
Lecture Notes in Computer Science 10747

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison, UK
Josef Kittler, UK
Friedemann Mattern, Switzerland
Moni Naor, Israel
Bernhard Steffen, Germany
Doug Tygar, USA

Takeo Kanade, USA
Jon M. Kleinberg, USA
John C. Mitchell, USA
C. Pandu Rangan, India
Demetri Terzopoulos, USA
Gerhard Weikum, Germany

Advanced Research in Computing and Software Science
Subline of Lecture Notes in Computer Science

Subline Series Editors

Giorgio Ausiello, University of Rome ‘La Sapienza’, Italy

Vladimiro Sassone, University of Southampton, UK

Subline Advisory Board

Susanne Albers, TU Munich, Germany
Benjamin C. Pierce, University of Pennsylvania, USA
Bernhard Steffen, University of Dortmund, Germany
Deng Xiaotie, City University of Hong Kong
Jeannette M. Wing, Microsoft Research, Redmond, WA, USA

More information about this series at http://www.springer.com/series/7407

http://www.springer.com/series/7409

Isil Dillig • Jens Palsberg (Eds.)

Verification, Model Checking,
and Abstract Interpretation
19th International Conference, VMCAI 2018
Los Angeles, CA, USA, January 7–9, 2018
Proceedings

123

Editors
Isil Dillig
University of Texas
Austin, TX
USA

Jens Palsberg
University of California
Los Angeles, CA
USA

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-73720-1 ISBN 978-3-319-73721-8 (eBook)
https://doi.org/10.1007/978-3-319-73721-8

Library of Congress Control Number: 2017963752

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

© Springer International Publishing AG 2018
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Preface

This volume contains the papers presented at VMCAI 2018: the International Con-
ference on Verification, Model Checking, and Abstract Interpretation held during
January 7–9, 2018, in Los Angeles, co-located with POPL 2018 (the annual ACM
SIGPLAN/SIGACT Symposium on Principles of Programming Languages). Previous
meetings were held in Port Jefferson (1997), Pisa (1998), Venice (2002), New York
(2003), Venice (2004), Paris (2005), Charleston (2006), Nice (2007), San Francisco
(2008), Savannah (2009), Madrid (2010), Austin (2011), Philadelphia (2012), Rome
(2013), San Diego (2014), Mumbai (2015), St. Petersburg, Florida (2016), and Paris
(2017).

VMCAI provides a forum for researchers from the communities of verification,
model checking, and abstract interpretation to present their research and aims to
facilitate interaction, cross-fertilization, and advancement of hybrid methods that
combine these and related areas. VMCAI topics include: program verification, model
checking, abstract interpretation, program synthesis, static analysis, type systems,
deductive methods, decision procedures, theorem proving, program certification,
debugging techniques, program transformation, optimization, hybrid and
cyber-physical systems.

This year the conference received 43 submissions, of which 24 were selected for
publication in the proceedings. Each submission was reviewed by at least three Pro-
gram Committee members, and the main selection criteria were quality, relevance, and
originality. In addition to the presentations of the 24 selected papers, the conference
also featured an invited tutorial by Mayur Naik (University of Pennsylvania) as well as
three invited keynote talks by Ken McMillan (Microsoft Research), Azadeh Farzan
(University of Toronto), and Ranjit Jhala (University of California San Diego). We
warmly thank them for their participation and contributions.

We would like to thank the members of the Program Committee and the external
reviewers for their excellent work. We also thank the members of the Steering Com-
mittee, and in particular Lenore Zuck and Andreas Podelski, for their helpful advice,
assistance, and support. We thank Annabel Satin for her help in coordinating the events
co-located with POPL 2018, and we thank the POPL 2018 Organizing Committee for
providing all the logistics for organizing VMCAI. We are also indebted to EasyChair
for providing an excellent conference management system.

Finally, we would like to thank our sponsors, Amazon Web Services and Facebook,
for their valuable contributions to VMCAI 2018.

November 2017 Isil Dillig
Jens Palsberg

Organization

Program Committee

Jade Alglave University College London, UK
Roderick Bloem Graz University of Technology, Austria
Wei-Ngan Chin National University of Singapore, Singapore
Maria Christakis MPI-SWS, Germany
Patrick Cousot New York University, USA
Isil Dillig The University of Texas at Austin, USA
Laure Gonnord University of Lyon/Laboratoire d’Informatique

du Parallélisme, France
Eric Koskinen Yale University, USA
Laura Kovacs Vienna University of Technology, Austria
Paddy Krishnan Oracle, Australia
Ondrej Lhotak University of Waterloo, Canada
Ruben Martins Carnegie Mellon University, USA
Ken McMillan Microsoft, USA
Daniel Neider Max Planck Institute for Software Systems, Germany
Jens Palsberg University of California, Los Angeles, USA
Corina Pasareanu CMU/NASA Ames Research Center, USA
Andreas Podelski University of Freiburg, Germany
Xiaokang Qiu Purdue University, USA
Noam Rinetzky Tel Aviv University, Israel
Philipp Ruemmer Uppsala University, Sweden
Roopsha Samanta Purdue University, USA
Rahul Sharma Microsoft, India
Ana Sokolova University of Salzburg, Austria
Tachio Terauchi Waseda University, Japan
Thomas Wahl Northeastern University, USA
Thomas Wies New York University, USA
Charles Zhang The Hong Kong University of Science and Technology,

SAR China

Additional Reviewers

Abdullah, Syed Md Jakaria
An, Shengwei
Antonopoulos, Timos
Bartocci, Ezio
Biere, Armin
Cai, Zhuohong

Costea, Andreea
Darais, David
Ebrahimi, Masoud
Esterle, Lukas
Forget, Julien
Gorogiannis, Nikos

Gotlieb, Arnaud
Gu, Yijia
Guatto, Adrien
Hoenicke, Jochen
Humenberger, Andreas
Jansen, Nils
Kiefer, Stefan
Krishna, Siddharth
Lazic, Marijana
Liu, Peizun
Lozes, Etienne
Mottola, Luca
Moy, Matthieu

Niksic, Filip
Pavlinovic, Zvonimir
Poncelet, Clement
Roeck, Franz
Rusu, Vlad
Schäf, Martin
Stuckey, Peter
Suda, Martin
Udupa, Abhishek
Villard, Jules
Wang, Xinyu

VIII Organization

Abstracts of Invited Talks

Rethinking Compositionality for Concurrent
Program Proofs

Azadeh Farzan

University of Toronto

Abstract. Classical approaches to reasoning about concurrency are based on
reductions to sequential reasoning. Typical tactics are to reason about the global
behaviour of the system (commonly employed in model checking) or to reason
about the behaviour of each thread independently (such as in Owicki-Gries or
Rely/Guarantee). We will discuss a new foundation for reasoning about
multi-threaded programs, which breaks from this mold. In the new approach,
proof ingredients extracted from a few distinct program behaviours are used as
building blocks to a program proof that is free to follow the program control
structure when appropriate and break away from it when necessary. Our algo-
rithmic solution to the automated construction of these proofs leverages the
power of sequential reasoning similar to the classical techniques, but the
sequential reasoning lines need not be drawn at the thread boundaries.

Keywords: Proofs • Concurrency • Compositionality

Reasoning About Functions

Ranjit Jhala

University of California, San Diego

Abstract. SMT solvers’ ability to reason about equality, arithmetic, strings, sets
and maps, have transformed program analysis and model checking. However,
SMT crucially relies on queries being restricted to the above theories which
preclude the specification and verification of specification and verification of
properties of higher-order, user-defined functions. In this talk, we will describe
some recent progress towards removing this restriction by presenting two
algorithms for SMT-based reasoning about functions.

The first algorithm, FUSION, enables abstract reasoning about functions.
FUSION generalizes the first-order notions of strongest post-conditions and
summaries to the higher-order setting to automatically synthesize the most
precise representation of functions expressible in the SMT logic. Consequently,
FUSION yields a relatively complete algorithm for verifying specifications over
SMT-decidable theories. While this suffices to verify classical (1-safety) spec-
ifications, e.g. array-bounds checking, it does not apply to general (k-safety)
specifications over user defined functions, e.g. that certain functions are com-
mutative or associative.

The second algorithm, PLE Proof by Logical Evaluation (PLE), enables
concrete reasoning about functions, by showing how to mimic computation
within SMT-logics. The key idea is to represent functions in a guarded form and
repeatedly unfold function calls under enabled guards. We formalize a notion of
an equational proof and show that PLE is complete, i.e.is guaranteed to find an
equational proof if one exists. Furthermore, we show that PLE corresponds to a
universal (or must) abstraction of the concrete semantics of the user-defined
functions, and hence, terminates, yielding a precise and predictable means of
automatically reasoning about user-defined functions.

