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LOMBARDI DRAWINGS OF KNOTS AND LINKS

Philipp Kindermann∗, Stephen Kobourov†, Maarten Lö�er‡, Martin Nöllenburg�,

André Schulz¶, and Birgit Vogtenhuber‖

Abstract. Knot and link diagrams are projections of one or more 3-dimensional simple
closed curves into lR2, such that no more than two points project to the same point in lR2.
These diagrams are drawings of 4-regular plane multigraphs. Knots are typically smooth
curves in lR3, so their projections should be smooth curves in lR2 with good continuity
and large crossing angles: exactly the properties of Lombardi graph drawings (de�ned by
circular-arc edges and perfect angular resolution).

We show that several knots do not allow crossing-minimal plane Lombardi drawings.
On the other hand, we identify a large class of 4-regular plane multigraphs that do have plane
Lombardi drawings. We then study two relaxations of Lombardi drawings and show that
every knot admits a crossing-minimal plane 2-Lombardi drawing (where edges are composed
of two circular arcs). Further, every knot is near-Lombardi, that is, it can be drawn as a
plane Lombardi drawing when relaxing the angular resolution requirement by an arbitrary
small angular o�set ε, while maintaining a 180◦ angle between opposite edges.

(a) (b) (c)

Figure 1: Hand-made drawings of knots from the books of (a) Rolfsen [19], (b) Liv-
ingston [18], and (c) Kau�man [16].

1 Introduction

A knot is an embedding of a simple closed curve in 3-dimensional Euclidean space lR3.
Similarly, a link is an embedding of a collection of simple closed curves in lR3. A drawing of
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a knot (link) (also known as knot diagram) is a projection of the knot (link) to the Euclidean
plane lR2 such that for any point p of lR2, at most two points of the curve(s) are mapped to
it [8, 19, 20]; if two points are mapped to p, then p is a crossing. A knot diagram of a knot
(link) is crossing-minimal if there is no projection of the knot (link) with fewer crossings.

Graph drawing perspective. An embedding of a planar (multi-)graph is a combinatorial
description of a planar drawing by listing the cyclic order of the edges on the boundaries of
the faces. An embedding uniquely de�nes a cyclic order of edges around each vertex. A plane

(multi-)graph is a planar (multi-)graph together with a combinatorial embedding. Given a
knot diagram, we can obtain a plane multigraph by placing a vertex on each crossing. Two
vertices are connected if there is a curve in the knot diagram between these two vertices
that does not contain any other vertex. Since every vertex corresponds to a crossing, this
multigraph is 4-regular. Hence, drawings of knots and links are drawings of 4-regular plane
multigraphs. Likewise, every 4-regular plane multigraph can be interpreted as a link. To
keep the notation simple, when we talk about a (combinatorial) embedding of a knot, we
refer to the (combinatorial) embedding speci�ed by one of its knot diagrams, and not to its
embedding in lR3. A vertex-minimal embedding of a knot is a (combinatorial) embedding
speci�ed by a crossing-minimal knot diagram.

Problem statement. In this paper, we address a question that was recently posed by
Benjamin Burton: �Given a drawing of a knot, how can it be redrawn nicely without changing
the given topology of the drawing?� We do know what a drawing of a knot is, but what is
meant by a nice drawing? Several graphical annotations of knots and links as graphs have
been proposed in the knot theory literature, but most of the illustrations are hand-drawn;
see Figure 1. When studying these drawings, a few desirable features become apparent:
(i) edges are typically drawn as smooth curves, (ii) the angular resolution of the underlying
4-regular graph is close to 90◦, and (iii) the drawing preserves the continuity of the knot,
that is, in every vertex of the underlying graph, opposite edges have a common tangent.
There are many more features one could wish from a drawing of a knot or link, see, e.g.,
the energy models discussed in the PhD thesis of Scharein [20]. But our task is to redraw a
given drawing of a knot with a particular topology, so other typical quality metrics, such as
the number of crossings, that vary with the choice of the embedding or topology of a knot
diagram do not apply here.

There already exists a graph drawing style that ful�lls the three requirements above:
a Lombardi drawing of a (multi-)graph G = (V,E) is a drawing of G in the Euclidean plane
with the following properties:

1. The vertices are represented as distinct points in the plane
2. The edges are represented as circular arcs connecting the representations of their

end vertices (and not containing the representation of any other vertex); note that
a straight-line segment is a circular arc with radius in�nity.

3. Every vertex has perfect angular resolution, i.e., its incident edges are equiangularly
spaced. For knots and links this means that the angle between any two consecutive
edges is 90◦.
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(a) Gauss code: A,−B,C,−D,B,−A,D,−C

1 -2

3

-4

5

-6

7

-8

(b) Dowker-Thistlethwaite code: −6,−8,−2,−4

Figure 2: Representations of the knot 41.

A Lombardi drawing is plane if none of its edges intersect. We are particularly interested in
plane Lombardi drawings, since crossings change the topology of the drawn knot. Obviously,
if a plane multigraph contains a loop, that is, an edge from a vertex to itself, then it cannot
have a Lombardi drawing. Hence, we assume throughout the paper that our multigraphs do
not have loops.

Knot diagram representations. There are several ways in the literature to combinatorically
represent a knot diagram that are di�erent from the 4-regular multi-graph as described
above, which we will brie�y survey. The Alexander-Briggs-Rolfsen notation [4, 19] is a well
established notation that organizes knots by their vertex number and a counting index, e.g.,
the trefoil knot 31 is listed as the �rst (and only) knot with three vertices. The Gauss
code [9] of a knot can be computed as follows. Label each vertex with a letter, then pick
a starting vertex and a direction, traverse the knot, and record the labels of the vertices
encountered in the order of the traversal with a preceding �−� if the part of the knot that
is followed at the vertex lies below the other part (called an under crossing); see Figure 2a.
The Dowker�Thistlethwaite code [10] is obtained similar to the Gauss code: Pick a starting
vertex and a direction, traverse the knot, and label the vertices in the order of the traversal
with consecutive integers, starting from 1, with a preceding �−� in case of an under crossing
for even labels. Then, every vertex has two labels: a positive odd label and an even label.
Order the vertices ascendingly by their odd label, and record their corresponding even labels
in this order; see Figure 2b.

Knot drawing software. Software for generating drawings for knots and links exists. One
powerful package is KnotPlot [20], which provides several methods for drawing knot
diagrams. It contains a library of over 1,000 precomputed knots and can also generate
knot drawings of certain families, such as torus knots. KnotPlot is mainly concerned with
visualizing knots in three and four dimensions. To this end, a knot is represented as a
3-dimensional path on a set number of nodes, and then forces are used on these nodes to
smoothen the visualization without changing the topology. But KnotPlot also provides
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methods for drawing general knots in 2D based on the embedding of the underlying plane
multigraph, represented by the Dowker-Thistlethwaite code. By replacing every vertex by
a 4-cycle, the multigraph becomes a simple planar 3-connected graph, which is then drawn
using Tutte's barycentric method [23]. In the end, the modi�cations are reversed and a
drawing of the knot is obtained with edges drawn as polygonal arcs. The author noticed
that this method �... does not yield `pleasing' graphs or knot diagrams.� In particular, he
noticed issues with vertex and angular resolution [20, pg. 102].

Another approach was used by Emily Redelmeier [1] in the Mathematica package
KnotTheory. Here, every arc, crossing, and face of the knot diagram is associated with
a disk. The drawing is then generated from the implied circle packing as a circular arc
drawing. As a result of the construction, every edge in the diagram is made of three circular
arcs with common tangents at opposite edges. Since no further details are given, it is hard
to evaluate the e�ectiveness of this approach, although as we show in this paper, three
circular arcs per edge are never needed. A related drawing style for knots are the so-called
arc presentations [7]. An arc presentation is an orthogonal drawing, that is, all edges are
sequences of horizontal and vertical segments, with the additional properties that at each
vertex the vertical segments are above the horizontal segments in the corresponding knot and
that each row and column contains exactly one horizontal and vertical segment, respectively.
However, these drawings might require a large number of bends per edge.

Lombardi drawings. Lombardi drawings were introduced by Duncan et al. [12]. They
showed that 2-degenerate graphs have Lombardi drawings and that all d-regular graphs,
with d 6≡ 2 (mod 4), have Lombardi drawings with all vertices placed along a common
circle. Neither of these results, however, is guaranteed to result in plane drawings. Duncan et
al. [12] also showed that there exist planar graphs that do not have plane Lombardi drawings,
but restricted graph classes (e.g., Halin graphs) do. In subsequent work, Eppstein [13, 14]
showed that every (simple) planar graph with maximum degree three has a plane Lombardi
drawing. Further, he showed that a certain class of 4-regular planar graphs (the medial
graphs of polyhedral graphs) also admit plane Lombardi drawings and he presented an
example of a 4-regular planar graph that does not have a plane Lombardi drawing. A
generalization of Lombardi drawings are k-Lombardi drawings. Here, every edge is a sequence
of at most k circular arcs that meet at a common tangent. Duncan et al. [11] showed that
every planar graph has a plane 3-Lombardi drawing. Related to k-Lombardi-drawings are
smooth-orthogonal drawings of complexity k [5]. These are plane drawings where every edge
consists of a sequence of at most k quarter-circles and axis-aligned segments that meet
smoothly, edges are axis-aligned (emanate from a vertex either horizontally or vertically),
and no two edges emanate in the same direction. Note that in the special case of 4-regular
graphs, smooth-orthogonal drawings of complexity k are also plane k-Lombardi drawings.

Our Contributions. The main question we study here is motivated by the application of
the Lombardi drawing style to knot and link drawings: Given a 4-regular plane multigraph G
without loops, does G admit a plane Lombardi drawing with the same combinatorial em-
bedding? In Section 2 we start with some positive results on extending a plane Lombardi
drawing, as well as composing two plane Lombardi drawings. In Section 3, by extending the
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results of Eppstein [13, 14], we show that a large class of multigraphs, including 4-regular
polyhedral graphs, does have plane Lombardi drawings. Unfortunately, there exist several
small knots that do not have a vertex-minimal plane Lombardi drawing. Section 4 discusses
these cases but also lists a few positive results for small examples. In Section 5, we show
that every 4-regular plane multigraph has a plane 2-Lombardi drawing. In Section 6, we
show that every 4-regular plane multigraph can be drawn with non-crossing circular arcs, so
that the perfect angular resolution criterion is violated only by an arbitrarily small value ε,
while maintaining that opposite edges have common tangents.

2 General Observations

A plane Lombardi drawing of a knot is a plane Lombardi drawing of one of its (combinatorial)
embeddings. A (combinatorial) embedding of a knot is a Lombardi embedding if it admits
a plane Lombardi drawing, and a non-Lombardi embedding otherwise. We call the property
of admitting a plane Lombardi drawing plane Lombardiness. If two vertices in a plane
Lombardi drawing of a knot are connected by a pair of multi-edges that are consecutive in
the cyclic order around both vertices speci�ed by the embedding, then we denote the face
enclosed by these two edges as a lens. A knot (link) embedding is called reduced if it has no
loop or cutvertices. We observe that a vertex-minimal embedding of a knot (link) must be
reduced, as otherwise we can �ip the order of two edges at such a vertex to remove it and
obtain an embedding of the knot (link) with one fewer vertex. In fact, Kau�man, Murasugi,
and Thistlethwaite have independently shown that alternating knot (link) diagrams (where
�over� and �under� crossings alternate along the curve) are vertex-minimal if and only if they
are reduced [2, Chapter 3.3]. Hence, to determine the plane Lombardiness of knots (links),
it su�ces to consider biconnected multigraphs without loops.

There exist a number of operations that maintain the plane Lombardiness of a 4-
regular plane multigraph. Two knots A and B can be combined by connecting A and B
along edges a of A and b of B, that is, cutting an edge a of A and an edge b of B open
and gluing pairwise the loose ends of of a with the loose ends of b. This operation is known
as a knot sum A + B. Knots that cannot be decomposed into a sum of two smaller knots
are known as prime knots. By Schubert's theorem, every knot can be uniquely decomposed
into prime knots [21]. The smallest prime knot is the trefoil knot with three crossings or
vertices; see Figure 1c. Rolfsen's knot table1 lists all prime knots with up to ten vertices.

Lemma 1. Let A and B be two 4-regular plane multigraphs with plane Lombardi drawings.

Let a be an edge of A and b an edge of B. Then the knot sum A+B, obtained by connecting

A and B along edges a and b, admits a plane Lombardi drawing.

Proof. We �rst apply a Möbius transformation to the plane Lombardi drawings of A and B
so that in the resulting drawings the given edges a and b are drawn as straight edges passing
through the point at in�nity, i.e., they are complements of line segments on an in�nite-radius
circle; see Figure 3. Next, we rotate and align both of these drawings so that edges a and b
are collinear and the subdrawings obtained by removing edges a and b do not intersect. In

1http://katlas.org/wiki/The_Rolfsen_Knot_Table
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Figure 3: Adding two plane Lom-
bardi drawings of 4-regular multi-
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lens between u and v by
a new vertex p.
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Figure 5: Placement circle
for neighbor w of u and v
in a 4-regular graph.

the �nal step, we remove both a and b and reconnect their vertices by two new edges c and d
connecting the two drawings, one being a line segment and the other passing through in�nity.
Since Möbius transformations preserve planarity and Lombardiness and our construction
does not introduce any edge crossings, the resulting drawing is a plane Lombardi drawing.
Another Möbius transformation may be applied to make the edge through in�nity curved
again.

Corollary 2. Let K be a composite knot that can be decomposed into prime knots A1, . . . , Ak.
If each of A1, . . . , Ak admits a crossing-minimal plane Lombardi drawing, then so does K.

We will use the following lemma several times throughout the paper.

Lemma 3 (Property 2 in [11, 12]). Let u and v be two vertices with given positions that

have a common, unplaced neighbor w. Let du and dv be two tangent directions and let θ be

a target angle. Let C be the locus of all positions for placing w so that (i) the edge (u,w)
is a circular arc leaving u in direction du, (ii) the edge (v, w) is a circular arc leaving v in

direction dv, and (iii) the angle formed at w is θ. Then C is a circle, the so-called placement
circle of w.

Duncan et al. [11] further specify the radius and center of the placement circle by
the input coordinates and angles. For the special case that the two tangent directions du
and dv are symmetric with respect to the line through u and v, and that the angle θ is 90◦

or 270◦, the corresponding placement circle is such that its tangent lines at u and v form
an angle of 45◦ with the arc directions du and dv. In particular, the placement circle bisects
the right angle between du (resp. dv) and its neighboring arc direction. Figure 5 illustrates
this situation.

Another operation that preserves the plane Lombardiness is lens multiplication. Let
G = (V,E) be a 4-regular plane multigraph with a lens between two vertices u and v. A
lens multiplication of G is a 4-regular plane multigraph that is obtained by replacing the
lens between u and v with a chain of lenses.

Lemma 4. Let G = (V,E) be a 4-regular plane multigraph with a plane Lombardi drawing Γ.
Then, any lens multiplication G′ of G also admits a plane Lombardi drawing.

Proof. Let f be a lens in Γ spanned by two vertices u and v. We denote the two edges
bounding the lens as e1 and e2. If we remove e1 and e2 from the drawing and add the

http://jocg.org/
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vertex b, then the new edges use the same tangents at u and v as e1 and e2 which are
symmetric with respect to the line through u and v, and the angle θ is 90◦. Hence, following
Duncan et al. [11], the placement circle of p bisects the right angle between e1 and e2 at u
and v. We denote by b the part of the placement circle that lies inside f ; see Figure 4

Let p be the midpoint of b. By Lemma 3, if we draw circular arcs from both u and v
to p that have the same tangents as e1 and e2 in u and v, then these four arcs meet at p
forming angles of 90◦. Furthermore, each such arc lies inside lens f and hence does not cross
any other arc of Γ. The resulting drawing is thus a plane Lombardi drawing of a 4-regular
multigraph that is derived from G by subdividing the lens f with a new degree-4 vertex.

By repeating this construction inside the new lenses, we can create plane Lombardi
drawings that replace lenses by chains of smaller lenses.

3 Plane Lombardi Drawings via Circle Packing

Recall that polyhedral graphs are simple planar 3-connected graphs, and that those graphs
have a unique (plane) combinatorial embedding. The (plane) dual graph M ′ of a plane
graph M has a vertex for every face of M and an edge between two vertices for every edge
shared by the corresponding faces inM . In the �classic� drawing D(M,M ′) of a primal-dual
graph pair (M,M ′), every vertex of M ′ lies in its corresponding face of M and vice versa,
and every edge of M ′ intersects exactly its corresponding edge of M . Hence, every cell of
D(M,M ′) has exactly two such edge crossings and exactly one vertex of each of M and M ′

on its boundary. The medial graph of a primal-dual graph pair (M,M ′) has a vertex for
every crossing edge pair in D(M,M ′) and an edge between two vertices whenever they share
a cell in D(M,M ′); see Figure 6a. Every cell of the medial graph contains either a vertex
of M or a vertex of M ′ and every edge in the medial graph is incident to exactly one cell in
D(M,M ′).

Every 4-regular plane multigraph G can be interpreted as the medial graph of some
plane graph M and its dual M ′, where both graphs possibly contain multi-edges. In fact,
medial graphs have already been used in the context of knot diagrams by Tait in 1879 [22].
If G contains no loops and cutvertices, then neitherM norM ′ contains loops. Eppstein [13]
showed that if M (and hence also M ′) is polyhedral, then G admits a plane Lombardi
drawing.

We �rst give a high-level overview for Eppstein's algorithm, which uses a primal-dual

circle packing. For a plane graphM and its dualM ′, a primal-dual circle packing C(M,M ′)
consists of two families C(M) and C(M ′) of circles, such that there is a bijection between
the set of vertices ofM and circles of C(M) and a bijection between the set of vertices ofM ′

and circles of C(M ′). Moreover, the following properties hold:

(1) The circles in the family C(M) are interiorly disjoint and their contact graph is M ,
i.e., two circles touch if and only if there is an edge in M between their corresponding
vertices.

(2) If c(o) ∈ C(M ′) is the circle of the outer face o, then the circles of C(M ′) \ {c(o)} are
interiorly disjoint while c(o) contains all of them. The contact graph of C(M ′) is M ′.
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(3) The circle packings C(M) and C(M ′) are orthogonal, i.e., if e = (u, v) and the dual
of e is e∗ = (f, g), and c(u), c(v), c(f), c(g) are their respective circles in C(M) and
C(M ′), then there is a point p = c(u) ∩ c(v) = c(f) ∩ c(g); moreover, the common
tangents t of c(u), c(v) and t∗ of c(f), c(g) cross perpendicularly in pe.

If M and M ′ are polyhedral, then a primal-dual circle packing C(M,M ′) always
exists due to Brightwell and Schreinerman [6]. As the combinatorial embedding ofM andM ′

is unique up to homeomorphism on the sphere, there exists a Möbius transformation τ such
that the circle packing τ(C(M,M ′)) has the same unbounded face as D(M,M ′). Recall
that every edge of the medial graph G is incident to exactly one cell in D(M,M ′). The
corresponding cell in τ(C(M,M ′)) is the intersection of a primal circle and a dual circle.
Eppstein obtains a plane Lombardi drawing of G by placing the vertices on the crossings
between the primal and dual circles, and drawing the edges as bisectors of their corresponding
cells.

We show next how to extend this result to a larger graph class. In particular, we
show that if one of M and M ′ is simple, then D(G) admits a plane Lombardi-drawing. A
full construction example of the algorithm can be found in Appendix A.

Theorem 5. Let G = (V,E) be a biconnected 4-regular plane multigraph and let M and M ′

be the primal-dual multigraph pair for which G is the medial graph. If one of M and M ′ is
simple, then G admits a plane Lombardi drawing preserving its embedding.

Proof. Assume without loss of generality that M is simple. If M (and hence also M ′) is
polyhedral, then G admits a plane Lombardi drawing Γ by Eppstein [13] as described above.

Now assume that M is not 3-connected. As a �rst step, we iteratively extend
M = M0 by adding p edges until we obtain a polyhedral graph Mp. Since every maxi-
mal plane simple graph is polyhedral, this edge addition process does eventually reach a
polyhedral graph. During this process, we also iteratively adapt the dual graph and the
medial graph; see Figures 6a�b for an illustration. LetMi+1 be the graph obtained fromMi

by adding edge e to Mi. The edge e splits a face f of Mi with at least four incident vertices
into two faces f1 and f2 with at least three incident vertices each. In M ′i , the according
vertex f ′ is split into two vertices f ′1 and f ′2. The edges incident to f

′ are partitioned into
edges incident to f ′1 and f ′2 and an additional edge between f ′1 and f ′2 is added. In Gi, the
edges inside the face f of Mi form a cycle that connects every pair of edges in Mi that
is incident along the boundary of f . When e is added, exactly two edges g1, g2 of Gi are
intersected by e. To obtain Gi+1, the edges g1 and g2 are replaced by four new edges, where
each new edge has the new crossing between e and (f ′1, f

′
2) as one endpoint and one of the

four endpoints of g1 and g2, respectively, as the other endpoint.

In the second step, we apply the result of Eppstein [13] to obtain a plane Lombardi
drawing Γp of Gp together with a primal-dual circle packing C(Mp,M

′
p). Before going into

the third step, the iterative removal of the edges that were added in the �rst step, let us
consider the structure obtained from the second step in more detail; see Figures 6c�6d.
For an edge g of Gp, consider the unique vertex m(g) ∈ Mp that lies in a cell of Gp
incident to g. Note that g has its endpoints on two edges incident to m(g) and adjacent in
their order around m(g). Let these edges be (m(g),m1(g)) and (m(g),m2(g)), respectively.
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Figure 6: (a)�(b) Modi�cations due to the addition of edge e. (c) Extension of (b) to a
polyhedral graph, and (d) the according primal-dual circle packing representation. The
medial graph G is drawn solid, the primal multigraph M is drawn dotted, and the dual
multigraph M ′ is drawn dashed. The shaded area is the lens region l(g).

Let d(g), d1(g), and d2(g) be the disks in C(Mp) corresponding to m(g), m1(g), and m2(g),
respectively. Then in Γp, the circular arc c(g) corresponding to g lies in the interior2 of
the disk d(g) and has its endpoints on the touching points of d(g) with d1(g) and d2(g),
respectively. These touching points are consecutive along the boundary of d(g). Further,
there is a disk d′(g) in C(M ′p) whose boundary intersects the boundary of d(g) exactly
in the endpoints of c(g). The intersection of d(g) and d′(g) contains c(g) in its interior.
The circles ∂d(g) and ∂d′(g) intersect with right angles and c(g) bisects the angles at both
intersections. We call d(g) ∩ d′(g) the lens region `(g) of g. For any two edges g1 and g2
of Γp, the according lens regions `(g1) and `(g2) are interior-disjoint. The lens regions of the
edges incident to the face in Γp corresponding to m(g) cover the whole boundary of d(g)
and the endpoints of those regions appear in the same cyclic order as the according edges
in Mp.

In the third step, we iteratively remove the edges that were added in the �rst step,
by constructing a sequence of plane Lombardi drawings Γi for Gi, for i = p − 1, . . . , 0.
For any edge g of Gi, consider the unique vertex m(g) ∈ Mi that lies in a cell of Γi in-
cident to g, with endpoints on edges (m(g),m1(g)) and (m(g),m2(g)) of Mi, respectively.

2Here, interior is meant w.r.t. the circle packing. Note that a circle could also be inverted, that is, contain

the unbounded face.
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Let d(g), d1(g), and d2(g) be the disks in C(Mp) corresponding to m(g), m1(g), and m2(g),
respectively, and let c(g) be the circular arc in Γi corresponding to g. We keep the following
invariants for all edges g of the drawing Γi:

(i) c(g) lies in the disk d(g) and has its endpoints on the touching points of d(g) with
d1(g) and d2(g), respectively.

(ii) There is a disk d′(g) whose boundary intersects the boundary of d(g) exactly in d(g)∩
d1(g) and d(g) ∩ d2(g), such that c(g) bisects one of the two regions d(g) ∩ d′(g) and
d(g) ∩ R2 \ d′(g), which we call its lens region `(g).

(iii) For any two edges g1 and g2 of Gi, the lens regions `(g1) and `(g2) are interior-disjoint.
(iv) The lens regions of the edges incident to the face in D(Gi) corresponding to m(g)

cover the whole boundary of d(g) and the endpoints of those regions appear in the
same cyclic order as the according edges in D(Mi).

Obviously, those invariants are ful�lled by Γp. Hence, assume that they are also
ful�lled for Γi+1, and consider the removal of the edge e = (v1, v2) from Mi+1 to obtain Mi.
In the medial graph Gi+1, the edge e corresponds to four edges sharing the vertex corre-
sponding to e, and there are two unique faces corresponding to v1 and v2, respectively. Each
of those has two of the edges of Gi+1 corresponding to e as consecutive edges along the
face. Let g1 and g2 be those consecutive incident edges on the face of Gi+1 corresponding
to v1. Note that their non-shared endpoints lie on the edges (v1, v3) and (v1, v4), respec-
tively, where v3 and v4 are consecutive in the cyclic order around v1 in Mi. Further, note
that, when removing e from Mi+1, we have to replace g1 and g2 by an edge g connecting
their non-shared endpoints. For every j ∈ {1, 2, 3, 4}, let d(vj) be the disk of C(Mp) that
corresponds to the vertex vj of Mi ⊂ Mp (note that with the notation from the invari-
ants, d(v1) = d(g1) = d(g2)). Next, consider c(g1) and c(g2) in the drawing Γi+1. By our
invariants, c(g1) and c(g2) lie in their lens regions `(g1) and `(g2), which are consecutive
along the boundary of d(v1). The only common point of `(g1) and `(g2) is the touching
point of d(v1) and d(v2). The other endpoints of c(g1) and c(g2) are the touching points
d(v1) ∩ d(v3) and d(v1) ∩ d(v4), respectively. Further, the boundary of d(v1) is completely
covered by lens regions which are all pairwise non-intersecting and bounded by circles inter-
secting ∂d(v1) in right angles. We replace c(g1) and c(g2) by the circular arc c(g) that has
as its endpoints at the touching points d(v1)∩d(v3) and d(v1)∩d(v4) and is tangent to c(g1)
and c(g2), respectively, in its endpoints. We de�ne the lens region `(g) as the unique region
that contains `(g1) and `(g2) and is the intersection of d(v1) with the (according side of the)
unique disk d′(g) for which ∂d′(g) intersects ∂d(v1) at a right angle in the endpoints of c(g);
see Figure 7.

Note that `(g) does not intersect the interior of any other lens region: for the lens
regions outside d(v1), this is trivial. For the ones inside d(v1), it follows from continuous
transformation of the bounding circle ∂d′(g) to the bounding circle of the other lens. Hence,
after repeating the analogous construction for the two other edges in Gi+1 needed to be
replaced when removing e from Mi+1, namely the ones that are incident to the face corre-
sponding to v2 in D(Gi+1), we obtain a plane Lombardi drawing Γi that again ful�lls our
four invariants, which completes the proof.

We remark that this result is not tight: there exist 4-regular plane multigraphs whose
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c(g1)

c(g2)

c(g)

(a)

c(g1)

c(g2)

c(g)

(b)

Figure 7: Two examples of a lens region `(g) resulting from `(g1) and `(g2): (a) convex and
(b) re�ex. The lens regions of c(g1) and c(g2) are drawn as shaded areas, while the one
of c(g) is the cross-hatched region.

primal-dual pairM andM ′ contain parallel edges that still admit plane Lombardi drawings,
e.g., knots 812, 814, 815, 816; see Figure 26 in Appendix B.

Note that not all 4-regular graphs are medial graphs of a simple primal-dual pair
(see, e.g. [15]), but we now prove that 4-regular polyhedral graphs are.

Lemma 6. Let G = (V,E) be a 4-regular polyhedral graph and let M and M ′ be the primal-

dual pair for which G is the medial graph. Then M and M ′ are simple.

Proof. Without loss of generality, assume for a contradiction that there are two edges be-
tween vertices f and g in M . Let u and v be the vertices of G that these two edges pass
through; see Figure 8. The vertices f and g of M correspond to faces in the embedding
of G that both contain u and v. Hence, the removal of u and v from G disconnects G into
two parts: the part inside the area spanned by the two edges between f and g and the part
outside this area. Both u and v have two edges in both areas, so either there is a multi-edge
between u and v, or there are vertices in both parts, which makes u, v a separation pair
of G. In either case, this contradicts the assumption that G is polyhedral.

f

g

u v

(a)

f

g

u v

(b)

Figure 8: If there is a multi-edge between vertices f and g in the primal, then there is a
multi-edge (u, v) or a separation pair u, v in the medial.
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Lemma 6 and Theorem 5 immediately give the following theorem.

Theorem 7. Let G = (V,E) be a 4-regular polyhedral graph. Then G admits a plane

Lombardi drawing.

4 Positive and Negative Results for Small Graphs

We next consider all knots with 8 vertices or less. We compute plane Lombardi drawings
for those that have it and argue that such drawings do not exists for the others. We start
by showing that no knot with a K4 subgraph is plane Lombardi.

Lemma 8. Every 4-regular plane multigraph G that contains K4 as a subgraph does not

admit a plane Lombardi drawing.

Proof. Let a, b, c, d be the vertices of the K4. Every plane embedding of K4 has a vertex that
lies inside the cycle through the other 3 vertices; let d be this vertex. Since d has degree 4, it
has another edge to either one of a, b, c, or to a di�erent vertex. In the former case, assume
that there is a multi-edge between c and d. In the latter case, by 4-regularity, there has
to be another vertex of a, b, c that is connected to a vertex inside the cycle through a, b, c;
let c be this vertex. In both cases, c has two edges that lie inside the cycle through a, b, c.
Further, again due to 4-regularity and planarity, the additional edges incident a and b go to
the same face of the K4, implying that one of the faces incident to ab is empty.

Assume that G has a Lombardi drawing. Since Möbius transformations do not
change the properties of a Lombardi drawing, we may assume that the edge (a, b) is drawn
as a straight-line segment and that the face incident to ab that contains the additional edges
incident to a and b is the unbounded face; see Figure 9b. Since both c and d are neighbors
of a and b, there are two corresponding placement circles by Lemma 3. In fact, since any
two edges of a Lombardi drawing of a 4-regular graph must enclose an angle of 90◦ and
since a and b have �aligned tangents� due to being neighbors themselves, the two placement
circles coincide and a situation as shown in Figure 9b arises. In particular, this means that
in any vertex-minimal Lombardi drawing of G the four vertices must be co-circular. Hence
we cannot draw the missing circular arcs connecting c and d: any such arc must either lie
completely inside or completely outside of the placement circle. Yet, the stubs for the two
edges between c and d point inside at c and outside at d.

a b

d

c

(a)

a b

c
d

(b)

Figure 9: Knot 41 has no Lombardi drawing.
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a b

c

d

e

(a)

a b

cd
e

(b)

Figure 10: Knot 52 and a non-plane Lombardi drawing.

Lemma 9. Knots 41 and 52 have no vertex-minimal Lombardi drawing.

Proof. Note that the combinatorial embeddings of vertex-minimal drawings for Knots 41
and 52 are unique up to the choice of the outer face [22]. Hence, as plane Lombardiness is
invariant under Möbius transformations, either all of them or none of them have a plane
Lombardi drawing.

For knot 41, the claim immediately follows from Lemma 8.

Knot 52 again has the property that all �ve vertices must be co-circular in any
Lombardi drawing. To see this, we �rst consider the four vertices a, b, c, d in Figure 10.
Regardless of the placement of a and b, we observe that c and d are both adjacent to a and
b and need to enclose an angle of 90◦ in the triangular face with a and b. This situation
was already discussed in Lemma 8 and yields a circle C containing a, b, c, d; see Figure 9.
The �nal vertex, e, is adjacent to c and d so that we can determine the placement circle
for e with respect to c and d. As we know from Lemma 8, the two arc stubs of d to be
connected with e form angles of 45◦ with C and point outwards. Conversely, the two arc
stubs of c form angles of 45◦ with C and point inwards. If we take any point p on C and
draw circular arcs from the stubs of c and d to p, the four arcs meet at 90◦ angles in p. These
are precisely the angles required at vertex e and hence C is in fact the unique placement
circle for e by Lemma 3. This implies that actually all �ve vertices of 52 must be co-circular
in any Lombardi drawing.

Unlike knot 41, it is geometrically possible to draw all edges as Lombardi arcs; see
Figure 10b. However, as we will show, no plane Lombardi drawing of knot 52 exists. By
an appropriate Möbius transformation, we may assume that all �ve vertices are collinear
on a circle of in�nite radius. Moreover, to avoid crossings, the order along the line is either
a, b, c, e, d or a, b, d, e, c (modulo cyclic shifts and reversals). Since both cases are symmetric,
we restrict the discussion to the �rst one. As a further simpli�cation, we initially assume
that a and b are placed on the same position such that the lens between a and b collapses;
see Figure 11.

This drawing consists of two intertwined 4-cycles, which intersect the line ` at angles
of 45◦. We argue that the 4-cycle depicted in Figure 11 cannot be drawn as a simple cycle
without self intersections. We consider the four centers m1,m2,m3,m4 of the circular arcs
a1, a2, a3, a4 and their radii r1, r2, r3, r4. Due to the fact that adjacent arcs meet on ` at an
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a = b

c

e

d

m1

m2

m3

m4

r1
r2

r3
r4

`

a1

a2

a3

a4

Figure 11: Knot 52 has no plane Lombardi drawing.

angle of 45◦ and have the same tangent, the four centers form the corners of a rectangle R
with side lengths r1 + r2 and r3 + r2. We can further derive that r4− r3 = r1 + r2. Let δ be
the length of a diagonal of R. For the arcs a1 and a3 to be disjoint, we require δ > r1 + r3.
For a2 and a4 to be disjoint, we require δ < r4 − r2. But since r4 − r2 = r1 + r3, this is
impossible and the 4-cycle must self-intersect.

Finally, if we move b by some ε > 0 away from a and towards c, this will only decrease
the radius r4 and thus introduce proper intersections in the drawing. Thus, knot 52 has no
plane Lombardi drawing.

As the above lemma shows, even very small knots may not have a plane Lombardi
drawing. However, most knots with a small number of crossings are indeed plane Lombardi.
In Figure 26 in Appendix B, we provide plane Lombardi drawings of all knots with up to
eight crossings except 41 and 52. Most of these drawings can actually be obtained using the
techniques from Section 2 and 3.

Theorem 10. All knots with up to eight vertices other than 41 and 52 have a vertex-minimal

plane Lombardi drawing.

Note that Theorem 10 implies that each of these knots has a combinatorial embedding
that supports a plane Lombardi drawing. It is not true, however, that every embedding
admits a plane Lombardi drawing. In fact, the knot 75, as a member of an in�nite family
of knots and links, has an embedding that cannot be drawn plane Lombardi. This family is
derived from the knot 52 and gives rise to the next theorem.

Theorem 11. There exists an in�nite family of prime knots and links that have vertex-

minimal non-Lombardi embeddings.

Proof. Consider again the knot 52 (Figure 12a). By Lemma 9, it has no Lombardi drawing.
If we duplicate the bottom vertex and vertically detach the two copies completely, then
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(a) 52

?

(b) (c) L6a1 (d) 75

Figure 12: A family of knots and links with vertex-minimal non-Lombardi embeddings.

the resulting graph (using four stubs to ensure the correct angular resolution) still has no
plane Lombardi drawing (Figure 12b). As a result, we can construct an in�nite family of
graphs without plane Lombardi drawings by vertically twisting the connections between the
duplicated vertices. After knot 52, the next two members of this family are the link L6a1,
consisting of two interlinked �gure-8's (Figure 12c), and the knot 75 (Figure 12d). For general
k ≥ 2, the graph obtained from replacing the crossing of knot 52 by k crossings is the prime
knot or link that corresponds to the Conway notation [k, 2, 2]; furthermore, the embeddings
are alternating and reduced, so they are in fact vertex-minimal [2, Chapter 3.3].

However, the same family, starting with its six-vertex member L6a1, does have plane
Lombardi drawings with a di�erent embedding.

Corollary 12. The prime knots and links in the family of Theorem 11 with six or more

vertices all have a vertex-minimal Lombardi embedding.

Proof. For the link L6a1 and the knot 75 we provide plane Lombardi drawings in Figure 13.
Observe that the incremental twists de�ning the family in Theorem 11 are now done at the
bottom part of the knot/link diagrams in Figure 13. Since each twist now corresponds to
a lens multiplication, we obtain from Lemma 4 that all other knots and links in the family
also have plane Lombardi drawings. Figure 13 shows the respective 8-vertex link L8a11 and
9-vertex knot 96.

Interestingly, the two knots 41 and 52 without a plane Lombardi drawing belong to
the known family of twist knots, which are knots formed by taking a closed loop, twisting it
any number of times and then hooking up the two ends together. All other twist knots do
have plane Lombardi drawings though.

Corollary 13. All twist knots except 41 and 52 have a vertex-minimal plane Lombardi

drawing.

Proof. We know from Theorem 10 that 41 and 52 are not plane Lombardi knots. The
smallest twist knot is 31 and the other twist knots with at most eight vertices are 61, 72,
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(a) L6a1 (b) 75 (c) L8a11 (d) 96

Figure 13: Plane Lombardi drawings for Corollary 12 obtained by lens multiplication.

and 81, which all have a plane Lombardi drawing as shown in Figure 26. The progressive
twisting pattern de�ning the twist knots and seen in the drawings of 61, 72, and 81 can
easily be extended for all twist knots by incrementally applying the lens multiplication of
Lemma 4. Since the considered drawings of the twist knots are alternating and reduced,
these are in fact vertex-minimal diagrams of these knots [2, Chapter 3.3].

5 Plane 2-Lombardi Drawings of Knots and Links

Since not every knot admits a vertex-minimal plane Lombardi drawing, we now consider
plane 2-Lombardi drawings; see Figure 14a for an example. Bekos et al [5] recently in-
troduced smooth orthogonal drawings of complexity k. These are drawings where every
edge consists of a sequence of at most k circular arcs and axis-aligned segments that meet
smoothly with horizontal or vertical tangents, and where at every vertex, each edge em-
anates either horizontally or vertically and no two edges emanate in the same direction.
For the special case of 4-regular graphs, every smooth orthogonal drawing of complexity k
is also a plane k-Lombardi drawing. Alam et al. [3] showed that every plane graph with
maximum degree 4 can be redrawn as a plane smooth-orthogonal drawing of complexity 2.
Their algorithm takes as input an orthogonal drawing produced by the algorithm of Liu et
al. [17] and transforms it into a smooth orthogonal drawing of complexity 2. We show how
to modify the algorithm by Liu et al., to compute an orthogonal drawing for a 4-regular
plane multigraph and then use the algorithm by Alam et al. to transform it into a smooth
orthogonal drawing of complexity 2.

Theorem 14. Every biconnected 4-regular plane multigraph G without loops admits a plane

2-Lombardi drawing with the same embedding.

Proof. The algorithm of Alam et al. [3] takes as input an orthogonal drawing produced
by the algorithm of Liu et al. [17] and transforms it into a smooth orthogonal drawing of
complexity 2. The drawings by Liu et al. have the property that every edge consists of
at most 3 segments (except at most one edge that has 4 segments), and it contains no
S-shapes, that is, it contains no edge that consists of 3 segments where the bends are in
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(a) (b) (c)

Figure 14: Drawings of knot 41 which by Lemma 9 does not admit a plane Lombardi drawing.
(a) A smooth orthogonal drawing of complexity 2, (b) a di�erent plane 2-Lombardi drawing,
and (c) a plane ε-angle Lombardi drawing.

opposite direction. To show this theorem, we only have to show that we can apply the
algorithm of Liu et al. to 4-regular plane multigraphs to produce a drawing with the same
property.

Liu et al. �rst choose two vertices s and t and compute an st-order of the input
graph. An st-order is an ordering (s = 1, 2, . . . , n = t) of the vertices such that every j
(2 < j < n − 1) has neighbors i and k with i < j < k. We can obtain an st-order for a
multigraph by removing any duplicate edges. Liu et al. then direct all edges according to
the st-order from a vertex with lower st-number to a vertex with higher st-number.

According to the rotation system implied by the embedding of the input graph, Liu
et al. then assign a port to every edge around a vertex such that every vertex (except t)
has an outgoing edge at the top port, every vertex (except s) has an incoming edge at the
top port, every vertex has an outgoing edge at the right port if and only if it has at least 2
outgoing edges, and every vertex has an incoming edge at the left port if and only if it has
at least 2 incoming edges. They further make sure the edge that uses the bottom port at s
is incident to the vertex r with st-number 2, and that the edge (s, t), if it exists, uses the
left port at s and the top port at t; this edge is the only one drawn with 4 segments, but can
still be transformed into a smooth orthogonal edge of complexity 2 by Alam el al. . They
place the vertices s and r on the y-coordinate 2 and every other vertex on the y-coordinates
equal to their st-number. The shape of the edges is then implied by the assigned ports at
their incident vertices. By placing vertices that share an edge with a bottom port and a top
port above each other, there can be no S-shapes with two vertical segments, but there can
still be S-shapes with two horizontal segments if an edge uses a left port and a right port.
To eliminate these S-shapes, the consider sequences of S-shapes, that is, paths in the graphs
that are drawn only with S-shapes, and move the vertices vertically such that they all lie on
the same y-coordinate. Up to the elimination of S-shapes, every step of the algorithm can
immediately applied to multigraphs. We choose s and t as vertices on the outer face of the
given embedding such that the edge (s, t) exists. We claim that then no multi-edge can be
drawn as an S-shape.

Let u and v be two vertices in G with at least two edges e1 and e2 between them.
Without loss of generality, let u have a lower st-number than v. Then both e1 and e2 are
directed from u to v. If u = s and v = r, then both vertices are placed on the same y-
coordinate, so there can be no S-shape between them. If u = s and v = t, then there is
an edge that uses the left port at u and the top port at v; since all multi-edges have to be
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consecutive around u and v, there can be no edge between them that uses a left port and
a right port. Otherwise, assume that e2 is the successor of e1 in counter-clockwise order
around u (and hence the predecessor of e1 in counter-clockwise order around v). If e1 uses
the right port at u and the left port at v, then e2 has to use the top port at v, which
cannot occur by the port assignment. If e1 uses the left port at u and the right port at v,
then e2 has to use the bottom port at u, which also cannot occur by the port assignment.
Thus, neither e1 nor e2 is drawn as an S-shape and every sequence of S-shapes consists only
of simple edges. Hence, we can use the algorithm of Liu et al. to produce an orthogonal
drawing with the desired property for every 4-regular plane multigraph and then use the
algorithm of Alam et al. to transform it into a smooth complexity drawing of complexity 2
which is also a plane 2-Lombardi drawing.

Corollary 15. Every vertex-minimal embedding of a knot or link admits a plane 2-Lombardi

drawing.

6 Plane Near-Lombardi Drawings

Since not all knots admit a vertex-minimal plane Lombardi drawing, in this section we relax
the perfect angular resolution constraint. We say that an embedding of a knot (or a link) is
near-Lombardi if it admits a drawing for every ε > 0 such that

1. All edges are circular arcs,
2. Opposite edges at a vertex are tangent;
3. The angle between crossing pairs at each vertex is at least 90◦ − ε.

We call such a drawing a ε-angle Lombardi drawing. Note that a Lombardi drawing is
equivalent to a 0-angle Lombardi drawing. For example, the knot 41 does not admit a vertex-
minimal plane Lombardi drawing, but it admits a vertex-minimal plane ε-angle Lombardi
drawing, as depicted in Figure 14c.

Let Γ be an ε-angle Lombardi drawing of a 4-regular graph. If each angle described
by the tangents of adjacent circular arcs at a vertex in Γ is exactly 90◦ + ε or 90◦ − ε, then
we call Γ an ε-regular Lombardi drawing. Note that any Lombardi drawing is a 0-regular
Lombardi drawing.

We �rst extend some of our results for plane Lombardi drawings to plane ε-angle
Lombardi drawings. The following Lemma is a stronger version of Theorem 5.

Lemma 16. Let G = (V,E) be a biconnected 4-regular plane multigraph and let M and M ′

be the primal-dual multigraph pair for which G is the medial graph. If one of M and M ′

is simple, then G admits a plane ε-regular Lombardi drawing preserving its embedding for

every 0◦ ≤ ε < 90◦.

Proof. We use the same algorithm as for the proof of Theorem 5 with a slight modi�cation.
We �rst seek to direct the edges such that every vertex has two incoming opposite edges
and two outgoing opposite edges. Let M and M ′ be the primal-dual pair corresponding to
the medial graph G. Every face in G corresponds to a vertex either in M or in M ′; we
say that the face belongs to M or M ′. We orient the edges around each face that belongs
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d′(e)

(a) Drawing a directed edge e = (u, v) between
the circles d(e) and d′(e)

45◦−ε/2
w

u

v

45◦−ε/2

d(e1)

d′(e1)

d′(e2)

(b) Eliminating a vertex v and adding the
edge (u,w) inside the circle d(e1)

Figure 15: Illustrations for the proof of Lemma 16.

to M in counter-clockwise order. Every edge in G lies between a face that belongs to M
and a face that belongs to M ′, so this gives a unique orientation for every edge. Further,
the faces around any vertex belong to M , to M ′, to M , and to M ′ in counter-clockwise
order. Hence, the edges around any vertex are outgoing, incoming, outgoing, and incoming
in counter-clockwise order, which gives us the wanted edge orientation.

We use the same primal-dual circle packing approach to obtain a drawing of G′, but
instead of using the bisection of the intersection of a primal and a dual circle, we use a
circular arc with a di�erent angle; see Figure 15a. Let e = (u, v) be an edge of G′ directed
from u to v, and let l(e) be the lens region of e between the primal-dual circles d(e) and d′(e).
Without loss of generality, assume that the 90◦ angle inside l(e) is between d′(e) and d(e) in
counter-clockwise order around u. In the proof of Theorem 5, we would draw e as a bisection
of l(e). We draw e that the angle between d′(e) and (u, v) at u is 45◦ + ε/2 and the angle
between e and d(e) at u is 45◦ − ε/2.

Informally, this means that all outgoing edges at a vertex are �rotated� by ε/2 in
counter-clockwise direction, and all incoming edges at a vertex are �rotated� by ε/2 in
clockwise direction compared to a plane circular-arc drawing of G′. Since opposite edges of
a vertex u have the same direction with respect to u, they are rotated by the same angle,
so they are still tangent. Further, since adjacent edges at u have a di�erent direction with
respect to u, the angle between them is now either 90◦ + ε or 90◦ − ε.

We then use the same procedure as in Theorem 5 to eliminate vertices from G′

and obtain a plane ε-regular Lombardi drawing of G. In every step of this procedure, we
eliminate a vertex v from G′ and add an edge between two pairs of its adjacent vertices
(without introducing self-loops); see Figure 15b. Let u and w be two neighbors of v in G′

such that we want to obtain the edge e = (u,w) in G. Without loss of generality, assume
that the edge e1 = (u, v) is directed from u to v in G′ and that the edge e2 = (v, w) is
directed from v to w in G′. Following the proof of Theorem 5, e1 lies in the lens region l(e1)
between disks d(e1) and d

′(e1), and e2 lies in the lens region l(e1) between disks d(e2) = d(e1)
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and d′(e2). Hence, u and w lie on a common circle d(e1) of the primal-dual circle packing.
Assume that the 90◦ angle inside l(e1) is between d

′(e1) and d(e1) in counter-clockwise order
around u; the other case is symmetric. By the direction of the edges e1 and e2, the angle
between e1 and d(e1) is 45◦−ε/2 in counter-clockwise around u and the angle between d(e1)
and e2 is also 45◦ − ε/2 in counter-clockwise direction around w. Hence, we can draw the
edge e as a circular arc inside d(e1) with angle 45◦− ε/2 to d(e1) at both u and w. We keep
the ports at both vertices and by directing the edge from u to w we also keep a direction
of the edges that satis�es the above property. Thus, we obtain a plane ε-regular Lombardi
drawing of G.

The following Lemmas are stronger versions of Lemma 4 and Lemma 1, respectively.
Since the proofs of the latter results do not rely on 90◦ angles, they can also applied to the
stronger versions. For the sake of completeness, a formal proof of Lemma 17 is still given.

Lemma 17. Let G = (V,E) be a 4-regular plane multigraph with a plane ε-angle Lombardi

drawing Γ. Then, any lens multiplication G′ of G also admits a plane ε-angle Lombardi

drawing.

Proof. Let f be a lens in Γ spanned by two vertices u and v. We denote the two edges
bounding the lens as e1 and e2. Let α ∈ [90◦ − ε, 90◦ + ε] be the angle between e1 and e2
in both end-vertices. We de�ne the bisecting circular arc b of f as the unique circular arc
connecting u and v with an angle of α/2 to both e1 and e2. See Figure 4 for an example.

