
From Shapes to Amortized Complexity?

Tomáš Fiedor1, Lukáš Holı́k1, Adam Rogalewicz1,
Moritz Sinn3, Tomáš Vojnar1, and Florian Zuleger2

1 FIT, Brno University of Technology, IT4Innovations Centre of Excellence, Czech Republic
2 TU Wien, Austria 3 St. Pölten University of Applied Sciences, Austria

Abstract. We propose a new method for the automated resource bound analysis
of programs manipulating dynamic data structures built on top of an underlying
shape and resource bound analysis. Our approach first constructs an integer ab-
straction for the input program using information gathered by a shape analyser;
then a resource bound analyzer is run on the resulting integer program. The inte-
ger abstraction is based on shape norms — numerical measures on dynamic data
structures (e.g., the length of a linked list). In comparison to related approaches,
we consider a larger class of shape norms which we derive by a lightweight pro-
gram analysis. The analysis identifies paths through the involved dynamic data
structures, and filters the norms which are unlikely to be useful for the later
bound analysis. We present a calculus for deriving the numeric changes of the
shape norms, thereby generating the integer program. Our calculus encapsulates
the minimal information which is required from the shape analysis.
We have implemented our approach on top of the Forester shape analyser and
evaluated it on a number of programs manipulating various list and tree structures
using the Loopus tool as the underlying bounds analyser. We report on programs
with complex data structures and/or using complex algorithms that could not be
analysed in a fully automated and precise way before.

1 Introduction
Automated resource bound analysis is an active field of research (for an overview we
refer the reader e.g. to [1] and the references therein), which aims at developing tools
and analysis techniques that allow developers to understand the performance of their
code and to verify the resource consumption of their programs in case that bounding
the resource consumption is a crucial correctness requirement.

The research of this paper is partly motivated by the experimental evaluation of
our resource bound analysis tool Loopus [1], where we analysed a large number of C
programs. Loopus computes resource bounds based on the updates to integer variables,
however, has only a limited support for pointers. One of the results of our experiments
was that missing pointer/shape analysis is the most frequent reason for the failure of
Loopus to compute a resource bound. In [1] we report that we obtained bounds for 753
of the 1659 functions in our benchmark (45%), and that by a simple (but unsound) shape
analysis we were able to increase the number of computed bounds to 1185 (71%).

In this paper, we study the automated resource bound analysis of heap-manipulating
programs. We focus on the analysis of data structures as they can be found in systems
code such as operating system kernels, compilers, or embedded systems. Performance is

? Supported by the Czech Science Foundation (project 17-12465S), the BUT FIT project FIT-
S-17-4014, the IT4IXS: IT4Innovations Excellence in Science project (LQ1602) and the Aus-
trian National Research Network S11403-N23 (RiSE) of the Austrian Science Fund (FWF).

a major concern in systems code and has led to the use of customised data structures and
advanced data structures such as, e.g. red-black trees, priority heaps or lock-free linked
lists. These data structures are complex and prone to introducing errors. Thus, auto-
mated tool support promises to increase the reliability of systems and can lead to a bet-
ter user experience. Resource bound analysis of programs with data structures has been
addressed only by a few publications [2,3,4,5,6]. In this paper we improve along several
dimensions on these earlier results allowing the automated resource bounds analysis of
heap-manipulating programs that cannot be handled by existing approaches.

Our approach. Our analysis works in three steps. We first run a shape analysis and
annotate the program with the shape invariants. Then based on numeric information
about the heap using the results from the shape analysis we create a corresponding
integer abstraction of the program. Finally, we perform resource bound analysis purely
on the integer program.

The numeric abstraction is based on shape norms, which are numerical measures
on dynamic data structures (e.g. the length of a linked list). Our first contribution is
the definition of a class of shape norms that express the longest distance between two
points of interest in a shape graph and are defined in terms of basic concepts from graph
theory. Our norms are parameterized by the program under analysis and are extracted
in a pre-analysis (with a possibility of extending the initial set during the subsequent
analysis); the extracted norms then correspond to selector paths found in the program.

Our second contribution is a calculus for our shape norms that allows to derive
how the norms change along a program statement, i.e. if the norm is incremented resp.
decremented or reset to some other expression. The calculus consists of two kinds of
rules. (1) Rules that allow to directly infer the change of a norm and do not need to take
additional information into account. (2) Rules that rely on the preceding shape analysis;
the shape information is used there for (a) dealing with pointer aliasing and (b) deriving
an upper bound on the value of a norm from the result of the shape analysis (if possible).
We point out that the rules (2) encapsulate the points of the analysis where information
about the shape is needed, and thus describe the minimal requirements on the preceding
shape analysis. We believe that this separation of concern also allows the use of other
shape analysers.

When creating the integer abstraction we could use all shape norms that we ex-
tracted from the program. However, we have an additional pre-analysis phase that elim-
inates norms that are not likely to be useful for the later bound analysis. This reduction
of norms has the benefit that it keeps the number of variables in the integer abstraction
small. The smaller number of additional variables increases the readability of the re-
sulting integer abstraction and simplifies the developing and debugging of subsequent
analyses. Additionally, the number of extracted norms can be quadratic in the size of
the program; hence adding quadratically many variables can be prohibitively expensive
and the pre-analysis is therefore crucial to the success of the later bound analysis.

Finally, we perform resource bound analysis on the created integer abstraction. This
design decision has two advantages. First, we can leverage the existing research on
bound analysis for integer programs and do not have to develop a new bound analysis.
Second, being able to analyse not only shape but also integer changes has the advantage
that we can analyse programs which mix integer iterations with data structure itera-
tions; we illustrate this point by analysing the flagship example of [4], which combines
iteration over data-structures and integer loops in an intricate way.

Implementation and Experiments. The generation of the integer program is imple-
mented on top of the shape analyser Forester [7]. We use the Loopus tool [8,1] for
inferring the computational complexity of the obtained integer abstractions. Our exper-
imental evaluation demonstrates that the combination of these tools can yield a powerful
analysis. We report on results for complex heap manipulating programs that could not
be handled by previous approaches as witnessed by experimental evaluation against the
tools AProVE [9] and COSTA [5]. We remark that our implementation leverages the
strengths of both Forester and Loopus. We inherit the capabilities of Forester to anal-
yse complex data structures, and report on analysis results for double-linked lists, trees,
2-level skip-lists, etc. Moreover, our analysis of shape norms is precise enough to lever-
age the capabilities of Loopus for amortized complexity analysis — we report on the
amortized analysis of the flagship example of [4], whose correct linear bound has to the
best of our knowledge never been inferred fully automatically.

Related work. The majority of the related approaches derive an integer program from an
input heap-manipulating program followed by a dedicated analysis (e.g. termination or
resource bounds) for arithmetic programs. The transformation has to be done conserva-
tively, i.e. the derived integer program needs to simulate the original heap-manipulating
program such that the results for the integer program hold for the original program.
The related approaches differ in the considered numeric measures on the heap, the data
structures that can be analysed and the degree of automation.

Several approaches have targeted restricted classes of data structures such as singly
linked lists [10,11,12,13,14] or trees [15,16]. It is unclear how to generalise these results
to composed or more complex data structures which require different numeric measures
or combinations thereof.

A notable precursor to our work is the framework of [17] implemented in the THOR
tool [18], which describes a general method for deriving integer abstractions of data
structures. The automation of THOR, however, relies on the user for providing the shape
predicates of interest (the implementation only comes with list predicates, further pred-
icates have to be added by the user). Further, we found during initial investigations
that THOR needlessly tracks shape sizes not required for a later termination or bounds
analysis, which can quickly bloat the program under analysis.

A general abstract interpretation-style framework for combining shape and numer-
ical abstract domains is described in [2]. The paper focuses on tracking of partition
sizes, i.e. the only considered norm is the number of elements in a data structure. Our
framework is orthogonal: we can express different norms, e.g. the height of a tree,
which cannot be expressed in [2]; on the other hand, we use numeric information only
in the second stage of the analysis which can be less precise than the reduced product
construction of [2].

An automated approach to amortized complexity analysis of object-oriented heap-
manipulating programs is discussed in [3]. The approach is based on the idea of associ-
ating a potential to (refinements of) data structure classes. Typing annotations allow to
derive a constraint system which is then solved in order to obtain valid potential anno-
tations. The implementation is currently limited to linear resource bounds and appears
to be restricted to list-like data structures.

The idea of using potentials for the analysis of data structures is also investigated
in [4]. The author extends separation logic with resource annotations exploiting the

idea of separation in order to associate resource units to every memory cell, resulting
in an elegant Hoare-logic for resource analysis. The suggested approach is currently
only semi-automated requiring the user to provide shape predicates and loop invariants
manually.

In [5], the authors propose an automated resource analysis for Java programs, im-
plemented in the COSTA tool. Their technique is based on abstracting arrays into their
sizes and linked structures into the length of the longest chain of pointers terminated
by NULL, followed by the construction and solving of a system of recurrence equations.
However, cyclic lists and more complicated data structures such as DLLs, are, to the
best of our knowledge, out of the capabilities of this technique as they require more
general numeric size measures.

A recent paper investigates the automated resource analysis for Java programs and
reports on its implementation in the AProVE tool [6], based on first translating a pro-
gram to an integer transition system, and then using a bounds analyser to infer the com-
plexity. The technique makes use of a single size-measure which is the number of nodes
reachable from the heap node of interest together with the sum of all reachable integer
cells. This norm is orthogonal to the norms considered in this paper. On the other hand,
the norm of [6] does often not correspond to the size of interest: for example, in case
of an iteration over the top-level list of a list of lists, the relevant norm is the length of
the top-level list and not the number of total data structure elements; similarly in case
of a search in a sorted tree: the relevant size measure is the height of a tree and not the
number of elements. Moreover, it is unclear how the norm of [6] deals with cyclic data
structures; while the number of reachable elements is well-defined, it is unclear if resp.
how the norm changes when a pointer is advanced because the number of reachable
nodes does not change.

Contributions. We summarise our contributions in this paper:

1. In comparison with related approaches we consider a larger class of shape norms.
2. We develop a calculus for deriving the numeric changes of the shape norms. The

rules of our calculus precisely identify the information that is needed from a shape
analyser. We believe that this definition of minimal shape information will be useful
for the development of future resource bound analysis tools.

3. Our norms are not fixed in advance but mined from the program: We define a pre-
analysis that reduces the number of considered norms. To our experience, this re-
duction is very useful during development of the resource analysis and for reporting
the integer abstraction to the user.

4. We demonstrate in an experimental validation that we obtain a powerful analysis
and report on complex data structure iterations that could not be analysed before.

2 A Brief Overview of the Proposed Approach
We are interested in deriving the computational complexity of Algorithm 1, where we
understand the computational complexity as the total number of loop iterations. Our
analysis infers an upper bound of the computational complexity by inferring a bound
for the number of iterations of each loop and summing these loop bounds. The com-
putation of other resource bounds can often be reduced to the computation of loop
bounds in a similar way (we refer the reader to the discussion in [1] for more details).

1 x = list;
2 y = x;
3 while x 6= NULL do
4 x = x.next;
5 if (*) then
6 while y 6= x do
7 y = y.next;

Algorithm 1: A running exam-
ple with computational complex-
ity 2 · list〈next∗〉NULL =
O(n). * denotes nondeter-
ministic choice.

1 x〈next∗〉NULL = list〈next∗〉NULL;
2 y〈next∗〉x = 0;
3 while x〈next∗〉NULL 6= 0 do
4 x〈next∗〉NULL−−;

y〈next∗〉x++;
5 if (*) then
6 while y〈next∗〉x 6= 0 do
7 y〈next∗〉x−−;

Algorithm 2: A pure integer pro-
gram corresponding to Algorithm 1

We thus limit the discussion in this paper to complexity bounds. A bound here is a
symbolic expression in terms of the program variables. Our implementation computes
complexity bounds with concrete constants—e.g., for Algorithm 1, we infer the bound
2 · list〈next∗〉NULL where list〈next∗〉NULL is a shape norm (we discuss shape norms
in more detail below). For ease of understanding and for comparison with related ap-
proaches, we also state asymptotic complexity bounds, which we obtain by replacing
all shape norms with n, e.g., 2 · list〈next∗〉NULL = O(n).

We now present a brief overview of our approach on Algorithm 1, a simplified
version of list partitioning. The outer loop at line 3 iterates over the single linked list
referenced by the variable list, at line 5 the loop non-deterministically processes the
partition of the list accumulated between variables y and x. We remark that deriving
bounds for Algorithm 1 is challenging because (i) we have to reason not only about the
lists x and y but also about the distance between these two pointers, and (ii) to infer the
precise bound our reasoning must track the distance between x and y precisely rather
than overapproximating it by the worst-case (which would lead to a quadratic bound).
We sketch the main steps of our analysis below.

Shape analysis. The underlying shape analysis is run first. A successful run annotates
each locations of the control-flow graph with a set of shape invariants and provides
a guarantee that no safety violations, like e.g., a NULL pointer dereference, can occur
during the program run. The shape invariants are needed to generate an integer abstrac-
tion of the program. Moreover, they can be leveraged to increase the precision of the
subsequent bounds analysis, e.g., when the length of a path between variables y and x
through the next selector is always constant. If the shape analysis fails, we end the
analysis, as we will lack the necessary information to generate an integer program.

Deriving the candidate norms. We infer suitable candidate norms from the program
control-flow as follows: (1) The loop header conditions define the set of candidate
norms of the form source〈re∗〉destination, where source is a pointer variable, desti-
nation a distinct point (such as NULL or another pointer variable) and re is a placeholder
for a regular expression over pointer selectors, which is filled in the next step. E.g., we
can drive norm x〈re∗〉NULL from the condition x 6= NULL in line 3 of Algorithm 1. We
then derive the set of possible selector paths that may be traversed during the program
run by a lightweight program analysis, in order to build the regular expression re: For
our example we infer that at each iteration of the outer cycle variable x is moved by
the selector next. We thus build the regular expression next∗ and obtain the complete
candidate norm x〈next∗〉NULL.

Analogically, we infer two candidate norms x〈next∗〉y and y〈next∗〉x for the inner
loop at line 6. We thus obtainNc = {x〈next∗〉NULL, x〈next∗〉y, y〈next∗〉x} as the inital
set of candidate norms to be tracked. Note that this set is only an initial set and can be
further extended during the generation of the integer program: E.g., when one of the
norms µ1 ∈ Nc is reset to a norm µ2 6∈ Nc, µ2 will be added to Nc and tracked.

Arithmetic program generation. For simplicity we consider only the norms µ1 =
x〈next∗〉NULL and µ2 = y〈next∗〉x in our discussion, because these are sufficient to
obtain a precise bound. We first translate the pointer conditions to corresponding inte-
ger conditions: The condition x 6= NULL in line 3 is translated to the condition µ1 6= 0
over norms. Analogically, the condition x 6= y is translated to µ2 6= 0.

We then derive norm updates (increases, decreases, resets) for each pointer instruc-
tion: line 1 resets the norm µ1 to µ3 = list〈next∗〉NULL. We thus add µ3 to the set of
tracked normsNc. The execution of line 4, the instruction x = x→next, decrements
norm µ1 and increments µ2. The instruction at line 7 (in the inner loop) decrements
the value of norm µ2. By preserving the original control flow, but replacing all pointer
instructions by the respective changes in norm values they provoke, we finally obtain
the integer program depicted in Algorithm 2.

Bounds analysis. Finally, we apply the bounds analyser, Loopus [8], to infer a bound
on the number of times that the loops at line 3 and line 6 of the integer abstraction
Algorithm 2 can be iterated during the program run. In the following we comment on
the analysis underlying Loopus (for a detailed description, we refer the reader to [1]
or [19]): The norm x〈next∗〉NULL which decreases on the outer loop is initialized at
line 1 to the norm list〈next∗〉NULL and never reset. Hence the tool infers the bound
list〈next∗〉NULL for the outer loop. The norm y〈next∗〉x which decreases in the inner
loop of the integer program (line 6) is initialized to 0 at line 2, and never reset. However,
at each execution of line 4, y〈next∗〉x is incremented by one (which models the exe-
cution of the statement x = x → next in the concrete program). Since the number of
executions of line 4 is bounded by the number of executions of the outer loop, the norm
y〈next∗〉x is thus incremented at most list〈next∗〉NULL (the bound of the outer loop)
times and hence the overall number of times the norm y〈next∗〉x may be decremented
in the inner loop is bound by list〈next∗〉NULL. The overall complexity of the example
is the sum of both loop bounds, i.e. 2 · list〈next∗〉NULL.

3 Preliminaries

This section introduces the basic notions used, the considered programs, as well as
our requirements on the underlying shape analysis and on the way it should represent
reachable memory configurations and their possible changes.

3.1 Program Model

For the rest of the paper, we will use Vp to denote the set of pointer variables, Vi the set
of integer variables, Sp the set of pointer selectors (or fields) of dynamic data structures,
and Si the set of integer selectors. We assume all these sets to be finite and mutually
disjoint. Let V = Vp ∪Vi be the set of all program variables and S = Sp ∪Si be the set
of all selectors. Finally, let NULL denote the null pointer and assume that NULL 6∈ V∪S.

We consider pointer manipulating program statements from the set STMTSp gener-
ated by the following grammar where x, y ∈ Vp, z ∈ Vp ∪ {NULL} and sel ∈ Sp:

stmtp ::= x = z | x = y → sel | x→ sel = z |
x = malloc() | free(x) | x == z | x 6= z

Further, we consider integer manipulating program statements from the set STMTSi
generated by the following grammar where x ∈ Vi, y ∈ Vp, sel ∈ Si, c ∈ Z, and f is
an integer operation (more complex statements could easily be added too):

stmti ::= x = op | x = f(op, op) | y → sel = op | x == op | x 6= op

op ::= c | x | y → sel

Finally, we let STMTS = STMTSp ∪ STMTSi.

Control-flow graphs. A control-flow graph (CFG) is a tupleG = (LOC, T, lb, le) where
LOC is a finite set of program locations, T ⊆ LOC × STMTS × LOC is a finite set of
transitions (sometimes also called edges), lb ∈ LOC is the initial (starting) location,
and le ∈ LOC is the final location.

Let G = (LOC, T, lb, le) be a CFG. A path in G of length n ≥ 0 is a sequence of
transitions t0 . . . tn = (l0, st0, l1)(l1, st1, l2) . . . (ln, stn, ln+1) such that ti ∈ T for all
0 ≤ i ≤ n. We denote the set of all such paths by ΦG. For a given location l, we denote
by ΦlG the set of paths where l0 = l. Given locations l1, l2 ∈ LOC, we say l1 dominates
l2 (and denote it by l1 � l2) iff all paths to l2 in ΦlbG lead through l1. We call a transition
(l, st, h) ∈ T a back-edge iff h � l. We call the location h a loop header and denote the
set of its back-edges as Th. Further, we denote the set of all loop headers as LH ⊆ LOC.
Note that, for a loop header hn of a loop nested in some outer loop with a loop header
ho, we have ho � hn.

Loops. Given a CFG G = (LOC, T, lb, le) with a set of loop headers LH, a loop L with
a header hL ∈ LH is the sub-CFG L′ = (LOC′, T|LOC′ , hL, hL) where LOC′ = {l ∈
LOC | ∃n ≥ 0 ∃(l0, st0, l1) . . . (ln, stn, ln+1) ∈ ΦG : l0 = ln+1 = hL ∧ (∃0 ≤ i ≤ n :
l = li) ∧ (∀1 ≤ j ≤ n : hL � lj)}, i.e., the set of locations on cyclic paths from hL
(but not crossing the header of any outer loop in which L might be nested), and T|LOC′

is the restriction of T to LOC′. We will denote the set of all program loops as L.

3.2 Memory Configurations

Let Vp, Vi, Sp, and Si be sets of pointer variables, integer variables, pointer selectors,
and integer selectors, respectively, as defined in the previous. We view memory config-
urations, i.e., shapes, as triples s = (M,σ, ν) where (1) M is a finite set of memory
locations, NULL 6∈M ,M∩Z = ∅, (2) σ : (M×Sp →M∪{NULL})∪(M×Si → Z) is
a function defining values of selectors, and (3) ν : (Vp →M ∪{NULL})∪ (Vi → Z) is
a function defining values of program variables. We denote the set of all such shapes by
S. Note that a shape is basically an oriented graph, also called a shape graph, with nodes
fromM ∪Z∪{NULL}, edges labelled by selectors, and some of the nodes referred to by
the program variables. For simplicity, we do not explicitly deal with undefined values
of pointers in what follows. For the purposes of our analysis, they can be considered
equal to null values. If the program may crash due to using them, we assume this to be
revealed by the shape analysis phase.

We assume that the shape analyser used within our approach works with a set A
of abstract shape representations (ASRs), which can be automata, formulae, symbolic
graphs, etc. This is, each ASRA ∈ A represents a (finite or infinite) set of shapes [[A]] ⊆
S. Allowing for disjunctive abstract representations, we assume that the shape analyser
will label each location of the CFG of a program by a set of ASRs overapproximating
the set of shapes reachable at that location. Moreover, we assume that the shape analyser
introduces a special successor relation between ASRs whenever they label locations
linked by a transition s.t. the statement of the transition may be executed between some
shapes encoded by the ASRs. This leads to a notion of annotated CFGs defined below.

Annotated CFGs. An annotated CFG (ACFG) Γ is a triple Γ = (G,λ, ρ) where G =
(LOC, T, lb, le) is a CFG, λ : LOC → 2A is a function mapping locations to sets
of ASRs generated by the underlying shape analyser for the particular locations, and
ρ ⊆ (LOC × A) × (LOC × A) is a successor relation on pairs of locations and ASRs
where ((l1, A1), (l2, A2)) ∈ ρ iff A1 ∈ λ(l1), A2 ∈ λ(l2), and there is a transition
(l1, st, l2) ∈ T and shapes s1 ∈ [[A1]], s2 ∈ [[A2]] such that st transforms s1 into s2.

4 Numerical Measures on Dynamic Data Structures

Our approach uses a notion of shape norms based on regular expressions that encode
sets of selector paths between some memory locations. Intuitively, we assume that the
program needs to traverse these paths and hence their length determines (or at least
contributes to) the complexity of the algorithm. Typically, one considers selector paths
between two memory locations pointed by some pointer variables or between a location
pointed by a variable and NULL. However, one can also use paths between a source
location pointed by some variable and any location containing some specific data value.

For a concrete memory configuration, the numerical value of a shape norm corre-
sponds to the supremum of the lengths of the paths represented by the regular expression
of the norm. Indeed, in the worst case, the program may follow the longest (possibly
cyclic and hence infinite) path in the memory. However, note that our analysis does usu-
ally not work with concrete values of shape norms since we work with ASRs and hence
need to reason about the values of a given norm over potentially infinite sets of shapes.
Instead, we track relative changes (i.e., increments, decrements) of the norms in a way
consistent with all shapes in a given ASR. An exception to this is the case where the
value of a norm is equal to a constant for all shapes in the ASR (e.g., after the statement
y = x→ next, the distance from x to y via next is always 1).

When analyzing a program, we first infer an initial set of candidate norms Nc (i.e.,
norms potentially useful for establishing resource bounds of the given program) from
the CFG of the program—this set may later be extended if we realize some more norms
may be useful. Subsequently, we derive as precisely as possible the effects (i.e., incre-
ments, decrements, or resets) that particular program statements have on the values of
the candidate norms in shapes represented by the different ASRs obtained from shape
analysis. The obtained set of shape normsNc together with their relative changes could
then be directly used to prove termination and to subsequently derive bounds on the
loops by trying to form lexicographic norm vectors. The values of these vectors should
be lexicographically ordered and have the property that the value is decreased by each
loop iteration. However, we instead useNc to generate a numerical program simulating
the original program, which allows us to leverage the strength of current termination and

resource bounds analysers for numerical programs as well as to deal with termination
and/or resource bounds arguments combining heap and numerical measures.

Below, we first formalize the notion of shape norms and then describe our approach
to generating the initial set of candidate norms.

4.1 Shape Norms
Let Sp be the set of selectors. In what follows, we will use the set RES of restricted
regular expressions re over Sp defined as follows:

re ::= ru∗ ru ::= sel | ru+ ru sel ∈ S.
Below, the ru sub-expressions are called regular units, sometimes distinguishing se-
lector units (sel) and join units (ru + ru). For re ∈ RES, we denote the language of
selector paths described by re as Lre. Intuitively, when we analyse the control-flow
graph of a program for traversals through selectors, a join unit corresponds to a branch-
ing of the control-flow, and the star expression (re∗) to a loop.

Our notion of selector regular expressions can be extended with concatenation units
(ru.ru) and nested star units (ru∗), corresponding to sequences of unit traversals and
nested loop traversals, respectively. Concatenation units are supported in our tool. How-
ever, since their introduction brings in many (quite technical) corner cases, we limit
ourselves to the join units to simplify the presentation. On the other hand, extending
the techniques below by nested stars seems to be more complicated, and we leave it for
future work. Nevertheless, note that we did not find it much useful in our experiments
as it would correspond to using the same variable as the iterator of several nested loops
(while usually different pointer variables are used as the iterators of the loops).

Let Vp be a set of pointer variables and Si a set of data selectors. We use P =
Vp ∪ {NULL} ∪ {[.data = k] | k ∈ Z, data ∈ Si} to refer to locations of memory
configurations (shapes) of a program. While x ∈ Vp denotes the location that is pointed
by the pointer variable x, and NULL denotes the special null location, [.data = k]
denotes any memory location whose selector data has the value k ∈ Z. A numerical
measure µ on a memory configuration, i.e., a shape norm, is a triple (x, re, y) ∈ Vp ×
RES ×P . We will use N to denote the set of all shape norms, and, further, we will use
x〈ru∗〉y as a shorthand for the triple (x, ru∗, y) ∈ N .

As we have already mentioned above, we are interested in evaluating norms over
ASRs, not over concrete shapes. Moreover, up to the cases where a norm has the same
constant value for all shapes in an ASR, we are not interested in absolute values of the
norms at all, and we instead track changes of the values of the norms only. However, in
order to be able to soundly speak about such changes, we need to first define the value
of a norm for a shape.

We will define the value of norms in terms of graphs. For this, we first define the
notion of the height of a pointed graph. Then we describe how to obtain a pointed graph
for a pair of a shape graph and a norm.

