogue states and generate
dialogue embeddings. When a dialogue goes to T -th turn, D-LSTM takes T turn
embeddings [c1zc

2
z · · · cTz ] as input and encodes them into a dialogue embedding of

T turns. For simplicity, we use [c1c2 · · · cT ] to denote [c1zc
2
z · · · cTz ]. The output of

D-LSTM is [h′1h
′
2 · · ·h′T ] and its cell output is [c′1c

′
2 · · · c′T ]. Formulas 3 calculate

the output of D-LSTM.

h′T , c
′
T = D − LSTM(h′T−1, cT ) (3)
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Finally, the top part includes several DNNs. All DNNs share the same di-
alogue embeddings as network inputs and share the same DNN structure. The
number of the DNNs is determined by how many actions it has in dialogue task.
For example, if there are actions “request” and “confirm” in the dialogue, two
DNNs should be used in the top part. One DNN stands for one action. The
number of output nodes of each DNN is the slot number of the action plus one
(used for no act). The outputs of DNN are Q-values of the actions on each slot.
Supposing action “request” can be followed by 5 slots, then the number of out-
put nodes for its DNN is 6. If the first node is for time slot, then the output
of this node is the Q-value of action “request time slot”. Each DNN selects a
slot (or no act) with maximum Q-value separately at each turn. For example, if
“request” DNN selects time slot and “confirm” DNN selects location slot, then
a final action “ask time slot and confirm location slot” is selected.

By using these three cascaded parts from bottom T-LSTM to top DNNs,
the network maps text inputs to dialogue actions end-to-end. At the meantime,
dialogue states are kept and updated as dialogue embedding by D-LSTM.

2.3 Learning method

Let Θ be parameters of the model. Double Q-learning [11] is applied to the
proposed network to alleviate the problem of over-estimation. The model keeps
two separate networks: a behavior network θ and a target network θ−. These
two networks have the same network structure. After every L updates, the new
parameters of θ are copied over to θ−. At the j-th update process, the difference
between predicted Q-value Q(st, at; θj) from the behavior network and the target
value y from the target network is used as the error for back-propagation. The
target value y is the sum of the reward of taking action at at state st and the
expected Q-value at st+1 which is calculated by max

a
Q(st+1, a; θ−). The detail

is shown in Formulas (4.1) and (4.2). Formula (5) gives the gradient of the error.

L(θj) = E[(y −Q(st, at; θj))
2] (4.1)

y = rt + γmax
at+1

Q(st+1, at+1; θ−) (4.2)

∂L(θj)

∂θ
= E[2 (rt + γmax

at+1

Q(st+1, at+1; θ−)−Q(st, at; θj))
Q(st, at; θj)

θ
] (5)

A replay memory pool X is maintained during the training process. Mini-
batch transitions are sampled from X at each iteration. Rank-based sampling
[12] method is used as our selection strategy of transition. The probability of

sampling transition X is defined as P (x) =
pαx∑
l p
α
l

, where px = 1
rank(x) is the

priority of transition x. rank(x) is the ranking of transition x in replay memory
X which is determined by the deviations. The exponent α determines how much
prioritization is used, with α = 0 back to the uniform case. At the beginning of
the training, the agent interacts with a user simulator by using random action
to generate some transitions, and these transitions will be used to initialize
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the replay memory. After each mini-batch updated, the model will use new
transitions to update replay memory following the rank-based strategy.

3 Experiments

3.1 Experimental Settings

The model is applied to build several dialogue agents. A meeting room booking
task is used to test the proposed model. The agent communicates with users and
gathers required information to book a meeting room for users. To book a meet-
ing room successfully, the agent should gather values for five required slots in
the real-world online system. In order to evaluate the models performance com-
prehensively, four tasks with different number of slots are used. They are listed
in Table 1. As the number of slots increases, the task becomes more difficult.

Table 1. Four tasks with different slots

Slot number Name of slots

2 start time, location
3 start time, location, lasting time
4 start time, location, lasting time

number of participants
5 start time, location, lasting time

number of participants, budget

The inputs of the model are raw utterances come from the agents and user.
To train the DRL algorithm, a real-time environment is necessary. The agents
built for gameplay are trained by using a game simulator. For dialogue task, it
is infeasible to train the agent by communicating with a human in real-time.
A user simulator should be used for simulating human behavior and generating
user utterances.

According to the data collected in the online system and the basic mode
of construction proposed in Li et al. (2016) [13], several simulators have been
built to evaluate the model. Some of the details of the user simulators are as
follows: 1) For each slot, there are 25 different slot values and 25 alias values. The
alias values are used for simulating errors in Named Entity Recognition (NER),
which is named NER-Error. For example, the meeting place which passed to the
agent at the first time can be Research Building 09 (the correct one is Research
Building 809) (Supplementary A gives an example dialogue). 2) Before giving
the right slot value, user simulator first gives an alias value according to the
rate of NER-Error. When agents confirm an alias value, the simulator has two
choices, one is to reject the confirm action by using general reject templates with
a probability of 0.75, and then it waits agents to ask again, the other one is to
answer the agents with the true slot value directly. 3) Specified templates are
designed for answering questions and for confirming slot values for each slot.
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Moreover, all slots also share a set of general confirm templates and a set of
general reject templates. The simulator can use specified templates for replying
agent’s questions with a probability of 0.4, or use a general pattern with a prob-
ability of 0.6. In order to make the utterances generated by the simulators more
complex and make the simulators behave like humans, we collected utterances
from the DSTC5 Corpus3 as a supplement. Utterances which are tagged with
RES(POSITIVE) and FOL(ACK) in corpus (453 expressions) are used to ex-
tend confirm templates. Utterances which are tagged with RES(NEGATIVE) in
corpus (37 expressions) are used to extend reject templates.

The simulators do not set the order of slot filling. It brings more combinations
of actions to dialogue, and adds extra complexity to our model to get the optimal
policy. In Bordes and Weston (2017) [14], the variety of dialogue states is reduced
because they have set the order of slot filling.

The agents collect information by asking and confirming slot values. So, two
DNNs are employed for action “ask” and “confirm” respectively. We considered
36 possible command combinations of 6 ask actions and 6 confirm actions. The
hyper-parameters of the neural network model are as follows: the word embed-
ding size is 64; the size of turn embedding and dialogue embedding is 64; the size
of LSTMs is 128; each DNN has two hidden layers, with 128 nodes in the first
layer and the 64 nodes in second layer. Adam optimizer is used for training. The
behavior network was updated every 4 steps and the interval between each tar-
get network update is 1000 steps. the discount factor γ is 0.98. The mini-batch
size is 32 and the learning rate is 0.00008.

At each turn, the agent receives a reward of -0.01 if its action is logically
acceptable, -1 if not. We do not set a priority level for those acceptable actions.
The reward for a successful dialogue is +1 and for an unfinished dialogue is -1.
A dialogue ends successfully if an agent get all required slot values from the user
simulator within a given number of turns (10 turns, each turn includes no more
than 40 words), otherwise, it is unfinished or failed.

We implement the model with Tensorflow. The codes of experiments are avail-
able in https://github.com/Damcy/cascadeLSTMDRL. As described in Section
2.3, a replay memory pool is used. By comparing different replay memory sizes,
we found a correlation between the agents performance and the replay memory
size. The replay memory size which is too large or too small is unfavorable to
the model performance. We finally employed a replay memory size of 20000 in
all experiments.

We first show some comparisons between the model and some previous mod-
els, then give some analysis on the model.

3.2 Model Comparison

We compared our model with a traditional pipeline agent and LSTM-DQN [9]
on 2, 3 slot tasks as described in above section. The pipeline agent is built with
perfect NLU and ST modules, its dialogue state in each turn is fully observable.

3
http://workshop.colips.org/dstc5/data.html

http://workshop.colips.org/dstc5/data.html
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A tabular Q-learning for MDP is used for action selection. The same ε− greedy
strategy is used for MDP method.