Joint work with Benjamin Cosman, Niki Vazou, Anish Tondwalkar,
Vikraman Choudhury, Ryan Scott, Ryan Newton and Philip Wadler.

How to Stay Decidable

Kenneth McMillan

Microsoft Research

Abstract. Automated provers can substantially increase productivity in the
formal verification of complex systems. However, the unpredictability of
automated provers presents a major hurdle to usability of these tools. This
problem is particularly acute in case of provers that handle undecidable logics,
for example, first-order logic with quantifiers.

On the other hand, there is a long history of work on decidable logics or
fragments of logics. Generally speaking, decision procedures for these logics
perform more predictably and fail more transparently than provers for unde-
cidable logics. In particular, in the case of a false proof goal, they usually can
provide a concrete counter-model to help diagnose the problem. The problem
that remains little studied is how to apply these logics in practice in the proof of
large systems. That is, how do we effectively decompose the proof of the system
into lemmas couched in decidable fragments, and is the human effort required to
do this repaid by more reliable automation?

To answer these questions, we must address the fact that combinations of
decidable theories are generally not decidable, and that useful decidable frag-
ments are generally not closed under conjunction. This requires us to practice
separation of concerns. For example, it is important to express the implemen-
tation of a protocol in a language that captures the protocol’s logic without
mixing in low-level details such as data structures. Moreover, modularity is an
important tool for avoiding undecidability. For example, we can use a high-level
protocol model to prove global properties, which are then used as lemmas in
proving correctness of the protocol implementation. This allows us to separate
invariants which, if combined, would take us outside the decidable realm. In
particular, this strategy allows us to produce verification conditions that are
decidable because they use function symbols in a stratified way.

Preliminary experience indicates that it is possible to produce verified
implementations of distributed protocols in this way with reduced proof com-
plexity and greater reliability of proof automation, without sacrificing execution
performance.

Maximum Satisfiability in Program Analysis:
Applications and Techniques

(Invited Tutorial)

Mayur Naik1, Xujie Si1, Xin Zhang1, and Radu Grigore2

1 University of Pennsylvania
2 University of Kent

Abstract. A central challenge in program analysis concerns balancing different
competing tradeoffs. To address this challenge, we propose an approach based
on the Maximum Satisfiability (MaxSAT) problem, an optimization extension
of the Boolean Satisfiability (SAT) problem. We demonstrate the approach on
three diverse applications that advance the state-of-the-art in balancing tradeoffs
in program analysis. Enabling these applications on real-world programs
necessitates solving large MaxSAT instances comprising over 1030 clauses in a
sound and optimal manner. We propose a general framework that scales to such
instances by iteratively expanding a subset of clauses while providing soundness
and optimality guarantees. We also present new techniques to instantiate and
optimize the framework.

Keywords: Maximum satisfiability • Program analysis

Contents

Parameterized Model Checking of Synchronous Distributed Algorithms
by Abstraction . 1

Benjamin Aminof, Sasha Rubin, Ilina Stoilkovska, Josef Widder,
and Florian Zuleger

Gradual Program Verification . 25
Johannes Bader, Jonathan Aldrich, and Éric Tanter

Automatic Verification of RMA Programs via Abstraction Extrapolation 47
Cedric Baumann, Andrei Marian Dan, Yuri Meshman,
Torsten Hoefler, and Martin Vechev

Scalable Approximation of Quantitative Information Flow in Programs 71
Fabrizio Biondi, Michael A. Enescu, Annelie Heuser, Axel Legay,
Kuldeep S. Meel, and Jean Quilbeuf

Code Obfuscation Against Abstract Model Checking Attacks 94
Roberto Bruni, Roberto Giacobazzi, and Roberta Gori

Abstract Code Injection: A Semantic Approach Based
on Abstract Non-Interference . 116

Samuele Buro and Isabella Mastroeni

A Framework for Computer-Aided Design of Educational
Domain Models . 138

Eric Butler, Emina Torlak, and Zoran Popović

Automatic Verification of Intermittent Systems . 161
Manjeet Dahiya and Sorav Bansal

On abstraction and compositionality for weak-memory linearisability. 183
Brijesh Dongol, Radha Jagadeesan, James Riely,
and Alasdair Armstrong

From Shapes to Amortized Complexity . 205
Tomáš Fiedor, Lukáš Holík, Adam Rogalewicz, Moritz Sinn,
Tomáš Vojnar, and Florian Zuleger