Pointed graphs. A pointed graph G = (N,E, n) consists of a set of nodes N , a set of
directed edges E ⊆ N × N and, a source node n ∈ N . A path π is a finite sequence
of nodes n0, · · · , nl such that (ni, ni+1) ∈ E for all 0 ≤ i < l. We call |π| = l the
length of the path. We say π starts in n if n0 = n. We define the height of G by setting
|G| = sup{|π| | path π starts in n} where we set supD =∞ for an infinite set D ⊆ N.
We note that, for a finite graph G = (N,E, n), we have |G| = ∞ iff there is a cycle
reachable from n.

Pointed graphs associated to shape graphs and null-terminated norms. We first con-
sider norms µ that end in NULL, i.e, µ = x〈ru∗〉NULL. For a shape s = (M,σ, ν) ∈ S,
we define the associated pointed graph Gx〈ru

∗〉NULL
s = (M ∪ {NULL}, E, ν(x)) where

E = {(n1, n2) ∈ (M ∪{NULL})× (M ∪{NULL}) | there is path from n1 to n2 in s s.t.
the string of selectors along the path matches the regular expression ru}.

Pointed graphs associated to shape graphs and non-null-terminated norms. We now
consider a norm µ = x〈ru∗〉y with y ∈ P \ {NULL}. For a shape s = (M,σ, ν) ∈ S,
we set s(y) = {ν(y)} for y ∈ Vp, and s(y) = {m ∈ M | σ(m, data) = k} for
y = [.data = k]. We define the shape s[y/NULL] = (M \ s(y), σ[y/NULL], ν[y/NULL])
where (1) σ[y/NULL](m, sel) = σ(m, sel) ifm 6∈ s(y) and σ[y/NULL](m, sel) = NULL

otherwise, and (2) ν[y/NULL](x) = ν(x) if ν(x) /∈ s(y) and ν[y/NULL](x) = NULL

otherwise. We define the associated pointed graph as Gx〈ru
∗〉y

s = Gx〈ru
∗〉NULL

s[y/NULL] .

Values of shape norms. We are now ready to define values of shape norms in shapes. In
particular, the value of a norm µ ∈ N in a shape s ∈ S, denoted ‖µ‖s, is a value from
the set N ∪ {∞} defined such that ‖µ‖s = |Gµs |. This is, the value of the norm µ in the
shape s is defined as the height of the associated pointed graph.

The intuition behind the above definition is the following. The pointed graph as-
sociated to a norm µ = x〈ru∗〉y makes the instances of the regular expression ru

explicit. The height of the pointed graph corresponds to the longest chain of instances
of the expression ru in the given shape graph. The intuition behind replacing the tar-
gets of norms with NULL stems from the fact that one either reaches the replaced target
(and program will terminate naturally) or reaches the NULL, dereferences it and thus
crashes (hence terminating unnaturally). However, since our method uses the results of
a preceding shape analysis, we can assume memory safety and exclude termination by
crash. In case there exists a cycle in the shape reachable from the source point x, the
value of the norm is infinite. In such a case the norm is unusable for the later complexity
analysis, hinting at the potential non-termination of the program under analysis.

We now generalize the notion of values of norms from particular shapes to ASRs.
The value of a norm µ ∈ N over a set of shapes given by an ASRA ∈ A, denoted ‖µ‖A,
is a value from the set N ∪ {∞, ω} defined such that ‖µ‖A = supω{‖µ‖s | s ∈ [[A]]}
where (i) supωX = ω iff ∞ ∈ X and (ii) supω(X) = supX otherwise. Intuitively,
we need to distinguish the case when some of the represented shapes contains a cyclic
selector path and the case where the ASR represents a set of shapes containing paths of
finite but unbounded length (as, e.g., in the case when the ASR represents all acyclic
lists of any length). Indeed, in the former case, the program may loop over the cyclic
selector path while, in the latter case, it will terminate, but its running time cannot be
bounded by a constant (it is bounded, e.g., by the length of the encountered list).

4.2 Deriving the Set of Candidate Shape Norms Nc

We now discuss how we infer a suitable initial set of norm candidates. Note that this set
is only an initial set of norm candidates that could be useful for inferring the bounds on
the program loops. It is extended when tracking norm changes as discussed in Section 5.
For each program loopLwe derive a set of norm candidates in the following three steps:

1. We inspect all of the conditions of the loop L which involve pointer variables
wrt the program model of Section 3.1 and declare each variable that appears in such

a condition as relevant. E.g., for our running example Algorithm 1 variables x and y are
declared as relevant due to the condition x 6= y in line line 6.

2. We iterate over all simple loop paths of L (a loop path is any path which stays
inside the loop L, and starts from and returns to the loop header; a loop path is simple
if it does not visit any location twice except for the loop header) and derive a set of
selectors Sx ⊆ Sp for each relevant variable x: Given a simple loop path slp and a
relevant variable x, we perform a symbolic backward execution to compute the effect
of slp on x, i.e., we derive an assignment x = exp such that exp captures how x
is changed when executing slp. For example, for our running example Algorithm 1
we infer x = x → next, y = y for both simple loop paths of the outer loop and
y = y → next, x = x for the single simple loop path of the inner loop. In case exp is
of form x → sel, i.e., the effect of the loop path is dereferencing variable x by some
selector sel ∈ Sp, we add sel to Sx. This basic approach can be easily extended to
handle consecutive dereferences of the same pointer over different selectors: We can
deal with expressions of the form exp = x→ sel1 → sel2 by adding sel1.sel2 to Sx.

3. Finally, we consider all subsets T ⊆ Sx and create norms for each T = {sel1, ...,
sell} using the regular expression join(T) = sel1+ ...+sell. The candidate normsNL
created for different forms of conditions of the loop L are given in the right column of
Fig. 1. For example, for our running example in Sect. 2, we create norms x〈next∗〉NULL
for the outer cycle, and norms x〈next∗〉y and y〈next∗〉x for the inner loop.

Condition of L Candidate Norms NL
x ◦ y { x〈join(T)∗〉y | T ⊆ Sx}

∪{ y〈join(T)∗〉x | T ⊆ Sx}
x ◦ NULL { x〈join(T)∗〉NULL | T ⊆ Sx}
x→ d ◦ k { x〈join(T)∗〉[.data = k] | T ⊆ Sx}

Fig. 1: Norm candidates NL for a loop L, ◦ ∈ {=, 6=}

The overall set of tracked
norm candidates Nc is set to
the union of norm candidates
over all loops in the program,
i.e.Nc =

⋃
L∈LNL. For each

norm from Nc we track its
size-changes, as we discuss in
Section 5.

Note that we can optimize the size of Nc by pruning irrelevant norms, e.g. those
that never decrease; the concrete heuristics are described in Section 6.2.

5 From Shapes to Norm Changes
In the previous section, we have shown how to derive an initial set of candidate norms
Nc that are likely to be useful for deriving bounds on the number of executions of the
different program loops. This section describes how to derive numerical changes of the
values of these norms, allowing us to derive a numeric program simulating the original
program from the point of view of its runtime complexity. During this process, new
norms may be found as potentially useful, which leads to an extension of Nc and to a
re-generation of the numeric program such that the newly added norms are also tracked.

In the numeric program, we introduce a numeric variable for each candidate norm.
By a slight abuse of the notation, we use the norms themselves to denote the corre-
sponding numeric variables, so, e.g., we will write x〈u∗〉NULL == 0 to denote that the
value of the numeric variable representing the norm x〈u∗〉NULL is zero. The values these
variables may get are from the set N∪{ω} with omega representing an infinite distance
(due to a loop in a shape). In what follows, we assume that any increment/decrement of
ω yields ω again and that ω is larger than any natural number. Note that we do not need

a special value to represent∞ for describing a finite distance without an explicit bound.
For that, we will simply introduce a fresh variable constrained to be smaller than ω.

The numeric program is constructed using the ACFG Γ = (G,λ, ρ) built on top of
the CFG G = (LOC, T, lb, le) of the original program. The original control flow is pre-
served except that each location l ∈ LOC is replaced by a separate copy for each ASR
labelling it, i.e., it is replaced by locations (l, A) for each A ∈ λ(l). Transitions be-
tween the new locations are obtained by copying the original transitions between those
pairs of locations and ASRs that are related by the successor relation, i.e., a transition
(l1, st, l2) is lifted to ((l1, A1), st, (l2, A2)) whenever ((l1, A1), (l2, A2)) ∈ ρ. Subse-
quently, each pointer-dependent condition labelling some edge in the extended CFG is
translated to a condition on the numeric variables corresponding to the shape norms
fromNc. Likewise, each edge originally labeled by a pointer-manipulating statement is
relabeled by numerical updates of the values of the concerned norm variables. Integer
conditions and statements are left untouched.

Soundness of the abstraction. The translation of the pointer statements described
below is done such that, for any path π in the CFG of a program and the shape s resulting
from executing π, the values of the numeric norm variables obtained by executing the
corresponding path in the numeric program conservatively over-approximate the values
of the norms over s. This is, if the numeric variable corresponding to some norm µ
can reach a value n ∈ N ∪ {ω} through the path π with pointer statements replaced as
described below, then ‖µ‖s ≤ n. As a consequence, we get that every bound obtained
for the integer abstraction is a bound of the original program.

Given the above, the translation of pointer conditions is easy. We translate each
condition x == NULL to a disjunction of tests x〈u∗〉NULL == 0 over all regular
units u such that x〈u∗〉NULL ∈ Nc. Likewise, every condition x == y is translated to
a disjunction of conditions of the form x〈u∗〉y == 0 over all regular units u such that
x〈u∗〉y ∈ Nc. Pointer inequalities are then translated to a negation of the conditions
formed as above, leading to a conjunction of inequalities on numeric norm variables.

Handling data-related pointer tests of the form x→ data == y is more complex.
Consider such a test on an edge starting from a location-ASR pair (l, A). Currently, we
can handle the test in a non-trivial way only if y evaluates to the same constant value in
all shapes represented byA, i.e., if there is some k ∈ N such that ν(y) = k for all shapes
(M,σ, ν) ∈ [[A]]. In this case, the test is translated to a disjunction of conditions of the
form x〈u∗〉[.data = k] == 0 over all regular units u such that x〈u∗〉[.data = k] ∈ Nc.
Otherwise, the test is left out—a better solution is an interesting issue for future work,
possibly requiring more advanced shape analysis and a tighter integration with it. Data-
related pointer non-equalities can then again be treated by negation of the equality test
(provided y evaluates to a constant value).

Finally, after a successful equality test (of any of the above kinds), all numeric
norm variables that appeared in the disjunctive condition used are set to zero. All other
variables (and all variables in general for an inequality test) keep their original value.

Next, we describe how we translate non-destructive, destructive, and data-related
pointer statements other than tests. The translation can lead to decrements, resets, or
increments of the numeric norm variables corresponding to the norms in Nc. In case,
we realize that we need some norm µ′ 6∈ Nc to describe the value of some current can-

didate norm µ ∈ Nc, we add µ′ into Nc and restart the translation process (in practice,
of course, the results of the previously performed translation steps can be reused). Such
a situation can happen, e.g., when Nc = {x〈next∗〉NULL} and we encounter an instruc-
tion x = list, which generates a reset of the norm x〈next∗〉NULL to the value of the
norm list〈next∗〉NULL. The latter norm is then added into Nc.1

The rules for translating non-destructive, destructive, and data-related pointer up-
dates to the corresponding updates on numeric norm variables are given in Fig. 2, 3,
and 4, respectively. Before commenting on them in more detail, we first make several
general notes. First, values of norms of the form x〈u∗〉x are always zero, and hence we
do not consider them in the rules. Next, let u = sel1 + . . .+ seln, n ≥ 1, be a regular
join unit. We will write sel ∈ u iff sel = seli for some 1 ≤ i ≤ n. We denote new
values of norms using an overline, and the old values without an overline. The norms
that are not mentioned in a given rule keep implicitly the same value.

Finally, in rules describing how the value of a norm variable µ is changed by firing
some statement between ASRs A1 and A2, we often use constructions of the form
µ $ expr where expr is an expression on norm variables. This construction constrains
the new value of µ using the current values of norm variables or using directly the ASRs
encountered, depending on what of this is more precise. First, if µ has the same natural
value in all shapes in [[A2]], i.e., if ‖µ‖A2

∈ N, then we let µ = ‖µ‖A2
. Otherwise, if

the value of µ is infinite in A1 and unbounded but finite in A2, i.e., if ‖µ‖A1
= ω and

‖µ‖A2 =∞, we constrain the new value of µ by the constraint µ = v ∧ v <∞ where
v is a fresh numeric variable.2 The same constraint with a fresh variable is used when
‖µ‖A2

=∞ and expr = ω. Otherwise, we let µ = expr.
The described translation allows for sound resource bounds analysis. Indeed, for

each run of the original pointer program, there will exist one run in the derived numeric
program where the norms get exact/overapproximated values. Provided that the under-
lying bounds analyser is sound in that it returns worst case bounds, the bounds obtained
for the numeric program will not be smaller than the bounds of the original program.

5.1 Non-Destructive Pointer Updates

We now comment more on the less obvious parts of the rules for non-destructive pointer
updates from Fig. 2. Concerning the rule for x = NULL, Case 1 reflects the fact that we
always consider all paths from x limited by either the designated target w or, implicitly,
NULL. Hence, after x = NULL, the distance is always 0. Likewise, in Case 1 of x =
malloc(), the distance is always 1 as we assume all fields of the newly allocated cell
to be nullified, and so the paths consist of the newly allocated cell only. Case 2 of
x = malloc() is based on that we assume the newly allocated cell to be unreachable

1 Alternatively, one could use a more complex initial static analysis that would cover, although
may be less precisely, even such dependencies among norms.

2 Intuitively, this case is used, e.g., when µ = x〈n∗〉NULL, and the encountered pointer statement
cuts an ASR representing cyclic lists of any length pointed by x to an ASR representing acyclic
NULL-terminated lists pointed by x. Naturally, when one subsequently starts a traversal of the
list, it will terminate though in an unknown number of steps.

[x = NULL]
∀w ∈ P, ∀z ∈ Vp \ {x}

x〈u∗〉w = 0 (1)

z〈u∗〉x $ z〈u∗〉NULL (2)

[x = malloc()]
∀w ∈ P \ {x}, ∀z ∈ Vp

x〈u∗〉w = 1 (1)

z〈u∗〉x $ z〈u∗〉NULL (2)

[free(x)]
∀z ∈ Vp, ∀w ∈ P

z〈u∗〉w $

{
z〈u∗〉x AllPathsThr(A1, u, z, w, x))

z〈u∗〉w otherwise

[x = y→n (alias)]
∃v ∈ AliasNext(A1, y, n)
∀w ∈ P ∀z ∈ Vp

x〈u∗〉w $ v〈u∗〉w (1)

z〈u∗〉x $ z〈u∗〉v (2)

[x = y→n (non-unit)]
n /∈ u, ∀w ∈ P, ∀z ∈ Vp

x〈u∗〉w $ ω (1)

z〈u∗〉x$ ω (2)

[x = y→n (unit)]
n ∈ u, x 6= y, ∀t ∈ Alias(A1, y)

∀s ∈ MayAlias(A1, y)
∀w ∈ P \ MayAlias(A1, y)
∀z ∈ Vp \ Alias(A1, y)

t〈u∗〉x$ t〈u∗〉NULL (1)

x〈u∗〉s$ y〈u∗〉NULL − 1 (2)

x〈u∗〉w $ y〈u∗〉w − 1 (3)

z〈u∗〉x$ z〈u∗〉y + y〈u∗〉x (4)
[x = y]

∀z ∈ Vp ∀w ∈ P

x〈u∗〉w $ y〈u∗〉w (1) z〈u∗〉x $ z〈u∗〉y (2)

Fig. 2: Translation rules for non-destructive pointer updates. The rules are assumed to
be applied between location-ASR pairs (l1, A1) and (l2, A2) linked by an edge labelled
by a non-destructive pointer update with x, y ∈ Vp, n ∈ Sp. For all rules with left-hand
side of form a〈u∗〉b, u ranges over all regular units such that a〈u∗〉b ∈ Nc. If the norms
used on the right-hand side of any of the applied rules is not in Nc, it is added into Nc,
and the analysis is re-run with the new Nc.

from other memory locations, and so any path taken from another memory location
towards x will implicitly be bounded by NULL.3

Concerning the rules for free(x), the predicate AllPathsThr(A, u, z, w, x) holds
iff all paths over selector sequences matching u∗ between the location z and the location
w go through x in all shapes in [[A]]. In this case, clearly, all paths from z tow are shrunk
to paths to x by free(x) as x becomes undefined (which we take as equal to NULL for
our purposes). Otherwise, we take the old value of the norm since it either stays the
same or perhaps gets shorter but in some shapes only.

Concerning the rules for x = y → n, we first note that, if applicable, the “alias”
rule has priority. It is applied when the n-successor of y is pointed by some variable
v in all shapes in [[A1]]. Formally, v ∈ AliasNext(A, y, n) iff ∀(M,σ, ν) ∈ [[A]] :
σ(ν(y), n) = ν(v). Such an alias can be used to define norms based on x by copying
those based on v. Of course, the distance from x to v after the update should be zero,
which is assured by the $ operator. If there is no such v, and n does not match u, we
can only limit the new value of the norm based on the ASR, which is again taken care
by the $ operator (otherwise we take the worst possibility, i.e., ω).

The most complex rule is that for x = y → n when there is no alias for the n-
successor of y, and n matches u. First, note that the rule is provided for the case of
x being a different variable than y only. We assume statements x = x → n to be
transformed to a sequence y = x;x = y → n; for a fresh pointer variable y. In the
rules, we then use the following must- and may-alias sets: Alias(A, y) = {v ∈ Vp |
∀(M,σ, ν) ∈ [[A]] : ν(y) = ν(v)} and MayAlias(A, y) = {v ∈ Vp | ∃(M,σ, ν) ∈
[[A]] : ν(y) = ν(v)}.

Concerning Case 1, note that u can be a join unit and u∗ can match several paths
from y that need not go to the new position of x at all (and hence can stop only when
reaching NULL), or they can go there, but as there is no variable pointing already to the

3 We assume that the preceding shape analysis will discover potential problems with a location
being freed and re-allocated with some dangling pointers still pointing to it (the ABA problem).

[x→n = NULL (unit)]
n ∈ u, ∀z ∈ Vp, ∀w ∈ P

z〈u∗〉w $

{
z〈u∗〉x + 1 AllPathsThrFld(A1, u, z, w, x, n)

z〈u∗〉w otherwise

[x→n = y (unit)]
n ∈ u, ∀s1 ∈ Alias(A1, x), ∀s2 ∈ MayAlias(A1, x)
∀t1 ∈ Alias(A1, y), ∀t2 ∈ MayAlias(A1, y)
∀w ∈ P \ (Alias(A1, x) ∪ Alias(A1, y))

∀z ∈ Vp \ (MayAlias(A1, x) ∪ MayAlias(A1, y))

s1〈u∗〉t1 $ s1〈u
∗〉t1 (1)

s2〈u∗〉w $

{
ω BadLoopClosed(A2, u, y, x, w)

s2〈u∗〉y + y〈u∗〉w otherwise
(2)

t2〈u∗〉w $

{
ω BadLoopClosed(A2, u, y, x, w)

t2〈u
∗〉w otherwise

(3)

z〈u∗〉w $

z〈u∗〉x + x〈u∗〉w AllPathsThr(A2, u, z, w, x))

max
(
z〈u∗〉x + x〈u∗〉w, z〈u∗〉w

)
SomePathsThr(A2, u, z, w, x))

z〈u∗〉w otherwise
(4)

Fig. 3: Translation rules for destructive pointer updates. The rules are assumed to be
applied between location-ASR pairs (l1, A1) and (l2, A2) linked by an edge labelled by
a destructive pointer update with x, y ∈ Vp, n ∈ Sp. The treatment of the regular units
u is the same as in Fig. 2.

new position of x, we anyway have to approximate such paths by extending them up to
NULL. The case when the only path to x is via n will then be solved by the $ operator.
The must aliases of y can naturally be treated in an equal way as y in the above.

In Case 2, start by considering paths from x to y. Since we have no alias of the n-
successor of y that could help us define the value of the norm, we have to approximate
the distance from x to y by extending the paths from x up until NULL. Further note
that such paths are a subset of those from y to NULL (since the new position of x is
a successor of y). We can thus use y〈u∗〉NULL to approximate x〈u∗〉NULL. However,
we can constrain the latter distance to be smaller by one. Indeed, if the longest path
from y to NULL does not go through the new position of x, the distance from x to NULL

is at least by one smaller. On the other hand, if the longest path goes through the new
position of x, then we save the step from y to the new position of x. The same reasoning
then applies for any variable that may alias y—for those that cannot alias it, one can do
better as expressed in the next case.

In Case 3, one can use a similar reasoning as in Case 2 as the paths from y to
w include those from the new position of x to w. Note, however, that this reasoning
cannot be applied when y may alias with w. In such a case, their distance may be zero,
and the distance from the new position of x to w can be bigger, not smaller. Finally, to
see correctness of Case 4, note that should there be a longer path over u from z to the
n-successor of y than going through y, this longer path will be included into the value
of the norm for getting from z to y too since the norm takes into account all u paths
either going to y or missing it and then going up until NULL (or looping).

The intuition behind the rule for x = y is similar to the other statements.

5.2 Destructive Pointer Updates
We now proceed to the rules for destructive pointer statements shown in Fig. 3. We start
with the translation for the statement x→ n = NULL, considering the case of n being a
unit, i.e., n ∈ u. After this statement, the distance from any source memory location z
to any target memory location w either stays the same or decreases. The latter happens

[x→d = y (data-const)]
∃k ∈ Z : ValIsConst(A1, y, k), ∀z ∈ Vp \ {x}, ∀l ∈ Z \ {k}

x〈u∗〉[.d = k] = 0 (1)

x〈u∗〉[.d = l] $

{
x〈u∗〉NULL ValMayBe(A1, x, d, l)

x〈u∗〉[.d = l] otherwise
(2)

z〈u∗〉[.d = k] $

{
z〈u∗〉x AllPathsThr(A1, u, z, [.d = k], x)

z〈u∗〉[.d = k] otherwise
(3)

z〈u∗〉[.d = l] $

{
z〈u∗〉NULL ValMayBe(A1, x, d, l)

z〈u∗〉[.d = l] otherwise
(4)

[x→d = y (data-unknown)]
(¬∃k ∈ Z : ValIsConst(A1, y, k)), ∀z ∈ Vp, ∀l ∈ Z

z〈u∗〉[.d = l]$

z〈u∗〉[.d = l] z〈u∗〉[.d = l] < z〈u∗〉x
z〈u∗〉[.d = l] ¬ValMayBe(A1, x, d, l)

z〈u∗〉NULL

Fig. 4: Translation rules for data-related pointer updates. The rules are assumed to be
applied between location-ASR pairs (l1, A1) and (l2, A2) linked by an edge labelled by
a data-related pointer update with x ∈ Vp, y ∈ Vi, d ∈ Si. The treatment of the regular
units u is the same as in Fig. 2.

when the changed n-selector of x influences the longest previously existing path from z
to w. Identifying this case in general is difficult, but one can reasonably recognise it in
common ASRs at least in the situation when all paths between z and w whose selector
sequences match u∗ go through the n-selector of the memory location marked by x in
all shapes represented by the ASR A1, i.e., [[A1]]. We denote this fact by the predicate
AllPathsThrFld(A1, u, z, w, x, n). In this case, the new distance between z and w
clearly corresponds to the old distance between z and x plus one (for the step from x to
NULL). In all other cases, we conservatively keep the old value of the distance (up to it
can be reduced by the $ operator as usual).

Concerning the statement x → n = y, the distance between x and y (and their
aliases) can stay the same or get shortened. In Case 1 of the rule for this statement,
the latter is reflected in the use of the $ operator. In Case 2, we use the predicate
BadLoopClosed(A2, u, y, x, w) to denote a situation when the statement x → n = y
closes a loop (over the u selectors) in at least some shape represented by A2 such that
w does not appear in between of y and x in the loop. Naturally, in such a case, the
distance between x (or any of its may-aliases) and w is set to ω. Note that the may-alias
is needed in this case since it is enough that this problematic situation arises even in
one of the concerned shapes. As for correctness of the other variant of Case 2, note that
if there are paths over u∗ from x to w not passing through y, they will be covered by
x〈u∗〉y, which will consider such paths extended up until NULL. In Case 3, note that if
the loop is not closed, then the paths from y to w are not influenced.

In Case 4, if all paths from z to w in the shapes represented by A2 go through x, we
can take the original distance of z and x, which does not change between A1 and A2 as
the change happens after x, and then add the new distance from x to w. If no path from
z to w passes x, the distance is not influenced by the statement. If some but not all of
the paths pass x, we have to take the maximum of the two previous cases.

As for non-unit cases of the above two statements, i.e., the case when n 6∈ u, the
norms do not change since the paths over u∗ do not pass the changed selector.

5.3 Data-Related Pointer Updates

Our rules for translating data-related pointer updates are given in Fig. 4. The first of
them applies in case the value being written into the data field d of the memory location

pointed by x is constant over all shapes represented by the ASR A1, i.e., if there is
some constant k ∈ Z such that ∀(M,σ, ν) ∈ [[A]] : ν(y) = k. This fact is expressed by
the ValIsConst(A1, y, k) predicate. In this case, after the statement x → d = y, the
distance from x to a data value k becomes clearly zero. Case 2 captures the fact that if
the d-field of x may be l in at least one shape represented by A1, i.e., if ∃(M,σ, ν) ∈
[[A]] : ν(y) = l, which is expressed by the ValMayBe(A1, x, d, l) predicate, the new
distance of x to a data value l is approximated by its distance to NULL. The reason is
that the old data value is re-written, and one cannot say whether another data field with
the value l may be reached before one gets to NULL. Otherwise, the norm keeps its
original value. Case 3 covers the distance from a location z other than x to a data value
k. This distance clearly stays the same or can get shorter after the statement. We are
able to safely detect the second scenario when all paths from z to a data value k lead
through x. In that case, the distance from z to a data value k shrinks to that from z to
x. Otherwise, we conservatively keep the norm value unchanged. Finally, Case 4 is an
analogy of Case 2.

In case the value being written through a data selector is not constant, which is
covered by the second rule of Fig. 4, our approach is currently rather conservative. We
keep the original value of the norms between z and a data value l if either this data
value is always reached from z before x is reached (the norm takes into account the
first occurrence of the data value) or if the re-written value of the data field d of x is not
l in any of the shapes represented by A1 (and hence the original value of the norm is
not based on the distance to this particular field). In such a case, the distance between z
and the data value l does surely not change. Otherwise, we conservatively approximate
the new distance between z and the data value l by the distance over paths matching u∗

from z up until NULL.
The stress on handling constant values of data may seem quite restricted, but it may

still allow one to verify a lot of interesting programs. The reason is that often the pro-
grams use various important constants (like 0) to steer their control flow. Moreover, due
to data-independence, it is often enough to let programs work with just a few constant
values—c.f., e.g., [20,21,22] where just a few data values (“colors”) are used when
checking various advanced properties of dynamic data structures. Still a better support
of data is an interesting issue for future work.

6 Implementation and Experiments

We have implemented our method in a prototype tool called RANGER. The implemen-
tation is based on the Forester shape analyser [23,22], which represents sets of memory
shapes using so-called forest automata (FAs). As a back-end bounds analyser for the
generated numeric programs, we use the Loopus tool [8]. We evaluated RANGER on
a set of benchmarks including programs manipulating various complex data structures
and requiring amortized reasoning for inferring precise bounds. The experimental re-
sults we obtained are quite encouraging and show that we were able to leverage both
the precise shape analysis of complex data structure provided by Forester as well as
the amortized analysis of loop bounds provided by Loopus and for the first time fully-
automatically and precisely analyse some challenging programs.

In the rest of the section, we first briefly introduce the Forester tool in some more
detail and discuss how we implemented our approach on top of it. Next, we mention
various further optimizations we included into the implementation. Then, we present
the experiments we performed and their results.

6.1 Implementation on Top of Forester

The Forester shape analyser represents particular shapes by decomposing them into tu-
ples of tree components, and hence forests. In particular, each memory location that is
NULL, pointed by a pointer variable, or that has multiple incoming pointers becomes
a so-called cut-point. Shape graphs are cut into tree components at the cut-points, and
each cut-point becomes the root of one of the tree components. Leaves of the tree com-
ponents may then refer back to the roots, which can be used to represent both loops in
the shapes as well as multiple paths leading to the same location. Of course, Forester
does not work with particular shapes but with sets of shapes. This leads to a need of
dealing with tuples of sets of tree components, which are finitely represented using fi-
nite tree automata (TAs). A tuple of TAs then forms an FA, which we use as the ASR
in our implementation.

Hence, we need to be able to implement all the operations used on ASRs in the
previous section on FAs. Fortunately, it turns out that this is not at all difficult.4 In par-
ticular, we can implement the various operations by searching through the particular
TAs of an FA, following the TA transitions that match the relevant unit expressions.5

We can then, e.g., easily see whether the distance between some memory locations is
constant, finite but unbounded, or infinite. It is constant if the given memory locations
are linked by paths in the structure of the involved automata that are of the given con-
stant length. It is finite but unbounded if there is a loop in the TA structure in between
the concerned locations (allowing the TA to accept a sequence of any finite length).
Finally, the distance is infinite if some path from the source location leads—while not
passing through the target location—to some of the roots, which is then in turn refer-
enced back from some leaf node reachable from it. Likewise, one can easily implement
checks whether all paths go (or at least some path goes) through some location, whether
some variables are aliased (in Forester, this simply corresponds to the variables being
associated with the same root), or whether a loop is closed by some destructive update
(which must create a reference from a leaf back to a loop).

6.2 Optimizations of the Basic Approach

In RANGER, we use several heuristic optimizations to reduce the size of the generated
numeric program. First, we do not translate each pointer statement in isolation as de-
scribed in Section 5. Instead, we perform the translation per basic blocks. Basically, we
take the blocks written in the static single assignment form, translate the statements in
the blocks as described in Section 5, and then perform various standard simplifications

4 Based on our experience with other representations of sets of shapes, such as separation logic
or symbolic memory graphs, we believe that it would not be difficult with other shape repre-
sentations either.

5 In RANGER, we support even concatenation units to some degree, which requires us to look at
sequences of TA transitions to match a single unit.

of the generated numeric constraint (evaluation of constant expressions, copy propaga-
tion, elimination of variables) using the SMT solver Z3 [24]. In our experience, the size
of the generated numeric program can be significantly reduced this way.

Our second optimization aims at reducing the number of tracked norms. For that,
we use a simple heuristic exploiting the underlying shape analysis and the principle of
variable seeding [14]. Basically, for each pointer variable x used as a source/target of
some norm inNc, we create a shadow variable x′, and remember the position of x at the
beginning of a loop by injecting a statement x′ = x before the loop. We then use our
shape analyser on the extended code to see whether the given variable indeed moves
towards the appropriate target location when the loop body is fired once. If we can
clearly see that this is not the case due to, e.g., the variable stays at the same location,
we remove it fromNc. For illustration, in our example from Section 2, we generate two
norms y〈next∗〉x and x〈next∗〉y for the loop at line 6. Using the above approach, we
can see that x is never moved, x〈next∗〉y is never decreased, and so we can discard it.
Moreover, we check which norms decrease at which loop branches (or, more precisely,
that cannot be excluded to decrease) and prune away norms that decrease only when
some other norm is decreased—we say that such a norm is subsumed.

Finally, we reduce the size of the resulting numeric program by taking into account
only those changes (resets, increments, and decrements) of the norms whose effect can
reach the loop for whose analysis the norm is relevant. For that, we use a slight adapta-
tion of the reset graphs introduced in [1].

6.3 Experimental Evaluation
Our experiments were performed on a machine with an Intel Core i7-2600@3.4 GHz
processor and 32 GiB RAM running Debian GNU/Linux. We compared our prototype
RANGER with two other tools: APROVE and COSTA. These two tools are, to the best
of our knowledge, the closest to RANGER and represent the most recent advancements
in bounds analysis of heap-manipulating programs. However, note that both of the tools
work over the Java bytecode, and thus we had to translate our benchmarks to Java. For
our tool, we report three times — the running times of the shape analysis of Forester
(SA), generation of the integer program (IG), and bounds analysis in Loopus (BA). For
the other tools, we report times as reported by their web interface6.

Further, from the outputs of the tools, we extracted the reported complexity of the
main program loop, and, if needed, simplified the bounds to the big O notation. We
remark that COSTA uses path-based norms (i.e. a subset of our norms), so it is di-
rectly comparable with RANGER. APROVE, however, uses norms based on counting
all reachable elements, and is therefore orthogonal to us. But, their norm is always big-
ger than our norms, thus if it reports an equal or bigger computational complexity we
can meaningfully compare the results.

The results are summarized in Table 1. We use TIMEOUT(60S) if a time-out of
60 seconds was hit, ERROR if the tool failed to run the example7, and UNKNOWN if
the tool could not bound the main loop of the example. We divided our benchmarks
to three distinct categories. The BASIC category consists of simple list structures —
Single-Linked Lists (SLL), Circular Single-Linked Lists (CSLL). In the ADVANCED

6 We could not directly compare the tools on the same machine due to the tool availability issues.
7 However, we verified that all our examples are syntactically correct.

Table 1: Experimental results.
Benchmark Short description Real bounds RANGER APROVE COSTA

Bound SA IG BA Bound Time(web) Bound Time(web)

BASIC

SLL-CST Constant-length SLL Traversal O(1) O(1) 0.002s 0.023s 0.011s O(1) 3.664s O(n) 0.251s
SLL SLL Traversal O(n) O(n) 0.012s 0.087s 0.040s O(n) 6.434s O(n) 0.441s
SLL-NESTED SLL with non-reset nested traversal O(n) O(n) 0.027s 0.256s 0.057s O(n) 6.361s O(n2) 1.582s
SLL-INT SLL Traversal with int combination O(n) O(n) 0.037s 0.275s 0.057s O(n) 8.945s O(n) 0.921s
CSLL CSLL Traversal O(n) O(n) 0.013s 0.086s 0.032s ERROR UNKNOWN 0.383s
CSLL-NT Non-terminating CSLL Traversal O(∞) O(∞) 0.003s 0.001s 0.011s ERROR UNKNOWN 0.843s

ADVANCED STRUCTURES

DLL-NEXT Forward DLL Traversal O(n) O(n) 0.034s 0.518s 0.036s O(n) 5.954s UNKNOWN 0.657s
DLL-PREV Backward DLL Traversal O(n) O(n) 0.031s 0.181s 0.044s O(n) 6.459s UNKNOWN 0.712s
DLL-NT Non-terminating DLL Traversal O(∞) O(∞) 0.011s 0.004s 0.024s ERROR UNKNOWN 0.684s
DLL-INT Forward DLL Traversal with int combination O(n) O(n) 0.044s 0.654s 0.044s O(n) 5.723s UNKNOWN 0.946s
DLL-PAR Parallel Forward and Backward DLL Traversal O(n) O(n) 0.058s 0.510s 0.069s ERROR UNKNOWN 0.668s
BUTTERFLY Terminating Butterfly Loop O(n) O(n) 0.005s 0.054s 0.024s O(n) 7.389s O(n) 0.883s
BUTTERFLY-INT Terminating Butterfly Loop with int combination O(n2) O(n2) 0.026s 0.198s 0.059s O(n)∗ 3.513s UNKNOWN 0.899s
BUTTERFLY-NT Non-terminating Butterfly Loop O(∞) O(∞) 0.005s 0.090s 0.015s O(n)∗ 7.768s UNKNOWN 1.701s
BST-DOUBLE Leftmost BST Traversal with nested Rightmost O(n2) O(n2) 25.147s 12.523s 0.203s O(n2)∗∗ 14.547s UNKNOWN 3.004s
BST-LEFT Leftmost BST Traversal O(n) O(n) 2.947s 7.321s 0.171s O(n)∗∗ 13.335s UNKNOWN 2.476s
BST-RIGHT Rightmost BST Traversal O(n) O(n) 2.895s 5.779s 0.168s O(n)∗∗ 13.007s UNKNOWN 2.457s
BST-LR Random BST Traversal O(n) O(n) 3.331s 7.010s 0.188s O(n)∗∗ 14.488s UNKNOWN 2.619s
2-LVL SL-L1 2-lvl Skip-list Traversal via lvl1 O(n) O(n) 0.309s 0.837s 0.036s ERROR UNKNOWN 1.449s
2-LVL SL-L2 2-lvl Skip-list Traversal via lvl2 O(n) O(n) 0.096s 0.526s 0.042s ERROR UNKNOWN 1.442s

ADVANCED ALGORITHMS

FUNCQUEUE Queue implemented by two SLLs O(n) O(n) 0.046s 0.519s 0.136s O(n) 8.222s UNKNOWN 4.808s
PARTITIONS SLL Partitioning (from Sec 2) O(n) O(n) 0.094s 0.729s 0.059s O(n2) 8.526s O(n2) 7.047s
INSERTSORT Insert Sort on SLL O(n2) O(n2) 0.041s 0.288s 0.051s O(n2) 6.453s O(n2) 0.904s
MERGEINNER Showcase example of Atkey [4] O(n) O(n) 3.589s 14.080s 1.502s O(n2) 57.935s TIMEOUT(60S)

STRUCTURES category, we infer bounds for programs on more complex structures —
Binary Trees (BST), Double-Linked Lists (DLL), and even 2-level skip-lists (2-LVL
SL). The last category ADVANCED ALGORITHMS includes experiments with various
more advanced algorithms, including show cases taken from related work.

In benchmarks marked with (*), APROVE returned an incorrect bound in our exper-
iments. Further, in benchmarks marked with (**), we obtained different bounds from
different runs of APROVE even though it was run in exactly the same way. In both
cases, we were unable to find the reason. Moreover, we remark that while the mea-
sured times show that RANGER is mostly faster, the measured times of APROVE and
COSTA may be biased by using different target machines and implementations of the
benchmarks (C vs Java).

The results confirm that our approach, conceived as highly parametric in the under-
lying shape and bounds analyses, allowed us to successfully combine an advanced shape
analysis with a state-of-the-art implementation of amortized resource bounds analysis.
Due to this, we were able to fully automatically derive tight complexity bounds even
over data structures such as 2-level skip-lists, which are challenging even for safety
analysis, and to get more precise and tight bounds for algorithms like PARTITIONS or
FUNCQUEUE, which require amortized reasoning to get the precise bound. The most
encouraging result is the fully automatically computed precise linear bound for the
mergeInner method [4]. While APROVE was able to process the example, it was
still not able to infer the precise interplay between the traversals of the involved SLL
partitions and numeric values needed to compute the precise linear bound.

Of course, our path-based norms do have their limitations too. They are, e.g., not
sufficient to verify algorithms like the Deutsch-Schorr-Waite tree traversal algorithm or
tree destruction algorithms, which could probably be verified using size-based norms,
based on counting all memory locations reachable from a given location. We thus see an
approach combining such norms (perhaps with suitably bounded scope) with our norms
as an interesting direction of future research along with a better support of norms based
on data stored in dynamic data structures.

References

1. Sinn, M., Zuleger, F., Veith, H.: Complexity and resource bound analysis of imperative
programs using difference constraints. J. Autom. Reasoning 59(1) (2017) 3–45

2. Gulwani, S., Lev-Ami, T., Sagiv, M.: A combination framework for tracking partition sizes.
In: Proc. of POPL’09. (2009) 239–251

3. Hofmann, M., Rodriguez, D.: Automatic type inference for amortised heap-space analysis.
In: Proc. of ESOP’13. Number 7792 in LNCS, Springer (2013)

4. Atkey, R.: Amortised resource analysis with separation logic. Logical Methods in Computer
Science 7(2) (2011)

5. Albert, E., Arenas, P., Genaim, S., Gómez-Zamalloa, M., Puebla, G.: Automatic Inference
of Resource Consumption Bounds. In: Proc. of LPAR-18. Volume 7180 of LNCS., Springer

6. Frohn, F., Giesl, J.: Complexity analysis for java with aprove. In: Proc of IFM’17. (2017)
85–101

7. Holik, L., Hruska, M., Lengal, O., Rogalewicz, A., Simacek, J., Vojnar, T.: Forester: Shape
analysis using tree automata (competition contribution). In: Proc. of TACAS’15. Volume
9035 of LNCS., Springer (2015)

8. Sinn, M., Zuleger, F.: Loopus - a tool for computing loop bounds for c programs. In: Proc.
of WING@ETAPS/IJCAR. (2010)

9. Ströder, T., Aschermann, C., Frohn, F., Hensel, J., Giesl, J.: Aprove: Termination and mem-
ory safety of c programs (competition contribution). In: Proc. of TACAS’15. LNCS, Springer

10. Bouajjani, A., Bozga, M., Habermehl, P., Iosif, R., Moro, P., Vojnar, T.: Programs with Lists
are Counter Automata. Formal Methods in System Design 38(”2) (2011)

11. Distefano, D., Berdine, J., Cook, B., O’Hearn, P.: Automatic Termination Proofs for Pro-
grams with Shape-shifting Heaps. In: Proc. of CAV’06. Volume 4144 of LNCS., Springer

12. Lahiri, S., Qadeer, S.: Verifying Properties of Well-Founded Linked Lists. In: Proc. of
POPL’06, ACM Press (2006)

13. Yavuz-Kahveci, T., Bultan, T.: Automated verification of concurrent linked lists with coun-
ters. In: Proc. of SAS’02. Volume 2477 of LNCS., Springer 69–84

14. Berdine, J., Chawdhary, A., Cook, B., Distefano, D., O’Hearn, P.: Variance analyses from
invariance analyses. In: Proc. of POPL’07, ACM

15. Rugina, R.: Shape analysis quantitative shape analysis. In: Proc. of SAS’04. Volume 3148
of LNCS., Springer (2004)

16. Habermehl, P., Iosif, R., Rogalewicz, A., Vojnar, T.: Proving Termination of Tree Manipu-
lating Programs. In: Proc. of ATVA’07. Volume 4762 of LNCS., Springer

17. Magill, S., Tsai, M.H., Lee, P., Tsay, Y.K.: Automatic numeric abstractions for heap-
manipulating programs. In: Proc. of POPL’10

18. Magill, S., Tsai, M.H., Lee, P., Tsay, Y.K.: Thor: A tool for reasoning about shape and
arithmetic. In: Proc. of CAV’08. Volume 5123 of LNCS., Springer

19. Sinn, M., Zuleger, F., Veith, H.: A simple and scalable static analysis for bound analysis and
amortized complexity analysis. (2014) 745–761

20. Bouajjani, A., Habermehl, P., Vojnar, T.: Abstract Regular Model Checking. In: Proc. of
CAV’04. Volume 3114 of LNCS., Springer (2004)

21. Abdulla, P.A., Haziza, F., Holı́k, L., Jonsson, B., Rezine, A.: An integrated specification and
verification technique for highly concurrent data structures. In: Proc. of TACAS’13, Springer

22. Holik, L., Hruska, M., Lengal, O., Rogalewicz, A., Vojnar, T.: Counterexample Validation
and Interpolation-Based Refinement for Forest Automata. In: Proc. of VMCAI’17, Springer

23. Holik, L., Simacek, J., Rogalewicz, A., Vojnar, T.: Fully Automated Shape Analysis Based
on Forest Automata. In: Proc. of CAV’13. Volume 8044 of LNCS., Springer (2013)

24. Bjørner, N.: The Z3 Theorem Prover
URL: https://github.com/Z3Prover/z3/.

	From Shapes to Amortized Complexity*-4mm