For building pipeline agents for tasks with different slot numbers, different
sets of states and actions should be explicitly predefined separately. 9 states and
9 actions for 2 slots, 27 states and 16 actions for 3 slots are defined for building 2
slots and 3 slots tasks respectively. For bigger number of slots, the sets of states
and actions will increase exponentially. More human efforts will be needed. As
for our model, the only necessary change is the number of nodes in DNN’s output
layer when the model is applied to those tasks with different number of slots.

Table 2. Results of task with 2 slots and 3 slots

2 slots 3 slots

Avg. reward Avg. length Avg. reward Avg. length

MDP 0.902 4.735 0.826 5.984
LSTM-DQN 0.960 4.142 0.557 6.437
our model 0.961 4.138 0.882 5.622
our model* 0.943 4.32 0.855 5.782

Because LSTM cannot deal with long sentences (concatenated each turn
utterance in the dialogue, the max input length would be 400), the input of
LSTM-DQN could not be the word embeddings. Our model trains the network
parameters and word embeddings while LSTM-DQN trains its network parame-
ters and sentence embeddings. Besides the comparison with other models, human
evaluation was also carried for our model. Ten graduate students were invited
to test the model. Each student completed five dialogues on 2 slots and 3 slots
tasks (we showed them all the valid slot values at the beginning). Average length
and average total rewards in human evaluation were also reported in evaluation
results. Average dialogue length and average total rewards are calculated on
1000 dialogue steps for three models respectively. And for human evaluation,
the averages are obtained from the total number of dialogues.

Table 2 show experimental results on 2 and 3 slots tasks respectively, where
“Avg. reward” is the average of total reward and “Avg. length” is the average
number of turns for each dialogue. “our model*” is the result by human eval-
uation. It can be seen that our model achieved consistent higher average total
rewards and lower average lengths than those in LSTM-DQN agent and MDP
method in all tasks. In 2 slot task, LSTM-DQN and our model have similar
performance. In 3 slots task, our model outperforms LSTM-DQN significantly.
Average total reward of LSTM-DQN falls by 40.3% from 2 slots to 3 slots, while
our model falls by 7.9%, this shows the robustness of our model. In human evalu-
ation, our model also achieves good performance. Compared with dialogues with
simulators, the average total rewards of dialogues with human descends less than
3 percent in both 2 and 3 slots tasks.
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3.3 Hyper-parameter Analysis

Our model is data-driven. Besides the advantage of reducing human efforts, it
is with capabilities of error-toleration and robustness, which will be investigated
in this subsection by checking the influence of some parameters.

We give some experimental results on the influence of two parameters. They
are the number of slots and NER-Error. Several statistics are used for evaluating
the influence. One is the Success Rate of Dialogue (SRD). It is defined in Formula
(6).

SRD =
#successful dialogues

#total dialogues in test
(6)

where a successful dialogue represents that the agent gets all necessary slot values
within a given number of turns (The number is set as 10 in all experiments).

The others are No Error Rate (NoER), One Error Rate (OER) and Two Error
Rate (TER). NoER is defined in Formula (7). OER is the successful dialogue
rate with one action selection error (ASE), TER is the successful dialogue rate
with two ASE.

NoER =
#successful dialogues without ASE

#successful dialogues
(7)

where an ASE means the agent selects a wrong action. If the agent can find
correct response in every turn, then the NoER = 1. If the agent can finish a
dialogue successfully even with one or more ASEs in it (NoER < 1), it means
the agent can recover from the errors.

Number of Slots: Number of slots is a task-related parameter. As the
number of slots increases, the task becomes more complex. Four models are
trained for dialogue tasks with 2, 3, 4 and 5 slots. Table 3 shows the SRD and
other statistics in different tasks. Our model achieves 100%, 100%, 89.06% and
79.73% SRD on 2, 3, 4 and 5 slots respectively. The model is sensitive to the
complexity of tasks.

Table 3. Statistics on different slot number and NER-error

Slot number & NER-error SRD NoER OER TER

2 slots (15%) 100% 95.52% 4.48% 0%
3 slots (15%) 100% 91.35% 8.65% 0%
4 slots (15%) 89.06% 81.25% 6.25% 1.56%
5 slots (15%) 79.37% 71.43% 6.35% 1.59%
2 slots (25%) 100% 94.81% 5.19% 0%
2 slots (35%) 100% 91.30% 8.70% 0%

Results in Table 3 also show that our agents can successfully recover from one
ASE, and even have chance to recover from two ASEs. For example, in 3 slots
task, 91.35% successful dialogues have no ASE, 8.65% successful dialogues are
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recovered from one ASE. In 4 slots task, 6.25% of successful dialogues include
one ASE, and 1.56% of successful dialogues are recovered from two ASEs. With
the increasing of the complexity of tasks, it might be unavoidable for the agent
to make mistakes. The more important thing is to recover from mistakes. Fig. 2
gives the reward curves for these tasks. More epochs of training will bring bigger
rewards in all tasks. Improvements on dialogues with 4 and 5 slots are needed.
In another way, we can split a 5 slots task into one 2 slots subtask and one 3
slots subtask according to the independence assumption of slots, the result for
SRD was 100% as well.

Fig. 2. Reward curves for different tasks

NER-Error: Our model not only can recover from its action selection error,
but also can deal with errors in NLU. Table 3 also shows the experimental
results on 2 slots task when different levels of NER-Error are introduced in user
simulator. Our model keeps achieving 100% success rate even when the NER-
Error rate is raised from 15% to 35%. But it increases the difficulty for leaning
the optimal policy. Higher NER-error in training data causes more vibrations
and converge slowly (Supplementary B). More NER-error causes higher ASE.
The increaseing of OER in Table 3 shows our model deals with more ASE with
the increaseing of NER-error.

3.4 Dialogue Embedding Analysis

As mentioned before, the dialogue embedding at T -th turn merges all infor-
mation from previous T turns. PCA projection is used to visualize dialogue
embeddings. By using PCA projection, we can see the relation between dialogue
embeddings. For 2 slot tasks, let 0 0 denotes the dialogue state when a dialogue
begins with all slot values unknown, 1 0 denotes the dialogue state when the
first slot is given, 2 0 denotes the dialogue state when the first slot is confirmed,
so does the second slot. A subset of dialogue embeddings in test dialogues is
collected. The embeddings are then labeled with its state, such as 0 0, 1 0 etc.
We cluster the embeddings and visualized them in Fig. 3.
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From Fig. 3, we can find that dialogue embeddings in different dialogues are
clustered well. For example, embeddings labeled with 1 0 in different dialogues
are clustered at the bottom of Fig. 3, while 2 1s are clustered at the top right.
The number of 1 1s is small because the agent tends to combine ask action and
confirm action at one turn in most of dialogues. This method is better than the
one that just confirm the slot what it just asked (it causes the dialogue state
transfer from 1 0 to 2 0) and then ask a new slot (the dialogue state transfers
from 2 0 to 2 1), because the latter method needs two turns to achieve the same
goal. The agent learns the better strategy by itself through interaction with the
user simulator. The agent also find two equivalent ways from 1 0 to 2 1. One
is from 1 0 to 1 1 and then to 2 1, another way is from 1 0 to 2 0 and then
to 2 1. Being well clustered of different dialogue embeddings shows the ability
of the model that it can automatically organize context information in different
dialogues and implicitly learn the same dialogue states in different dialogues.

Fig. 3. Visualization of dialogue embeddings, big symbols are for cluster center points

The above properties of dialogue embeddings gives an efficient way to identify
and explain the dialogue state represented by it. For a dialogue embedding in
a dialogue, by identifying which cluster the dialogue embedding belongs to, we
can identify which state current dialogue is at. In this way, we explain dialogue
embeddings explicity.

4 Conclusion

This paper proposes a deep reinforcement learning model for training end-to-
end goal-driven dialogue agents. This model uses cascaded LSTMs and DNN
structure to model NLU, ST and AS in a single network. The network maps
raw utterances to agent actions directly. Experimental results on meeting room
booking tasks show our model outperforms previous models. Visualization of
dialogue embeddings illustrates they keep the information of dialogue states. For
dialogue tasks with more slots, the model cannot converge well. More efficient
training methods should be explored in the future.
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