Invariant Generation for Multi-Path Loops with Polynomial Assignments. . . . 226
Andreas Humenberger, Maximilian Jaroschek, and Laura Kovács

http://dx.doi.org/10.1007/978-3-319-73721-8_1
http://dx.doi.org/10.1007/978-3-319-73721-8_1
http://dx.doi.org/10.1007/978-3-319-73721-8_2
http://dx.doi.org/10.1007/978-3-319-73721-8_3
http://dx.doi.org/10.1007/978-3-319-73721-8_4
http://dx.doi.org/10.1007/978-3-319-73721-8_5
http://dx.doi.org/10.1007/978-3-319-73721-8_6
http://dx.doi.org/10.1007/978-3-319-73721-8_6
http://dx.doi.org/10.1007/978-3-319-73721-8_7
http://dx.doi.org/10.1007/978-3-319-73721-8_7
http://dx.doi.org/10.1007/978-3-319-73721-8_8
http://dx.doi.org/10.1007/978-3-319-73721-8_9
http://dx.doi.org/10.1007/978-3-319-73721-8_10
http://dx.doi.org/10.1007/978-3-319-73721-8_11

Analyzing Guarded Protocols: Better Cutoffs, More Systems,
More Expressivity . 247

Swen Jacobs and Mouhammad Sakr

Refinement Types for Ruby . 269
Milod Kazerounian, Niki Vazou, Austin Bourgerie, Jeffrey S. Foster,
and Emina Torlak

Modular Analysis of Executables Using On-Demand
Heyting Completion . 291

Julian Kranz and Axel Simon

Learning to Complement Büchi Automata . 313
Yong Li, Andrea Turrini, Lijun Zhang, and Sven Schewe

P5: Planner-less Proofs of Probabilistic Parameterized Protocols 336
Lenore D. Zuck, Kenneth L. McMillan, and Jordan Torf

Co-Design and Verification of an Available File System 358
Mahsa Najafzadeh, Marc Shapiro, and Patrick Eugster

Abstraction-Based Interaction Model for Synthesis 382
Hila Peleg, Shachar Itzhaky, and Sharon Shoham

Generating Tests by Example . 406
Hila Peleg, Dan Rasin, and Eran Yahav

A Logical System for Modular Information Flow Verification 430
Adi Prabawa, Mahmudul Faisal Al Ameen, Benedict Lee,
and Wei-Ngan Chin

On Constructivity of Galois Connections . 452
Francesco Ranzato

Revisiting MITL to Fix Decision Procedures . 474
Nima Roohi and Mahesh Viswanathan

Selfless Interpolation for Infinite-State Model Checking 495
Tanja Schindler and Dejan Jovanović

An Abstract Interpretation Framework for the Round-Off Error
Analysis of Floating-Point Programs . 516

Laura Titolo, Marco A. Feliú, Mariano Moscato,
and César A. Muñoz

Author Index . 539

XVIII Contents

http://dx.doi.org/10.1007/978-3-319-73721-8_12
http://dx.doi.org/10.1007/978-3-319-73721-8_12
http://dx.doi.org/10.1007/978-3-319-73721-8_13
http://dx.doi.org/10.1007/978-3-319-73721-8_14
http://dx.doi.org/10.1007/978-3-319-73721-8_14
http://dx.doi.org/10.1007/978-3-319-73721-8_15
http://dx.doi.org/10.1007/978-3-319-73721-8_16
http://dx.doi.org/10.1007/978-3-319-73721-8_17
http://dx.doi.org/10.1007/978-3-319-73721-8_18
http://dx.doi.org/10.1007/978-3-319-73721-8_19
http://dx.doi.org/10.1007/978-3-319-73721-8_20
http://dx.doi.org/10.1007/978-3-319-73721-8_21
http://dx.doi.org/10.1007/978-3-319-73721-8_22
http://dx.doi.org/10.1007/978-3-319-73721-8_23
http://dx.doi.org/10.1007/978-3-319-73721-8_24
http://dx.doi.org/10.1007/978-3-319-73721-8_24

	Preface
	Organization
	Abstracts of Invited Talks
	Rethinking Compositionality for Concurrent Program Proofs
	Reasoning About Functions
	How to Stay Decidable
	Maximum Satisfiability in Program Analysis: Applications and Techniques (Invited Tutorial)
	Contents

