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Abstract. Code protection technologies require anti reverse engineer-
ing transformations to obfuscate programs in such a way that tools and
methods for program analysis become ineffective. We introduce the con-
cept of model deformation inducing an effective code obfuscation against
attacks performed by abstract model checking. This means complicating
the model in such a way a high number of spurious traces are generated
in any formal verification of the property to disclose about the system
under attack. We transform the program model in order to make the
removal of spurious counterexamples by abstraction refinement maxi-
mally inefficient. A measure of the quality of the obfuscation obtained by
model deformation is given together with a corresponding best obfusca-
tion strategy for abstract model checking based on partition refinement.

1 Introduction

Software systems are a strategic asset, which in addition to correctness deserves
security and protection. This is particularly critical with the growth of mobile
computing, where the traditional black-box security model, with the attacker
not able to see into the implementation system, is not anymore adequate. Code
protection technologies are increasing their relevance due to the ubiquitous na-
ture of modern untrusted environments where code runs. From home networks to
consumer devices (e.g., mobile devices, cloud, and IoT devices), the running envi-
ronment cannot guarantee integrity and privacy. Existing techniques for software
protection originated with the need to protect license-checking code, particularly
in games or in IP protection. Sophisticated techniques, such as white-box (WB)
cryptography and software watermarking, were developed to prevent adversaries
from circumventing anti-piracy protection in digital rights management systems.

A WB attack model to a software system S assumes that the attacker has full
access to all of the components of S, i.e., S can be inspected, analysed, verified,
reverse-engineered, or modified. The goal of the attack is to disclose properties
of the run-time behaviour of S. These can be a hidden watermark [22I189], a
cryptographic key or an invariance property for disclosing program semantics
and make correct reverse engineering [7]. Note that standard encryption is only
partially applicable for protecting S in this scenario: The transformed code has
to be executable while being protected. Protection is therefore implemented
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as obfuscation [6]. Essentially, an obfuscator is a compiler that transforms a
program p into a semantically equivalent one O(p) but harder to analyse and
reverse engineer. In many cases it is enough to guarantee that the attacker cannot
disclose the information within a bounded amount of time and with limited
resources available. This is the case if new releases of the program are issued
frequently or if the information to be disclosed is some secret key whose validity
is limited in time, e.g., when used in pay-per-view mobile entertainment and in
streaming of live events. Here the goal of the code obfuscation is to prevent the
attacker from disclosing some keys before the end of the event.

The current state of the art in code protection by obfuscation is characterised
by a scattered set of methods and commercial/open-source techniques employing
often ad hoc transformations; see [7] for a comprehensive survey. Examples of
obfuscating transformations include code flattening to remove control-flow graph
structures, randomised block execution to inhibit control-flow graph reconstruc-
tion by dynamic analysis, and data splitting to obfuscate data structures. While
all these techniques can be combined together to protect the code from several
models of attack, it is worth noting that each obfuscation strategy is designed to
protect the code from one particular kind of attack. However, as most of these
techniques are empirical, the major challenges in code protecting transformations
are: (1) the design of provably correct transformations that do not inject flaws
when protecting code, and (2) the ability to prove that a certain obfuscation
strategy is more effective than another w.r.t. some given attack model.

In this paper we consider a quite general model of attack, propose a measure
to compare different obfuscations and define a best obfuscation strategy.

The aim of any attack is to disclose some program property. It is known
that many data-flow analyses can be cast to model checking of safety formulas.
For example, computing the results of a set of data-flow equations is equivalent
to computing a set of states that satisfies a given modal/temporal logic speci-
fication [20J21]. Even if several interesting properties are not directly expressed
as safety properties, because they are existentially quantified over paths, their
complements are relevant as well and are indeed safety properties, i.e. they are
requested to hold for all reachable states. For these reasons VCTL* is a suitable
formal logic to express those program properties the attacker wants to disclose.

In this context, program analysis is therefore the model checking of a VCTL*
formula on a(n approximate) model associated with the program. The complex-
ity of software analysis requires automated methods and tools for WB attack to
code. Since the attacker aims to disclose the property within a bounded time
and using bounded resources, approximate methods such as abstract interpre-
tation [8] or abstract model checking [3] are useful to cope with the complex-
ity of the problem. The abstraction here is helpful to reduce the size of the
model keeping only the relevant information which is necessary for the analysis.
Safety properties expressed in YCTL* can be model-checked using abstraction
refinement techniques (CEGAR [2]) as in Fig. [1l An initial (overapproximated)
abstraction of the program is model-checked against the property ¢. If the ver-
ification proves that ¢ holds true, then it is disclosed. Similarly, if an abstract
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program p . Model phi holds
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Fig. 1. Counterexample guided abstraction refinement (CEGAR) framework

counterexample is found that corresponds to a concrete counterexample, it is
disclosed that ¢ is not valid. An abstract counterexample that is present in the
existential overapproximation but not in the concrete model is called spurious. If
a spurious counterexample is found the abstraction is refined to eliminate it and
the verification is repeated on the refined abstraction. Of course, the coarser the
abstraction that can be used to verify the property the more effective the attack
is. Indeed, the worst case for the attacker is when the verification cycle must be
repeated until the refined abstraction coincides with the concrete model.
Given a program p and a YCTL* property ¢ to be obfuscated we aim to:

1. define a measure to compare the effectiveness of different obfuscations of p;
2. derive an optimal (w.r.t. the above measure) obfuscation of p.

The measure of obfuscation that we propose is based on the size of the
abstract model that allows the attacker to disclose the validity of ¢. Intuitively,
the larger the size of the model, the more resources and computation power the
attacker needs to spend to reach the goal.

We propose a systematic model deformation that induces a systematic trans-
formation on the program (obfuscation). The idea is to transform the source
program in such a way that:

1. its semantics is preserved: the model of the original program is isomorphic
to the (reachable) part of the model of the obfuscated program (Theorem [I]);

2. the performance is preserved;

3. the property ¢ is preserved by the transformation (Theorem ;

4. such transformation forces the CEGAR framework to ultimately refine the
abstract model of the transformed program into the concrete model of the
original program (T heorem. Therefore any abstraction-based model check-
ing becomes totally ineffective on the obfuscated program.

CEGAR can be viewed as a learning procedure, devoted to learn the partition
(abstraction) which provides a (bisimulation) state equivalence. Our transforma-
tion makes this procedure extremely inefficient. Note that several instances of
the CEGAR framework are possible depending on the chosen abstraction and
refinement techniques (e.g. predicate refinement, partition refinement) and that
CEGAR can be used in synergy with other techniques for compact represen-
tation of the state space (e.g., BDD) and for approximating the best refined
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abstraction (e.g., SAT solvers). Notably, CEGAR is employed in state-of-the-art
tools as Microsoft’s SLAM engine for the SDV framework [I7]. Here we focus
on the original formulation of CEGAR based on partition refinement, but we
believe that our technique can be extended to all the other settings.

As many obfuscating transformations, our method relies on the concept of
opaque expressions and opaque predicate that are expressions whose value is
difficult for the attacker to figure out. Opaque predicates and expressions are
formulas whose value is uniquely determined (i.e. a constant), independently
from the parameters they receive, but this is not immediately evident from the
way in which the formula is written. For example it can be proved that the for-
mula 22 — 34y # 1 is always true for any integer values of = and y. Analogously,
the formula (22 + z) mod 2 # 0 is always false. These expression /predicate are,
in general, constructed using number properties that are hard for an adversary
to evaluate. Of course such predicates can be parameterised so that each instance
will look slightly different. Opaque predicates/expressions are often used to in-
ject dead code in the obfuscated program in such a way that program analysis
cannot just discard it. For example, if the guard 22 — 34y? # 1 is used in a con-
ditional statement, then the program analysis should consider both the ”then”
and the ”else” branches, while only the first is actually executable. In this paper:
i) opaque expressions will be used to hide from the attacker the initial values
of the new variables introduced by our obfuscation procedure; and ii) opaque
predicates will be used to add some form of nondeterminism originated from
model deformations. The effects of the opaque expressions and predicates will
be similar: since the attacker will not be able to figure out their actual values,
all the possible values have to be taken into account.

Plan of the paper. In Section [2| we recall CEGAR and fix the notation. In Sec-
tion [3| we introduce the concept of model deformation and define the measure of
obfuscation. In Section [f] we define a best obfuscation strategy. Our main results
are in Section [5] Some concluding remarks are in Section [f]

Related works. With respect to previous approaches to code obfuscation, all
aimed to defeat attacks based on specific abstractions, we define the first trans-
formation that defeats the refinement strategy, making our approach indepen-
dent on the specific attack carried out by abstract model checking.

Most existing works dealing with practical code obfuscation are motivated by
either empirical evaluation or by showing how specific models of attack are de-
feated, e.g., decompilation, program analysis, tracing, debugging (see [7]). Along
these lines, [23] firstly considered the problem of defeating specific and well iden-
tified attacks, in this case control-flow structures. More recently [I] shows how
suitable transformations may defeat symbolic execution attacks. We follow a
similar approach in defeating abstract model-checking attacks by making ab-
straction refinements maximally inefficient. The advantage in our case is in the
fact that we consider abstraction refinements as targets of our code protecting
transformations. This allows us both to extract suitable metrics and to apply
our transformations to all model checking-based attacks.
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A first attempt to formalise in a unique framework a variety of models of
attack has been done in [I3JI0JT4] in terms of abstract interpretation. The idea
is that, given an attack implemented as an abstract interpreter, a transforma-
tion is derived that makes the corresponding abstract interpreter incomplete,
namely returning the highest possible number of false alarms. The use of ab-
stract interpretation has the advantage of making it possible to include in the
attack model the whole variety of program analysis tools. While this approach
provides methods for understanding and comparing qualitatively existing obfus-
cations with respect to specific attacks defined as abstract interpreters, none of
these approaches considers transformations that defeat the abstraction refine-
ment, namely the procedure that allows to improve the attack towards a full
disclosure of the obfuscated program properties.

Even if the relation between false alarms and spurious counterexamples is
known [I5] to the best of our knowledge, no obfuscation methods have been
developed in the context of formal verification by abstract model checking, or
more in general by exploiting structural properties of computational models and
their logic.

2 Setting The Context

2.1 Abstract Model Checking

Given a set Prop of propositions, we consider the fragment VCTL* of the tempo-
ral logic CTL* over Prop [4I12]. Models are Kripke structures K = (X, R, 1,] - ||)
with a transition system (X, R) having states in X and transitions R C X x X,
initial states I C X, and an interpretation function || - ||: Prop — (X)) that
maps each proposition p to the set || p [|C X of all and only states where p holds.
For VCTL* the notion of satisfaction of a formula ¢ in K is as usual [11], written
K = ¢ A pathin (X, R,1,] - ||) is an infinite sequence m = {s; };en of states such
that sg € I and for every i € N, R(s;, s;+1). Terminating executions are paths
where the final state repeats forever. We will sometimes use 7 to denote also a
finite path prefix {s;};c[o,n) for some n € N. Given a path 7 = {s;};en and a
state x € X, we write z € 7 if 3i € N such that x = s;.

Any state partition P C (X)) defines an abstraction merging states into ab-
stract states, i.e., an abstract state is a set of concrete states and the abstraction
function ap : ¥ — p(X) maps each state s into the partition class ap(s) € P
that contains s. The abstraction function can be lifted to a pair of adjoint func-
tions ap : p(X) = p(X) and vp : p(X) — p(X), such that for any X € p(X),
ap(X) = U,ex P(z) [19]. When the partition P is clear from the context we
omit the subscript. A partition P with abstraction function a induces an abstract
Kripke structure Kp = (2%, R¥ I || - ||*) that has abstract states in X% = P,
ranged by s, and is defined as the existential abstraction induced by P:

— Ri(st,$4) iff 3s,t € X. R(s,t) Aa(s) = s Aa(t) = &b,
—stetiff 3t e I. a(t) = s,
— = { s e S s Clipll },
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An abstract path in the abstract Kripke structure Kp is denoted by 7% =
{Sg}z‘eN- The abstract path associated with the concrete path m = {s;};cn is the
sequence () = {a(s;)}ien. Vice versa, we denote by ~(7*) the set of concrete
paths whose abstract path is 7%, i.e., y(n?) = { 7|a(7) = 7* }.

A counterexample for ¢ is either a finite abstract path or a finite abstract path
followed by a loop. Abstract model checking is sound by construction: If there is
a concrete counterexample for ¢ then there is also an abstract counterexample for
it. Spurious counterexamples may happen: If there is an abstract counterexample
for v then there may or may not be a concrete counterexample for p.

2.2 Counter-Example Guided Abstraction Refinement

With an abstract Kripke structure X* and a formula ¢, the CEGAR algorithm
works as follows [2]. K* is model checked against the formula. If no counterex-
ample to K! |= ¢ is found, the formula ¢ is satisfied and we conclude. If a
counterexample 7 is found which is not spurious, i.e., y(r*) # ), then we have
an underlying concrete counterexample and we conclude that ¢ is not satisfied.
If the counterexample is spurious, i.e., y(7!) = ), then K* is further refined
and the procedure is repeated. The procedure illustrated in Fig. [I] induces an
abstract model-checker attacker that can be specified as follows in pseudocode.

Input: program p, property ¢

P = init(p, ¢);

K = kripke(P, p);

¢ = check(K, ¢);

while (¢ != null && spurious(p,c)) {
P =refine(K, p,c);
K = kripke(P, p);
¢ = check(K, ¢); }

return ((c == null), P);

Here we denote by init a function that takes a program p and the property ¢
and returns an initial abstraction P (a partition of variable domains); a function
kripke that generates the abstract Kripke structure associated with a program
p and the partition P; a function check that takes an abstract Kripke structure
K and a property o and returns either null, if K |= ¢, or a (deterministically
chosen) counterexample ¢; a predicate spurious that takes the program p and an
abstract counterexample ¢ and returns true if ¢ is a spurious counterexample and
false otherwise; and a function refine(K, p, c) that returns a partition refinement
so to eliminate the spurious counterexample c. As the model is finite, the number
of partitions that refine the initial partition is also finite and the algorithm
terminates by returning a pair: a boolean that states the validity of the formula,
and the final partition that allows to prove it.

If several spurious counterexamples exist, then the selection of one instead
of another may influence the refinements that are performed. For example, the
same refinement that eliminates a spurious counterexample may cause the disap-
pearance of several other ones. However, all the spurious counterexamples must
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be eliminated. When we assume that check is deterministic, we just fix a total

order on the way counterexamples are found. For example, we may assume that

a total order on states is given (e.g., lexicographic) and extend it to paths.
Central in CEGAR is partition re-

finement. The algorithm identifies the

shortest prefix {Si#}ie[o’kgrl] of the ab- SO

stract counterexample 7 that does ]
not correspond to a concrete path in ‘ 0 OO O \é] o
the model. The second to last abstract :"-i- ------------ ‘vf-;zgl
state sk# in the prefix, called a failure :___@____________:
state, is further partitioned by refin- ‘ é 37
ing the equivalence classes in such a O %—’D

way that the spurious counterexam-

ple is removed. To refine 5?7 the al- Fig. 2. Dead, bad and irrelevant states
gorithm classifies the concrete states

s € sk# in three classes:

— Dead states: they are reachable states s € sk# along the spurious coun-
terexample prefix but they have no outgoing transitions to the next states
in the spurious counterexample, i.e., there is some concrete path prefix
™ e 'y({s?}ie[o’k]) such that s € m and for any s’ € sﬁir1 it holds —R(s, s).

— Bad states: they are non-reachable states s € sk# along the spurious coun-
terexample prefix but have outgoing transitions that cause the spurious coun-

terexample, i.e., for any concrete path prefix = € 7({5?}1'6[0,19]) we have
s & m, but R(s,s’) for some concrete state s’ € Sk#+1'

— Irrelevant states: they are neither dead nor bad, i.e., they are not reachable
and have no outgoing transitions to the next states in the counterexample.

Ezample 1 (Dead, bad and irrelevant states). Consider the abstract path prefix
{s#,sﬁs?,s?} in Fig. |2l Each abstract state is represented as a set of con-
crete states (the smaller squares). The arrows are the transitions of the concrete
Kripke structure and they induce abstract arcs in the obvious way. We use a

thicker borderline to mark s# as an initial abstract state and a dashed border-
line to mark s as a failure state. The only dead state in s¥ is r, because it
can be reached via a concrete path from an initial state but there is no outgoing
transition to a state in sf. The states s and t are bad, because they are not
reachable from initial states, but have outgoing transitions to states in 53# The

states u and w are irrelevant.

CEGAR looks for the coarsest partition that separates bad states from dead
states. The partition is obtained by refining the partition associated with each
variable. The chosen refinement is not local to the failure state, but it applies
globally to all states: It defines a new abstract Kripke structure for which the
spurious counterexample is no longer valid. Finding the coarsest partition cor-
responds to keeping the size of the new abstract Kripke structure as small as
possible. This is known to be a NP-hard problem [2], due to the combinatorial
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explosion in the number of ways in which irrelevant states can be combined with
dead or bad states. In practice, CEGAR applies a heuristic: irrelevant states are
not combined with dead states. The opposite option of separating bad states
from both dead and irrelevant states is also viable.

In the following we assume that states in X' are defined as assignments of
values to a finite set of variables z1,...,x, that can take values in finite do-
mains Dy, ..., D,. Partitions over states are induced by partitions on domains. A
partition P of variables x1, ..., z, is a function that sends each x; to a partition
P, = P(z;) C p(D;). Given the abstractions associated with partitions P, ..., P,
of the domains Dy, ..., Dy, the states of the abstract Kripke structure are defined
by the possible ranges of values that are assigned to each variable according to
the corresponding partition.

2.3 Programs

We let P be the set of programs written in the syntax of guarded commands [5]
(e.g., in the style of CSP, Occam, XC), according to the grammar below:

du=xze€D | dd gu=x €V | true | gNhg | gVg | g
az=x=e€ | a,a ci=g=a | c p = (d;g;c)

where z is a variable, V' C |J; D; is a finite set of values, and e is a well-defined
expression over variables. A declaration is a non-empty list of basic declarations
x € D assigning a domain D to the variable x. We assume that all the variables
appearing in a declaration d are distinct. A basic guard is a membership predicate
x € V or true. A guard g is a formula of propositional logic over basic guards.
We write € V for =(z € V). An action is a non-empty list of assignments.
A single assignment z = e evaluates the expression e in the current state and
updates x accordingly. If multiple assignments xy = ey, ..., xx = e are present,
the expressions ey, ..., e; are evaluated in the current state and their values are
assigned to the respective variables. All the variables appearing in the left-hand
side of multiple assignments must be distinct, so the order of assignments is not
relevant. A basic command consists of a guarded command g = a: it checks if the
guard g is satisfied by the current state, in which case it executes the action a to
update the state. Commands can be composed in parallel: any guarded command
whose guard is satisfied by the current state can be applied. A program (d; g; c)
consists of a declaration d, an initialisation proposition g and a command c,
where all the variables in g and ¢ are declared in d.

Ezample 2 (A sample program). We consider the following running example pro-
gram (in pseudocode) that computes in y the square of the initial value of x.

1: v = 0;

2: while (x>0) {

3: y =y + 2xx - 1;
4. x =x - 1;

5: } output (y);
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I x=0,y=2,pc=1 I I x=0,y=01345,pc=1 I I x=12,y=2,pc=1 I Ix=12,y=01345,pc=1|

Y \
i
x=0,y=01345,pc=2345 I4 x=12,y=01345,pc=2345}

I-)_{‘ x=0,y=2,pc=2345 Ii I x=12,y=2,pc=2345,}_(—|

Fig. 3. An abstract Kripke structure

For simplicity we assume the possible values assigned to variables are in
quite limited ranges, but starting with larger sets of values would not change
the outcome of the application of the CEGAR algorithm. The translation of
the previous program in the syntax of guarded commands is the program p =
(d; g ; ci]caalcan|es|es), written below in CSP-like syntax. Intuitively, it is
obtained by adding an explicit variable pc for the program-counter and then
encoding each line of the source code as a basic command.

def x in {0,1,2} , y in {0,1,2,3,4,5} , pc in {1,2,3,4,5}; % d

init pc = 1; % g

do pc in {1} => pc=2, y=0 $ cl N\
[1 pc in {2} /\ x notin {0} => pc=3 % c2a |
[] pc in {2} /\ x in {0} => pc=5 % c2b > ¢
[1 pc in {3} => pc=4, y=y+(2xx)-1 % c3 |
[1 pc in {4} => pc=2, x=x-1 % c4 /
od

In this context, an attacker may want to check if y is ever assigned the value

2, which can be expressed as the property: ¢ < V G (pc € {1} vy & {2}) (i.e. for
all paths, for all states in the path it is never the case that pc # 1 and y = 2).

Let d = (21 € Dy,....,zy, € D). A state s = (21 = v1,...,2, = vy) of the
program (d; g;c) is an assignment of values to all variables in d, such that for
all i € [1,n] we have v; € D; and we write s(x) for the value assigned to x in
s. Given ¢ = (g1 = a1]--- |gx = ax), we write s |= g; if the guard g; holds in s
and s[a;] for the state obtained by updating s with the assignment a;.

The concrete Kripke structure K(p) = (X, R, I, || - ||) associated with p =
(d; g; c) is defined as follows: the set of states X is the set of all states of the
program; the set of transitions R is the set of all and only arcs (s, s’) such that
there is a guarded command g; = a; in ¢ with s = g; and ' = s[a,]; the set of
initial states I is the set of all and only states that satisfy the guard g; the set
of propositions is the set of all sentences of the form x; € V where i € [1,n] and
V' C D;; the interpretation function is such that | z; € V ||={s | s(z;) € V'}.
Ezample 3 (A step of CEGAR). The Kripke structure associated with the pro-
gram p from Example 2] has 90 states, one for each possible combination of values
for its variables x, y, pc. There are 18 initial states: those where pc = 1.

Assume that the attacker, in order to prove ¢, starts with the following initial
partition (see [5]):

€T {{0}’ {1’2}} y: {{2}’ {0’ 1a37475}} pc: {{1}’ {273’4a5}} (1)
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x=12,y=01345,pc=1

x=1y=1,pc=1 ‘ x=1,y=4,pc=1 ‘

x=1,y=0,pc=1 ‘ \ x=1,y=3,pc=1 ‘/

x=2y=1,pc=1 ‘ x=2,y=4,pc=1 ‘

T
x=2,y=0,pc=1 y\ x=2,y=3,pc=1 ‘/

x=2,y=5,pc=1 ‘ x=1,y=5,pc=1 ‘

x=12,y=01345,pc=2345

D«—{ x=1,y=3,pc=3 F—Eﬁ—{ X=2,y=3,pc=4 ‘

DF Chlevczfovea] O 0 000 0 O [0
L S M )

X=12,y=2,pc=2345
x=1y=2,pc=4 ] (] |x=2y=2pc=2

Fig. 4. Failure state

The corresponding abstract Kripke structure has just 8 states (see Fig. [3|) with 4
initial states marked with bold borderline in Fig.|3] where, to improve readability,
we write, e.g., y = 01345 instead of the more verbose y € {0,1,3,4,5}.

There are several paths that lead to counterexamples for ¢. One such path
is the one marked with bold arrows in Fig. [3] It is detailed in Fig. [4 by showing
the underlying concrete states. It is a spurious counterexample, because there
is no underlying concrete path. The abstract failure state is (z € {1,2},y €
{0,1,3,4,5}, pc € {2,3,4,5}), depicted with dashed borderline in Fig. [3| It con-
tains one bad concrete state (x = 1,y = 1, pc = 3), two dead states ((z =1,y =
0,pc =2) and (x = 2,y = 0,pc = 2)) and 37 irrelevant states.

By partition refinement we get the following refined partition:

€ {{0}’ {1’2}} y: {{2}7 {0}7 {173’475}} pc: {{1}7 {2}7 {3’455}} (2>

Thus the corresponding abstract Kripke structure has now 18 states, six of which
are initial states. While the previously considered spurious counterexample has
been removed, another one can be found and, therefore, CEGAR must be re-
peated, (see Fig. [f] discussed in Example [5 for further steps).

3 Model Deformations

We introduce a systematic model deformation making abstract model checking
harder. The idea is to transform the Kripke structure, by adding states and
transitions in a conservative way. We want to somehow preserve the semantics
of the model, while making the abstract model checking less efficient, in the sense
that only trivial (identical) partitions can be used to prove the property. In other
words, any non-trivial abstraction induces at least one spurious counterexample.

Let M be the domain of all models specified as Kripke structures. Formally,
a model deformation is a mapping between Kripke structures ® : M — M such
that for a given formula ¢ and K € M: K = ¢ = D(K) | ¢ and there exists
a partition P such that Kp = ¢ = D(Kp) [~ ¢. In this case we say that ©
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X=12,y=01345,pc=1,2=17]

Fig. 5. A detail of a deformation

is a deformation for the partition P. Thus, a model deformation makes abstract
model checking imprecise yet keeping the validity of the given formula.

In Section {4} we shall show that the deformation of the Kripke structures we
consider are induced by transformations of the source program, that act as an
obfuscation strategy against an attack specified by an abstract model-checker.
Accordingly, we say that an obfuscation is a transformation O : P — P such
that for a given formula ¢ and program p € P: K(p) E ¢ = K(O(p)) E ¢ and
there exists a partition P such that K(p)p = ¢ = K(O(p))p = ¢.

Ezample 4 (Model deformation). Consider the program p from Example [2l The
first step of refinement with the CEGAR algorithm with the initial partition (/1)
(described in Example [3]) results in the partition . Intuitively, a deformation
of the Kripke structure that forced the CEGAR algorithm to split the sets of
variable values in classes smaller than the ones in partition would weaken
the power of CEGAR. To this aim, consider a deformation ©(K) of the concrete
Kripke structure K of Example [3| obtained by duplicating IC in such a way that
one copy is kept isomorphic to the original one, while the second copy is modified
by adding and removing some transitions to make the CEGAR algorithm less
efficient. The copies can be obtained by introducing a new variable z € {1, 2}: for
z = 1 we preserve all transitions, while for z = 2 we change them to force a finer
partition when a step of the CEGAR algorithm is applied. For example, in the
replica for z = 2, let us transform the copy of the dead state (x = 2,y = 0,pc = 2)
into a bad state. This is obtained by adding and removing some transitions. After
this transformation, assuming an initial partition analogous to partition ,

e {03 {12} v {{2},{0,1,3,4,5}} pe:{{1},{2,3,4,5}} z:{{1,2}}

where all the values of the new variable z are kept together, we obtain an abstract
Kripke structure isomorphic to the one of Fig.[3] with the same counterexamples.
However, when we focus on the spurious counterexample, the situation is slightly
changed. This is shown in Fig. |5} where the relevant point is the overall shape
of the model and not the actual identity of each node. Roughly it combines two
copies of the states in Fig. [} those with z = 1 are on the left and those with
z = 2 are on the right. The abstract state

(x € {1,2},y €{0,1,3,4,5},pc € {2,3,4,5},z € {1,2})
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is still a failure state, but it has three bad states and three dead states:

bad states dead states
(x=1,y=1,pc=3,2z=1) (x=1,y=0,pc=2,2z=1)
(z=1,y=1,pc=3,2=2) (z=1,y=0,pc=2,2=2)
(:E:Q,y:OapCZQaZ:Z) (x:2,y:0,pc:2,z:1)

The bad state (x = 2,y = 0,pc = 2,z = 2) and the dead states (z = 1,y =
O0,pc=2,2z=2)and (x = 1,y = 4,pc = 3,z = 1) are incompatible. Therefore,
the refinement leads to the partition below, where all values of x are separated:

€T {{0}’ {l}v {2}} Z - {{1}7 {2}} Y- {{2}’ {0}7 {173’4’5}} pc: {{1}’ {2}7 {37475}}

3.1 Measuring Obfuscations

Intuitively, the largest is the size of the abstract Kripke structure to be model
checked without spurious counterexamples, the harder is for the attacker to reach
its goal. The interesting case is of course when the property ¢ holds true, but
the abstraction used by the attacker leads to spurious counterexamples.

We propose to measure and compare obfuscations on the basis of the size of
the final abstract Kripke structure where the property can be directly proved. As
the abstract states are generated by a partition of the domains of each variable,
the size is obtained just as the product of the number of partition classes for
each variable. As obfuscations can introduce any number of additional variables
over arbitrary domains, we consider only the size induced by the variables in the
original program (otherwise increasing the number of variables could increase
the measure of obfuscation without necessarily making CEGAR ineffective).

In the following we assume that p is a program with variables X and variables
of interest Y C X and ¢ is the formula that the attacker wants to prove.

Definition 1 (Size of a partition). Given a partition P of X, we define the
size of P w.r.t. Y as the natural number [ ] ¢y [P(y)|.

Definition 2 (Measure of obfuscation). Let O(p) be an obfuscated program.
The measure of O(p) w.r.t. ¢ and Y, written #g@(p), is the size of the final
partition P w.r.t. Y as computed by the above model of the attacker.

Our definition is parametric w.r.t. to the heuristics implemented in check
(choice of the counterexample) and refine (how to partition irrelevant states).
There are two main reasons for which the above measure is more significant than
other choices, like counting the number of refinements: i) it is independent from
the order in which spurious counterexamples are eliminated; ii) since the attacker
has limited resources, a good obfuscation is the one that forces the attacker to
model check a Kripke structure as large as possible.

Definition 3 (Comparing obfuscations). The obfuscated program O1(p) is
as good as Oz(p), written O1(p) 2}; Oz (p), if #3;(’)1(]7) > #};(92(]9).
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I x=0,y=1345,pc=1 I I x=0,y=0,pc=1 I I x=12,y=0,pc=1 I I x=12,y=1345,pc=1 I

T v
<

| x=0,y=0,pc=2 |(—I x=0,y=2,pc=1 I | x=12,y=0,pc=2

| x=0,y=0,pc=345 | | x=12,y=0,pc=345
* 1

|—_>| x=0,y=1345,pc=345 |(—| x=0,y=1345,pc=2 x=12,y=1345,pc=345Q| x=12,y=1345,pc=2 |
v - = ’

x=12,y=2,pc=1 I

| x=0,y=2,pc=345 |(—| x=0,y=2,pc=2 |(—| x=12,y=2,pc=345

Fig. 6. A refined abstract Kripke structure

x=12,y=2,pc=2 |

It follows that the best measure associated with an obfuscation is [, ¢y [Dy],
where D, denotes the domain of y. This is the case where the abstraction sepa-
rates all the concrete values that the variables in Y may assume.

Ezample 5 (Ctd.). Let us consider again the running example and compare it
with the semantically equivalent program p’ below:

def x in {0,1,2}, vy in {0,1,2,3,4,5}, pc in {1,2};

init pc = 1;
do pc in {1} => pc=2, y=x#*x
od

Let x,y be the variables of interest. We have #f’y}p' = 2, because the initial
partition is sufficient to prove that the property ¢ holds.

For the obfuscated program p, the size of the initial partition is just 4 (see
partition (1) and the corresponding abstract Kripke structure in Fig. [3]), and after
one step of the CEGAR refinement the size of the computed partition is 6 (see
partition and the corresponding Kripke structure in Fig. @ Since spurious
counterexamples are still present, one more step of refinement is needed. When
the attacker executes the procedure on the failure state marked with dashed
border in Fig. [6] the result is the partition

e {{05 {142 v ({05 {11, {23, {35, {4,5})  pe: {1}, {2}, {4}, {3,5}}

whose size is 15 as it has been necessary to split all values for  and most values
for y. Now no more (spurious) counterexample can be found because all the
states that invalidate the property are not reachable from initial states. Thus
#g’y}p = 15, while the best obfuscation would have measure 18, which is the
product of the sizes of the domains of x and y. As the reader may expect,
we conclude that p Zj)m’y} p’. In our running example, for simplicity, we have
exploited a very small domain for each variable, but if we take larger domains of
values, then #f“y} 9’ and #if’y}p remain unchanged, while the measure of the
best possible obfuscation would grow considerably.
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4 Best Code Obfuscation Strategy

In the following, given an abstract Kripke structure K and a property ¢, we let
S denote the set of abstract states that contain only concrete states that satisfy
¢, and Sg be the set with at least one concrete state that does not satisfy ¢. We

denote by 6¢ the obfuscation strategy realized by the following algorithm.

Input: program p, property ¢
1: P =init(p,d);

2: K = kripke(P,p);
3: (p,K,w,vyw) = fresh(p, K);
4: (p,K,z,v.) = fresh(p,K);
5: S = cover(P);
6: foreach s¥ € S {
// failure path preparation (lines 7-12, Cases 1-2)
7: 7% = failurepath(s?, K,p, ¢);
8: while (n% == null) {
9: if (not reach(s” K, p, )
10: (p, K, vy) = makereachable(s¥ | K, p, ¢, w, vy);
11: else (p, K,v,) = makefailstate(s*, K,p, ¢, w,vw);
12: 7 = failurepath(s?, K, p,¢); }
// main cycle (lines 13-19, Case 3)
13: foreach (z;,v1,v2) € compatible(s#,ﬂ#,p) {
14: (s,t) = pick(z;, v1,v2, s7);
15: if dead(t,s*, 7%, p)
16: (p, K,v.) = dead2bad(t, s* , 7% K, p, z,v.) ;
17: else if bad(t,s”, =" ,p)
18: (p, K,v.) = bad2dead(t, s* 7% K, p, z,v.);
19: else (p, K,v,) = irr2dead(t, s*, 7" K, p,z,v.); }

20: } return p;

The algorithm starts by computing an initial partition P and the corre-
sponding abstract Kripke structure K. We want to modify the concrete Kripke
structure so that CEGAR will split the abstract states in trivial partition classes
for the variables of interest. The idea is to create several replicas of the concrete
Kripke structure, such that one copy is preserved while the others will be changed
by introducing and deleting arcs. This is obtained by introducing a new variable
z over a suitable domain D, = {1, ...,n} such that the concrete Kripke structure
is replicated for each value z can take. As a matter of notation, we denote by
(s,z = v) the copy of the concrete state s where z = v. Without loss of general-
ity, we assume that for z = 1 we keep the original concrete Kripke structure. In
practice such value of z is hidden by an opaque expression. Actually we use two
fresh variables, named w and z (lines 3 and 4): the former is used to introduce
spurious counterexamples and failure states in the replica and the latter to force
the splitting of failure states into trivial partition classes. The function fresh up-
dates the program p and the Kripke structure K by taking into account the new
variables and initializes the variables v,, and v, that keep track of the last used
values for w and z. When a new replica is created, such values are incremented.
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The function cover (at line 5) takes the initial partition P and returns a set
of abstract states sfﬁ, . sk#, called a covering, such that, together, they cover all
non—triviaEI partition classes of the domains of the variable of interest, i.e. for
each variable x;, with i € [1,n], for each class C € P(x;) such that |C| > 1 there
is an abstract state sj# with j € [1,k] and a concrete state s € s¥ such that
s(z;) € C. Note that the set of all abstract states is a (redundant) covering.

For each s# ¢ {sf, e sk#} in the covering, there are three possibilities:

1. s7 does not contain any concrete state that is reachable via a concrete path
that traverses only abstract states in Sy;

2. s% is not a failure state but it contains at least one concrete state that is
reachable via a concrete path that traverses only abstract states in Sy;

3. s7 is already the failure state of a spurious counterexample.

In case (3), failurepath(s*,K,p,#) (line 7) returns an abstract path that is a
counterexample for ¢, in the other cases the function failurepath(s”, K,p,®)
returns null and the algorithm enters a cycle (to be executed at most twice, see
lines 8-12) that transforms the Kripke structure and the program to move from
cases (1-2) back to case (3), in a way that we will explain later.

Case (3) (lines 13-19). The core of the algorithm applies to a failure state s#
of a spurious counterexample 7#. In this case the obfuscation method will force
CEGAR to split the failure state s# by separating all values in the domains of
the variables of interest. Remember that CEGAR classifies the concrete states
in 57 in three classes (bad, dead and irrelevant) and that dead states cannot be
merged with bad or irrelevant states. We say that two states that can be merged
are compatible. The role of the new copies of the Kripke structure is to prevent
any merge between concrete states in the set s#. This is done by making sure
that whenever two concrete states (s, z = 1), (t,z = 1) € s can be merged into
the same partition, then the states (s,z = v, + 1) and (¢,2 = v, + 1) cannot be
merged together, because one is dead and the other is bad or irrelevant.

The function compatible(s*, 7%, p) returns the set of triples (x;, {v1,v2}) such
that x; is a variable of interest and any pair of states (s,x; = v1), (s,2; = v3) €
s# that differ just for the value of x; are compatible. Thus, the cycle at line 13
considers all such triples to make them incompatible. At line 14, we pick any
two compatible states (s,z = 1) and (t,z = 1) such that s(x;) = vy, t(x;) = ve
and s(z) = t(z) for any variable x # x;. Given the spurious counterexample
77 with failure state s# and a concrete state t € s# for the program p, the
predicate dead(-) returns true if the state (¢,z = 1) is dead (line 15). Similarly,
the predicate bad(-) returns true if the state (t,z = 1) is bad (line 17).

If (t,z = 1) is dead (w.r.t. s# and 7#), then it means that (s,z = 1) is also
dead (because they are compatible), so we apply a dead-to-bad transformation
to t in the replica for z = v, 4+ 1. This is achieved by invoking the function
dead2bad(-) (line 16) to be described below. The transformations bad2dead(-)
(line 18) and irr2dead(-) (line 19) apply to the other classifications for (¢,z = 1).

4 A partition class is trivial if it contains only one value.
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In the following, given a concrete state s = (r1 = Wi,..., T, = Wy), We
denote by G(s) the guard x; € {ur} A ... Az, € {w,} and by A(s) the
assignment xy = wi,...,z, = w,. Without loss of generality, we assume for
brevity that the abstract counterexample is formed by the abstract path prefix
T = {s#, 8?1#, s#, sf}, with s# the failure state and ¢ is the concrete state in
s% that we want to transform (see Figs. [7TH9).

dead2bad(-). To make ¢ bad, the function s0% SEREIE s2#
must remove all concrete paths to t along the = |25 -"i' Ji 0
abstract counterexample 7# and add one arc pro 17 oF 27
from ¢ to some concrete state ¢’ in sf . To re- z=vz+l DD;:lﬂD O =
move all concrete paths it is enough to remove

the arcs from states in sf& to t (see Fig. . At Fig. 7. From dead to bad

the code level, dead2bad(-) modifies each com-
mand g = a such that there is some s’ € sf 2 o F 0l Lo D

s1#

with s’ = g and t = §/[a]. Given ¢ and s7, let <~—>D . L=
S(g=a)={s € sfﬁ | s' = gAt = s[a]}. Each _ | Ds,oj 55. 51#\‘_@) g &
command ¢ = (g = a) such that S(c) # 0 is - =
changed to the command

g (z Z{v-+ 11V Ayesio —G(s')) = a.

s0# }r DS#i s2#
. =1 [ -0 i |
z i 1| Ho
When z # v, + 1 the updated command is

applicable whenever ¢ was applicable. When 7 17 P o
z = v, + 1 the command is not applicable to z-vz+1 O =t o
the states in S(c). To add the arc from ¢ to a
state ¢/ in s7 it is enough to add the command ~ Fig. 9. From irrelevant to dead
z€{v, +1} AG(t) = A(Y).

s# | s2#

Il
-

Fig. 8. From bad to dead

bad2dead(-). The function selects a dead state ¢’ in the failure state s# and a
concrete path m = (sq, s’,t') to t' along the abstract counterexample 7#. To
make t dead in the replica with z = v, 4+ 1, the function adds a concrete arc
from s’ to ¢t and removes all arcs leaving from ¢ to concrete states in sf (see
Fig.[8). To insert the arc from s to ¢, the command G(s') Az € {v. +1} = A(t)

is added. To remove all arcs leaving from ¢ to concrete states in sf, the function

changes the guard g of each command g = a such that ¢ = g and t[a] € s¥ to

g A (z & {v, + 1} V-G(t)), which is applicable to all the states different from ¢
where g = a was applicable as well as to the replicas of ¢ for z # v, + 1.

irr2dead(-). Here the state t is irrelevant and we want to make it dead. The
function builds a concrete path to ¢ along the abstract counterexample 7.
As before, it selects a dead state ¢’ in the failure state and a concrete path
m = (s0,8,t') to s along the abstract counterexample (s#, sf s7). To make t
dead the function adds an arc from s (i.e., the state that immediately precedes
t' in ) to ¢ (see Fig.[0)). For the program it is sufficient to add a new command
with guard G(s) A z € {v, + 1} and whose assignment is A(¢).
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s#|
D

From cases (1-2) to case (3) (lines 7-12). — — —
The predicate reach(s”,K,p,¢) is true if w-1 = .
we are in case (2) and false if we are in -

case (1). In both cases we apply some pre- _ | % 4 2 Ry
liminary transformations to K and p after o =

which s# is brought to case (3). The func-
tion makereachable(s™, K, p, ¢, w,v,,) trans-

Fig. 10. Case 1: makereachable(-)

forms the Kripke structure so that in the =7 R 5 =2
end s# contains at least one concrete state —w-1 e w5
that is reachable via a concrete path that tra- ~ ——— —— —

. . s07) s1# | s# s2#
verses only abstract states in Sy, moving from _ | 7o g T 2
case (1) to cases (2) or (3), while the func- o | gh O

tion makefailstate(s™, K, p, ¢, w, v,,) takes s
satisfying case (2) and it returns a modi-
fied Kripke structure where s# now falls in
case (3). The deformations are illustrated in Figs. At the code level,
addition and removal of arcs is realized as detailed before.

Fig. 11. Case 2: makefailstate(-)

5 Main Results

Our obfuscation preserves the semantics of the program. This is because all
the transformations we have discussed maintain the original Kripke structure
associated with a distinguished value of the new variables w and z that are
introduced. Indeed,when the obfuscated program is executed with initial values
w = 1 and z = 1 it behaves exactly as the original program. By exploiting
opaque expressions to initialise the variables w and z, we hide their values from
the attacker who has to take into account all possible values for w and z and
thus run CEGAR on the deformated Kripke structure.

Theorem 1 (Embedding). Let p = (d;g;c) and Oy(p) = ((d,w € Dy, z €
D,);g;c), then K(p) is isomorphic to K((d,w € {1},z € {1});g;¢).

The isomorphism at the level of Kripke structures guarantees that the ob-
fuscation does not affect the number of steps required by any computation, i.e.,
to some extent the efficiency of the original program is also preserved.

Second, the obfuscation preserves the property ¢ of interest when the pro-
gram is executed with any input data for w and z, i.e. ¢ is valid in all replicas.

Theorem 2 (Soundness). K(p) E ¢ iff K(Oy(p)) E ¢.

Note that Theorem [I] guarantees that the semantics is preserved entirely, i.e.
not only ¢ is preserved in all replicas (Theorem [2) but any other property is
preserved when the obfuscated program is run with w € {1} and z € {1}.

The next result guarantees the optimality of obfuscated programs.

Theorem 3 (Hardness). #} Oy (p) = [Ley [Dyl-
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x=2,y=1,pc=1,z=2 | x=2,y=4,pc=1,z=2 |

x=2,y=0,pc=1,z=2 | x=2,y=3,pc=1,z=2 | x=2,y=5,pc=1,z=2 |

4
X=2,y=2,pc=2,z=2

Fig. 12. A fragment of the model for z = 2

As a consequence, for any program p and formula ¢ the function mapping
K(p) into K£(O4(p)) is a model deformation for all (non-trivial) partitions of the
variables of interest.

Theorem 4 (Complexity). The complexity of our best code obfuscation strat-
egy is polynomial in the size of the domains of the variables of interest Y.

Ezample 6 (Best code obfuscation). Consider the abstract Kripke structure in
Fig. 3| The failure state s# = (z € {1,2},y € {0,1,3,4,5},pc € {2,3,4,5})
covers all the non-trivial partition classes for the variables of interest z and y.
Since it is a failure state for an abstract counterexample, we are in case (3). For
simplicity, since the transformations for cases (1-2) are not needed, we omit the
insertion of the variable w.

The dead state (x = 1,y = 0, pc = 2) is incompatible with the irrelevant state
(x = 1,y = 1,pc = 2), thus the triple (y,{1,2}) is incompatible. For the same
reason the value 0 for y is also separated from the values 3,4, 5. Our obfuscation
must separate the values 1,2 for x and the values 1,3,4,5 for y. Therefore at
most 6 replicas are needed. In the end, 5 values for z suffices. Let us take the
triple (z,{1,2}) and let us pick the two dead states t = (x = 2,y = 0, pc = 2)
and s = (x = 1,y = 0,pc = 2) in Fig. 4| The algorithm invokes bad2dead(-) on
state (¢,z = 2) to make it incompatible with the dead state (x = 1,y = 0,pc =
2,z = 2). At the code level, we note that all incoming arcs of ¢ are due to the
command ¢; (see Fig. ). To remove them, ¢; becomes ¢q 1.

pc in {1} /\ (z notin {2} \/ x notin {2} \/ y notin {2}) => pc=2, y=0 %cll ‘

Moreover, to make (¢,z = 2) a bad state, is added an arc from the state
(t,z=2),to (x =2,y = 2,pc = 2,z = 2) with the new command ¢; »

pc in {1} /\ z in {3} /\ x in {1} /\ y in {1} => pc=3 %cl2 ‘

In Fig. we show the relevant changes on the Kripke structure for the
replica with z = 2 (compare it with Fig. [4)). To complete the obfuscation more
transformations are required: one bad-to-dead and two irrelevant-to-dead trans-
formations. Finally, we obtain the program po = O,(p) below:
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def x in {0,1,2} , y in {0,1,2,3,4,5} , pc in {1,2,3,4,5} , z in {1,2,3,4,5};
init pc = 1;

do pc in {1} /\(z notin {2} \/ x notin {2} \/ y notin {2})=> pc=2, y=0 %cll
[] pc in {1} /\ z in {3} /\ x in {1} /\ y in {1} => pc=3 %cl2
[] pc in {1} /\ z in {4} /\ x in {1} /\ y in {4} => pc=3 %cl3
[] pc in {1} /\ z in {5} /\ x in {2} /\ y in {5} => pc=4 %cl4d
[1 pc in {2} /\ x notin {0} => pc=3 %cla
[1 pc in {2} /\ x in {0} => pc=5 %c2b
[] pc in {2} /\ x in {2}} /\ y in {0} /\ z in {2} =  y=2 %c21
[1 pc in {3} /\(z notin {3} \/ x notin {1} \/ y notin {1})=> pc=4, y=y+(2*x)-1 %$c31
[1 pc in {4} => pc=2, x=x-1 sc4d
od

Let us assume that the attacker starts with the abstraction of the obfus-
cated program induced by the partition x : {{0},{1,2}}, v : {{2},{0,1,3,4,5}},
pe: {{1},{2,3,4,5}}, and 2 : {{1,2,3,4,5}}. The abstract Kripke structure is
isomorphic to the one in Fig. |3[ having several spurious counterexamples for ¢.
One such path is similar to the one in Fig. [3t {si,s7, s } with:

st =2z e{1,2},y €{0,1,3,4,5},pc € {1}, 2 € {1,2,3,4,5}
s* =2 e{1,2},y €{0,1,3,4,5},pc € {2,3,4,5}, 2 € {1,2,3,4,5}
s¥ =z e{l1,2},ye{2},pce{23,4,5},z € {1,2,3,4,5}.

The failure state is sf’é It has 5 bad concrete states and 12 dead states. By
CEGAR we get the partition that has only trivial (singletons) classes. Therefore
the abstract Kripke structure coincides with the concrete Kripke structure: it
has 450 states of which 90 are initial states.

Given that the variables of interest are x and y, the measure of the obfus-
cation is 18, i.e., it has the maximum value and thus po zy’y} P Zf’y} p'. We
remark that when z = 1, po has the same semantics as p and p'.

The guarded command po can be understood as a low-level, flattened de-
scription for programs written in any language. However, it is not difficult to
derive, e.g., an ordinary imperative program from a given guarded command.
We do so for the reader’s convenience.

1: z = opaquel(x,y,z);

2: pcl: if ( ( z!=2 || x!=2 || y!=2 ) && opaque2(x,y,z) ) { y=0; goto pc2; }
3: else if ( z=3 && x =1 && y=1 ) goto pc3;

4: else if ( z=4 && x =1 && y=4 ) goto pc3;

5: else if ( z=5 && x =2 && y=5 ) goto pc4;

6: pc2: if ( x=2 && y=0 && z=2 && opaque3(x,y,z) ) y=2;

7 while ( x>0 ) {

8: pc3: if (z!'=3 || x!=1 || y!=1 ) y =y + 2xx - 1;

9: pcéd: x =x - 1;

0

-

: pc5: } output (y);

To hide the real value of z we initialise the variable using an opaque expression
opaquel(x,y, z) whose value is 1. Moreover, one has to pay attention to the
possible sources of nondeterminism, which can arise when there are two or more
guarded commands ¢ = a; and g2 = a2 and a state s such that s = ¢g; and
s = g2. The idea is to introduce opaque predicates so that the exact conditions
under which a branch is taken are hard to determine by the attacker, who has to
take into account both possibility (true and false) as a nondeterministic choice.
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In our example, the sources of nondeterminism are due to the pairs of commands
(c11,¢1,2), (c11,¢1,3), (c1,1,¢1.4) and (c2.1,¢24). Consequently, we assume two
opaque predicates opaque2(z,y, z) and opaque3(x,y, z) are available. In order to
preserve the semantics, for z = 1 we require that opaquel(z,y, z) returns true,
while opaque2(x, y, z) is unconstrained. Finally, since the program counter is an
explicit variable in guarded commands, we represent its possible values by labels
and use goto instructions accordingly. Thus we write the label pen to denote
states where pc = n and write goto pcn for assignments of the form pc = n.

6 Discussion

We have shown that it is possible to systematically transform Kripke structures
in order to make automated abstraction refinement by CEGAR hard. Address-
ing refinement procedures instead of specific abstractions makes our approach
independent from the chosen abstraction in the attack.

To enforce the protection of the real values of variable w (and analogously for
z) initialized by opaque functions against more powerful attacks able to inspect
the memory of different program runs, one idea is to use a class of values instead
of a single value. This allows the obfuscated code to introduce instructions that
assign to w different values in the same class, thus convincing the attacker that
the value of w is not invariant.

The complexity of our best code obfuscation strategy is polynomial in the
size of the domains of the variables of interest. Moreover, we note that the same
algorithm can produce a valuable obfuscation even if one selects a partial cover
instead of a complete one: in this case, it is still guaranteed that the refinement
strategy will be forced to split all the values appearing in the partial cover. This
allows to choose the right trade-off between the complexity of the obfuscation
strategy and the measure of the obfuscated program. It is also possible that
the algorithm introduces more transformations than strictly necessary. This is
because the obfuscation is performed w.r.t. an initial partition. To further reduce
the number of transformations, we can apply the obfuscation only at the end
of the abstract model checking process, where less pairs of values needs to be
separated. Of course, this strategy would not influence the measure of the result.

As already mentioned, our obfuscation assumes that CEGAR makes dead
states incompatible with both irrelevant and bad states. Our algorithm can be
generalised to the more general setting where dead states are only incompatible
with bad states. Therefore even if the attacker had the power to compute the
coarsest partition that separates bad states from dead states (which is a NP-hard
problem) our strategy would force the partition to consist of trivial classes only.

We can see abstraction refinement as a learning procedure which learns the
coarsest state equivalence by model checking a temporal formula. Our results
provide a very first attempt to defeat this procedure.

As an ongoing work, we have extended our approach to address attacks aimed
to disclose data-flow properties and watermarks. It remains to be investigated
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how big the text of the best obfuscated program can grow: limiting its size is
especially important in the case of embedded systems.

We plan to extend our approach to other abstraction refinements, like pred-

icate refinement and the completeness refinement in [I6] for generic abstract
interpreters and more in general for a machine learning algorithm. This would
make automated reverse engineering hard in more general attack models.

Acknowledgement. We are very grateful to Alberto Lluch-Lafuente for the fruit-
ful discussions we had on the subject of this paper.
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