Skip to main content

Automation of MitM Attack on Wi-Fi Networks

  • Conference paper
  • First Online:

Abstract

Security mechanisms of wireless technologies often suffer weaknesses that can be exploited to perform Man-in-the-Middle attacks, allowing to eavesdrop or to spoof network communication. This paper focuses on possibilities of automation of these types of attacks using already available tools for specific tasks. Outputs of this research are the wifimitm Python package and the wifimitmcli CLI tool, both implemented in Python. The package provides functionality for automation of MitM attacks and can be used by other software. The wifimitmcli tool is an example of such software that can automatically perform multiple MitM attack scenarios without any intervention from an investigator.

The results of this research are intended to be used for automated penetration testing and to help with forensic investigation. Finally, a popularization of the fact that such severe attacks can be easily automated can be used to raise public awareness about information security.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Internet Service Provider

  2. 2.

    Asus RT-AC5300 – Merlin WRT has an option to tunnel all traffic thought Tor.

  3. 3.

    http://www.wifileaks.cz/statistika/

  4. 4.

    https://www.renderlab.net/projects/WPA-tables/

  5. 5.

    https://code.google.com/archive/p/reaver-wps/

  6. 6.

    https://haxx.in/upc-wifi/

  7. 7.

    UPC company is a major ISP in the Czech Republic, URL: https://www.upc.cz

  8. 8.

    http://www.aircrack-ng.org/

  9. 9.

    https://github.com/sophron/wifiphisher

  10. 10.

    https://www.archlinux.org/packages/core/any/netctl/

  11. 11.

    https://github.com/byt3bl33d3r/MITMf

  12. 12.

    https://www.wireshark.org/docs/man-pages/dumpcap.html

  13. 13.

    https://www.wireshark.org/

  14. 14.

    https://www.archlinux.org/

  15. 15.

    For details concerning individual phishing scenarios, please see wifiphisher’s website. https://github.com/sophron/wifiphisher

  16. 16.

    Stream of Pseudo Random Generation Algorithm generated bits.

  17. 17.

    Small office/home office.

References

  1. Callegati, F., Cerroni, W., Ramilli, M.: Man-in-the-middle attack to the HTTPS protocol. IEEE Security Privacy 7, 78–81 (2009)

    Article  Google Scholar 

  2. Deal, R., Cisco Systems Inc.: The Complete Cisco VPN Configuration Guide. Cisco Press Networking Technology Series. Cisco Press, Indianapolis (2006)

    Google Scholar 

  3. Droms, R.: Dynamic host configuration protocol. RFC 2131, IETF, March 1997

    Google Scholar 

  4. Fluhrer, S., Mantin, I., Shamir, A.: Weaknesses in the key scheduling algorithm of RC4. In: Vaudenay, S., Youssef, A. (eds.) Selected Areas in Cryptography. LNCS, pp. 1–24. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45537-X_1

    Google Scholar 

  5. Godber, A., Dasgupta, P.: Countering rogues in wireless networks, vol. 2003-January, pp. 425–431. Institute of Electrical and Electronics Engineers Inc. (2003)

    Google Scholar 

  6. Halsall, F.: Computer Networking and the Internet. Addison-Wesley, Boston (2005)

    Google Scholar 

  7. Heffner, C.: Cracking WPA in 10 hours or less –/dev/ttys0 (2011). http://www.devttys0.com/2011/12/cracking-wpa-in-10-hours-or-less/

  8. IEEE-SA. IEEE standard for information technology-telecommunications and information exchange between systems local and metropolitan area networks-specific requirements part 11: Wireless LAN medium access control (MAC) and physical layer (PHY) specifications. IEEE Std 802.11-2012 (Revision of IEEE Std 802.11-2007), pp. 1–2793, March 2012

    Google Scholar 

  9. Kent, S., Seo, K.: Security Architecture for the Internet Protocol. RFC 4301, IETF, December 2005

    Google Scholar 

  10. Klinec, D., Svítok, M.: UPC UBEE EVW3226 WPA2 password reverse engineering, rev 3. https://deadcode.me/blog/2016/07/01/UPC-UBEE-EVW3226-WPA2-Reversing.html. Accessed 5 Nov 2016

  11. Klinec, D., Svítok, M.: Wardriving Bratislava 10/2016, 5 November 2016. https://deadcode.me/blog/2016/11/05/Wardriving-Bratislava-10-2016.html

  12. Kumkar, V., Tiwari, A., Tiwari, P., Gupta, A., Shrawne, S.: Vulnerabilities of wireless security protocols (WEP and WPA2). Int. J. Adv. Res. Comput. Eng. Technol. (IJARCET) 1(2), 34–38 (2012)

    Google Scholar 

  13. Liu, Y., Jin, Z., Wang, Y.: Survey on security scheme and attacking methods of WPA/WPA2. In: 2010 6th International Conference on Wireless Communications Networking and Mobile Computing (WiCOM), pp. 1–4, September 2010

    Google Scholar 

  14. Plummer, D.: Ethernet address resolution protocol: or converting network protocol addresses to 48.bit ethernet address for transmission on ethernet hardware. RFC 826, IETF, November 1982

    Google Scholar 

  15. Pluskal, J., Matoušek, P., Ryšavý, O., Kme\(\acute{\rm t}\), M., Veselý, V., Karpíšek, F., Vymlátil, M.: Netfox detective: a tool for advanced network forensics analysis. In: Proceedings of Security and Protection of Information (SPI) 2015, pp. 147–163. Brno University of Defence (2015)

    Google Scholar 

  16. Prowell, S., Kraus, R., Borkin, M.: Man-in-the-middle. In: Prowell, S., Kraus, R., Borkin, M. (eds.) Seven Deadliest Network Attacks, pp. 101–120. Syngress, Boston (2010)

    Google Scholar 

  17. Robyns, P.: Wireless network privacy. Master’s thesis. Hasselt University, Hasselt (2014)

    Google Scholar 

  18. Tews, E., Weinmann, R.-P., Pyshkin, A.: Breaking 104 bit WEP in less than 60 seconds. In: Kim, S., Yung, M., Lee, H.-W. (eds.) Information Security Applications. LNCS, pp. 188–202. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-77535-5_14

    Chapter  Google Scholar 

  19. Thomas, O.: Windows Server 2016 Inside Out. Inside Out. Pearson Education, London (2017)

    Google Scholar 

  20. Vondráček, M.: Automation of MitM attack on WiFi networks. Bachelor’s thesis. Brno University of Technology, Faculty of Information Technology (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Vondráček .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Vondráček, M., Pluskal, J., Ryšavý, O. (2018). Automation of MitM Attack on Wi-Fi Networks. In: Matoušek, P., Schmiedecker, M. (eds) Digital Forensics and Cyber Crime. ICDF2C 2017. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 216. Springer, Cham. https://doi.org/10.1007/978-3-319-73697-6_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-73697-6_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-73696-9

  • Online ISBN: 978-3-319-73697-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics