Skip to main content

How to Build a “Cooperative” Safety Bubble for a Reconfigurable Assembly System?

  • Chapter
  • First Online:

Part of the book series: Studies in Computational Intelligence ((SCI,volume 762))

Abstract

Reconfigurable manufacturing systems have been proposed in the last decade to deal with mass-customization problems and volatile market environment. If physical design, control or scheduling issues of these systems have been studied intensively, very few works concern the inherent safety problems. However this issue is of first interest for reconfigurable robotized cells with frequent interventions of human operators. The present paper must be considered as a position paper introducing the new concept of “cooperative” safety bubble. This last aims to insure operator’s safety by cooperation between “safe” robotized units and safety devices. A preliminary implementation methodology of such safety bubble is presented and some corresponding research issues are proposed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Koren, Y., Heisel, U., Jovane, F., Moriwaki, T., Pritschow, G., Ulsoy, G., Van Brussel, H.: Reconfigurable manufacturing systems. CIRP Ann. Manuf. Technol. 48, 527–540 (1999)

    Article  Google Scholar 

  2. Koren, Y., Shpitalni, M.: Design of reconfigurable manufacturing systems. J. Manuf. Syst. 29, 130–141 (2010)

    Article  Google Scholar 

  3. ElMaraghy, H., ElMaraghy, W.: Smart adaptable assembly systems. Proced. CIRP 44, 4–13 (2016)

    Article  Google Scholar 

  4. Wiendahl, H.-P., ElMaraghy, H.A., Nyhuis, P., Zäh, M.F., Wiendahl, H.-H., Duffie, N., Brieke, M.: Changeable manufacturing-classification, design and operation. CIRP Ann. Manuf. Technol. 56, 783–809 (2007)

    Article  Google Scholar 

  5. Bi, Z., Wang, L., Lang, S.Y.: Current status of reconfigurable assembly systems. Int. J. Manuf. Res. 2, 303–328 (2007)

    Article  Google Scholar 

  6. Huettemann, G., Gaffry, C., Schmitt, R.H.: Adaptation of reconfigurable manufacturing systems for industrial assembly-review of flexibility paradigms. Concepts Outlook Proced. CIRP 52, 112–117 (2016)

    Article  Google Scholar 

  7. Onori, M., Alsterman, A.: Hyper flexible automatic assembly: needs and possibilities with standard assembly solutions. In: 3rd World Congress on Intelligent Manufacturing Processes & Systems (2000)

    Google Scholar 

  8. Chen, I.-M.: Rapid response manufacturing through a rapidly reconfigurable robotic workcell. Robot. Comput.-Integr. Manuf. 17, 199–213 (2001)

    Article  Google Scholar 

  9. Weber, J., Stäbler, M., Baumgartl, J., Paetzold, K.: Mobile assembly units as enabler for changeable assembly lines. Proced. CIRP 44, 383–388 (2016)

    Article  Google Scholar 

  10. Cherubini, A., Passama, R., Crosnier, A., Lasnier, A., Fraisse, P.: Collaborative manufacturing with physical human–robot interaction. Robot. Comput.-Integr. Manuf. 40, 1–13 (2016). https://doi.org/10.1016/j.rcim.2015.12.007

    Article  Google Scholar 

  11. Krüger, J., Lien, T.K., Verl, A.: Cooperation of human and machines in assembly lines. CIRP Ann. Manuf. Technol. 58, 628–646 (2009)

    Article  Google Scholar 

  12. Grahn, S., Langbeck, B., Johansen, K., Backman, B.: Potential advantages using large anthropomorphic robots in human-robot collaborative, hand guided assembly. Proced. CIRP 44, 281–286 (2016)

    Article  Google Scholar 

  13. Benkamoun, N., Huyet, A.-L., Kouiss, K.: Reconfigurable assembly system configuration design approaches for product change. In: Proceedings of 2013 International Conference on Industrial Engineering and Systems Management (IESM). IEEE, pp. 1–8 (2013)

    Google Scholar 

  14. Fechter, M., Foith-Förster, P., Pfeiffer, M.S., Bauernhansl, T.: Axiomatic design approach for human-robot collaboration in flexibly linked assembly layouts. Proced. CIRP 50, 629–634 (2016)

    Article  Google Scholar 

  15. Choo, B.Y., Beling, P.A., LaViers, A.E., Marvel, J.A., Weiss, B.A.: Adaptive multi-scale phm for robotic assembly processes. In: Proceedings of the Annual Conference of the Prognostics and Health Management Society (2015)

    Google Scholar 

  16. Qiao, G., Schlenoff, C., Weiss, B.A.: Quick Positional Health Assessment for Industrial Robot Prognostics and Health Management (PHM) (2017)

    Google Scholar 

  17. ROBO-PARTNER Project—ROBO-PARTNER Project Portal. http://www.robo-partner.eu/. Accessed 5 Sept 2017

  18. EU Project: Factory-in-a-day. http://www.factory-in-a-day.eu/. Accessed 5 Sept 2017

  19. rob@work. https://www.care-o-bot.de/en/rob-work.html. Accessed 5 Sept 2017

  20. colrobot. https://www.colrobot.eu/. Accessed 5 Sept 2017

  21. De Santis, A., Siciliano, B., De Luca, A., Bicchi, A.: An atlas of physical human–robot interaction. Mech. Mach. Theory 43, 253–270 (2008)

    Article  MATH  Google Scholar 

  22. Haddadin, S., Albu-Schäffer, A., Hirzinger, G.: Requirements for safe robots: Measurements, analysis and new insights. Int. J. Robot. Res. 28, 1507–1527 (2009)

    Article  Google Scholar 

  23. Industry 4.0—Training for the factory of the future—News—Festo Didactic. http://www.festo-didactic.com/int-en/news/industry-4.0-training-for-the-factory-of-the-future.htm. Accessed 5 Sept 2017

  24. Dhillon, B.: Robot safety analysis methods. In: Proceedings of the 11th National Conference on Machines and Mechanics, pp. 86–93 (2003)

    Google Scholar 

  25. Do Hoang, Q.A., Guiochet, J., Powell, D., Kaâniche, M.: Human-robot interactions: Model-based risk analysis and safety case construction. In: Embedded Real Time Software and Systems (ERTS2 2012) (2012)

    Google Scholar 

  26. ISO, I.: ISO 10218-1: 2011: Robots and Robotic Devices–Safety Requirements for Industrial Robots–Part 1: Robots. International Organization for Standardization, Geneva, Switzerland (2011)

    Google Scholar 

  27. Dequaire-Falconnet, E., Meleton, L.: IDAR®: une méthode d’analyse des risques dans le cadre de la directive. In: Machines. CETIM (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yves Sallez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sallez, Y., Berger, T. (2018). How to Build a “Cooperative” Safety Bubble for a Reconfigurable Assembly System?. In: Borangiu, T., Trentesaux, D., Thomas, A., Cardin, O. (eds) Service Orientation in Holonic and Multi-Agent Manufacturing. Studies in Computational Intelligence, vol 762. Springer, Cham. https://doi.org/10.1007/978-3-319-73751-5_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-73751-5_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-73750-8

  • Online ISBN: 978-3-319-73751-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics