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Preface

This volume contains the papers presented at VMCAI 2018: the International Con-
ference on Verification, Model Checking, and Abstract Interpretation held during
January 7–9, 2018, in Los Angeles, co-located with POPL 2018 (the annual ACM
SIGPLAN/SIGACT Symposium on Principles of Programming Languages). Previous
meetings were held in Port Jefferson (1997), Pisa (1998), Venice (2002), New York
(2003), Venice (2004), Paris (2005), Charleston (2006), Nice (2007), San Francisco
(2008), Savannah (2009), Madrid (2010), Austin (2011), Philadelphia (2012), Rome
(2013), San Diego (2014), Mumbai (2015), St. Petersburg, Florida (2016), and Paris
(2017).

VMCAI provides a forum for researchers from the communities of verification,
model checking, and abstract interpretation to present their research and aims to
facilitate interaction, cross-fertilization, and advancement of hybrid methods that
combine these and related areas. VMCAI topics include: program verification, model
checking, abstract interpretation, program synthesis, static analysis, type systems,
deductive methods, decision procedures, theorem proving, program certification,
debugging techniques, program transformation, optimization, hybrid and
cyber-physical systems.

This year the conference received 43 submissions, of which 24 were selected for
publication in the proceedings. Each submission was reviewed by at least three Pro-
gram Committee members, and the main selection criteria were quality, relevance, and
originality. In addition to the presentations of the 24 selected papers, the conference
also featured an invited tutorial by Mayur Naik (University of Pennsylvania) as well as
three invited keynote talks by Ken McMillan (Microsoft Research), Azadeh Farzan
(University of Toronto), and Ranjit Jhala (University of California San Diego). We
warmly thank them for their participation and contributions.

We would like to thank the members of the Program Committee and the external
reviewers for their excellent work. We also thank the members of the Steering Com-
mittee, and in particular Lenore Zuck and Andreas Podelski, for their helpful advice,
assistance, and support. We thank Annabel Satin for her help in coordinating the events
co-located with POPL 2018, and we thank the POPL 2018 Organizing Committee for
providing all the logistics for organizing VMCAI. We are also indebted to EasyChair
for providing an excellent conference management system.

Finally, we would like to thank our sponsors, Amazon Web Services and Facebook,
for their valuable contributions to VMCAI 2018.

November 2017 Isil Dillig
Jens Palsberg
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Rethinking Compositionality for Concurrent
Program Proofs

Azadeh Farzan

University of Toronto

Abstract. Classical approaches to reasoning about concurrency are based on
reductions to sequential reasoning. Typical tactics are to reason about the global
behaviour of the system (commonly employed in model checking) or to reason
about the behaviour of each thread independently (such as in Owicki-Gries or
Rely/Guarantee). We will discuss a new foundation for reasoning about
multi-threaded programs, which breaks from this mold. In the new approach,
proof ingredients extracted from a few distinct program behaviours are used as
building blocks to a program proof that is free to follow the program control
structure when appropriate and break away from it when necessary. Our algo-
rithmic solution to the automated construction of these proofs leverages the
power of sequential reasoning similar to the classical techniques, but the
sequential reasoning lines need not be drawn at the thread boundaries.

Keywords: Proofs • Concurrency • Compositionality



Reasoning About Functions

Ranjit Jhala

University of California, San Diego

Abstract. SMT solvers’ ability to reason about equality, arithmetic, strings, sets
and maps, have transformed program analysis and model checking. However,
SMT crucially relies on queries being restricted to the above theories which
preclude the specification and verification of specification and verification of
properties of higher-order, user-defined functions. In this talk, we will describe
some recent progress towards removing this restriction by presenting two
algorithms for SMT-based reasoning about functions.

The first algorithm, FUSION, enables abstract reasoning about functions.
FUSION generalizes the first-order notions of strongest post-conditions and
summaries to the higher-order setting to automatically synthesize the most
precise representation of functions expressible in the SMT logic. Consequently,
FUSION yields a relatively complete algorithm for verifying specifications over
SMT-decidable theories. While this suffices to verify classical (1-safety) spec-
ifications, e.g. array-bounds checking, it does not apply to general (k-safety)
specifications over user defined functions, e.g. that certain functions are com-
mutative or associative.

The second algorithm, PLE Proof by Logical Evaluation (PLE), enables
concrete reasoning about functions, by showing how to mimic computation
within SMT-logics. The key idea is to represent functions in a guarded form and
repeatedly unfold function calls under enabled guards. We formalize a notion of
an equational proof and show that PLE is complete, i.e.is guaranteed to find an
equational proof if one exists. Furthermore, we show that PLE corresponds to a
universal (or must) abstraction of the concrete semantics of the user-defined
functions, and hence, terminates, yielding a precise and predictable means of
automatically reasoning about user-defined functions.

Joint work with Benjamin Cosman, Niki Vazou, Anish Tondwalkar,
Vikraman Choudhury, Ryan Scott, Ryan Newton and Philip Wadler.



How to Stay Decidable

Kenneth McMillan

Microsoft Research

Abstract. Automated provers can substantially increase productivity in the
formal verification of complex systems. However, the unpredictability of
automated provers presents a major hurdle to usability of these tools. This
problem is particularly acute in case of provers that handle undecidable logics,
for example, first-order logic with quantifiers.

On the other hand, there is a long history of work on decidable logics or
fragments of logics. Generally speaking, decision procedures for these logics
perform more predictably and fail more transparently than provers for unde-
cidable logics. In particular, in the case of a false proof goal, they usually can
provide a concrete counter-model to help diagnose the problem. The problem
that remains little studied is how to apply these logics in practice in the proof of
large systems. That is, how do we effectively decompose the proof of the system
into lemmas couched in decidable fragments, and is the human effort required to
do this repaid by more reliable automation?

To answer these questions, we must address the fact that combinations of
decidable theories are generally not decidable, and that useful decidable frag-
ments are generally not closed under conjunction. This requires us to practice
separation of concerns. For example, it is important to express the implemen-
tation of a protocol in a language that captures the protocol’s logic without
mixing in low-level details such as data structures. Moreover, modularity is an
important tool for avoiding undecidability. For example, we can use a high-level
protocol model to prove global properties, which are then used as lemmas in
proving correctness of the protocol implementation. This allows us to separate
invariants which, if combined, would take us outside the decidable realm. In
particular, this strategy allows us to produce verification conditions that are
decidable because they use function symbols in a stratified way.

Preliminary experience indicates that it is possible to produce verified
implementations of distributed protocols in this way with reduced proof com-
plexity and greater reliability of proof automation, without sacrificing execution
performance.



Maximum Satisfiability in Program Analysis:
Applications and Techniques

(Invited Tutorial)

Mayur Naik1, Xujie Si1, Xin Zhang1, and Radu Grigore2

1 University of Pennsylvania
2 University of Kent

Abstract. A central challenge in program analysis concerns balancing different
competing tradeoffs. To address this challenge, we propose an approach based
on the Maximum Satisfiability (MaxSAT) problem, an optimization extension
of the Boolean Satisfiability (SAT) problem. We demonstrate the approach on
three diverse applications that advance the state-of-the-art in balancing tradeoffs
in program analysis. Enabling these applications on real-world programs
necessitates solving large MaxSAT instances comprising over 1030 clauses in a
sound and optimal manner. We propose a general framework that scales to such
instances by iteratively expanding a subset of clauses while providing soundness
and optimality guarantees. We also present new techniques to instantiate and
optimize the framework.

Keywords: Maximum satisfiability • Program analysis
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