Let p be the midpoint of b. If we draw circular arcs a1 and a2 from both u to p and
circular arcs a3 and a4 from v to p that have the same tangents as e1 and e2 in u and v,
then these four arcs meet at p such that the angle between a1 and a2 as well as the angle
between a3 and a4 is α, whereas the angle between a1 and a4 and the angle between a2
and a3 is 180◦ − α ∈ [90◦ − ε, 90◦ + ε]. Further, each such arc lies inside lens f and hence
does not cross any other arc of Γ. The resulting drawing is thus a plane ε-angle Lombardi
drawing of a 4-regular multigraph that is derived from G by subdividing the lens f with a
new degree-4 vertex.

By repeating this construction inside the new lenses we can create plane ε-angle
Lombardi drawings that replace lenses by chains of smaller lenses.

Lemma 18. Let A and B be two 4-regular plane multigraphs with plane ε-angle Lombardi

drawings. Let a be an edge of A and b an edge of B. Then the composition A+B obtained

by connecting A and B along edges a and b admits a plane ε-angle Lombardi drawing.

Let G = (V,E) be a 4-regular plane multigraph and let x ∈ V with edges (x, a),
(x, b), (x, c), and (x, d) in counter-clockwise order. A lens extension of G is a 4-regular plane
multigraph that is obtained by removing x and its incident edges from G, and adding two
vertices u and v to G with two edges between u and v and the edges (u, a), (u, b), (v, c), (v, d).
Informally, that means that a vertex is substituted by a lens.

Lemma 19. Let G = (V,E) be a 4-regular plane multigraph with a plane ε-angle Lombardi

drawing Γ. Then, any lens extension of G admits a plane (ε + ε′)-angle Lombardi drawing

for every ε′ > 0.
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Figure 16: (a) The circular arc Cλu between ua and ub on the placement circles of u and the
circular arc Cλv between vc and vd on the placement circles of v. (b) Placing u on ua and v
on vc gives βa = 0◦.

Proof. Let x ∈ V be the vertex that we want to perform the lens extension on such that we
get the edges (u, a), (u, b), (v, c), (v, d) in the obtained graph G′. Let α be the angle between
the tangents of (x, a) and (x, b) at x in Γ. Since Γ is a plane ε-angle Lombardi drawing,
we have that α ≤ 90◦ + ε. Further, the angle between the tangents of (x, c) and (x, d)
at x in Γ is also α, while the angles between the tangents of (x, b) and (x, c) at x and
between the tangents of (x, d) and (x, a) at x are both 180◦ − α. We apply the Möbius-
transformation on Γ that maps the edges (x, a) and (x, d) to straight-line segments and a
lies on the same y-coordinate and to the right of x; hence, d lies strictly below x.

We aim to place v such that the angle between the arcs (v, c) and (v, d) is α+ λ for
some 0 < λ ≤ ε′ which we will show how to choose later. We have �xed ports at c and d
and a �xed angle α + λ at v. According to Lemma 3, all possible positions of v lie on a
circle through c and d. Note that the circle through c, d, x describes all possible positions of
neighbors of c and d with angle α. Since the desired angle gets larger, the position circle for v
contains a point vd on the straight-line edge (x, d) and a point vc on the half-line starting
from x with the angle of the port used by the arc (x, c); see Figure 16a. We denote by Cλv
the circular arc between vc and vd on the placement circle of v that gives the angle α + λ
at v. We do the same construction for u to obtain the circular arc Cλu between ua and ub.

Since the drawing of G is plane, there is some non-empty region in which we can
move x such that the arcs (x, a), (x, b), (x, c), (x, d) are drawn with the same ports at a, b, c, d
and do not cross any other edge of the drawing. We choose λ as the largest value with 0 <
λ ≤ ε′ such that the two circular arcs Cu and Cv lie completely inside this region.

We now have to �nd a pair of points on Cλv and Cλu such that we can connect them
via a lens. The ports of the two arcs we seek to draw between u and v lie opposite of the
ports used by the arcs (u, a), (u, b), (v, c), and (v, d) We label the ports at u and v as pau
opposite of (u, a) at u, as pbu opposite of (u, b) at u, as pcv opposite of (v, c) at v, and
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Figure 17: (a) Placing u on ub and v on vd gives βd = 0◦. (b) Placing u and v such
that βa = βd gives a lens between u and v with the desired angles.

as pdv opposite of (v, d) at v. We have to �nd a pair of points on Cλu and Cλv such that
these ports are �compatible�: Take a point qu on Cλu and a point qv on Cλv and connect
them by a segment Suv. Then the angle βb between Suv and pbu has to be the same as the
angle βc between Suv and pcv, and the angle βa between Suv and pau has to be the same as
the angle βd between Suv and pdv. By construction, we have that βa + βb = 90◦ + α + λ
and βc + βd = 90◦ + α+ λ, so it su�ces to �nd a pair of points such that βa = βd.

Assume that v is placed on vc and u is placed on ua; see Figure 16b. The edge (x, a)
is drawn as a straight-line segment, and the edge (x, c) uses the port opposite of the one
of (x, a). Hence, the segment Suv is a segment through x. Furthermore, it uses exactly
the port pau at u, so we have βa = 0◦. On the other hand, βd is strictly positive: The
segment (x, d) enters x with an angle of γ = 180◦ − α > 0◦ to the segment (x, v). Since v
lies to the left of x, the angle described between the tangent of the circular arc (v, d) at v
and the segment (v, x) is strictly larger than γ. Since βd is described by the same tangent
and segment, we have that βd = γ > 0◦.

Now assume that v is placed on vd and u is placed on ub; see Figure 17a. The
edge (x, d) is drawn as a straight-line segment, and the edge (x, b) uses the port opposite
of the one of (x, d). Hence, the segment Suv is a segment through x. Furthermore, it uses
exactly the port pdu at u, so we have βd = 0◦. On the other hand, βa is strictly positive: The
segment (x, a) enters x with an angle of δ = 90◦ + α > 0◦ to the segment (x, v). Since u
lies above x, the angle described between the tangent of the circular arc (u, a) at u and
the segment (u, x) is strictly larger than δ. Since βd is described by the same tangent and
segment, we have that βd = δ > 0◦.

Hence, we have found a pair of points for u and v such that βa = 0◦ and βd = γ > 0◦

and we have found a pair of points for u and v such that βa = δ > 0◦ and βd = 0◦. Since
we can move u and v freely along the curves Cu and Cv between these pairs of points, βa
can become any angle between 0◦ and δ and βd can become any angle between 0◦ and γ.
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(a) (b)

Figure 18: The only biconnected 4-regular multigraphs with at most 3 vertices. (a) plane
Lombardi and (b) plane ε-angle Lombardi drawings.

Thus, there has to exist some pair of points for u and v such that βa = βd; see Figure 17b.
We choose this pair of points and connect u and v by two circular arcs such that one of
them uses the ports pau and pdv and the other one uses the ports pbu and pcv. Note that the
arcs (u, a) and (u, b) are now drawn the same way as if we moved x onto the determined
position of u and the arcs (v, c) and (v, d) are now drawn the same way as if we moved x
onto the determined position of v. Hence, by the choice of λ, they do not introduce any
crossing and thus the drawing is plane.

Lemma 20. Every 4-regular plane multigraph with at most 3 vertices admits a plane ε-
regular Lombardi drawing for every 0 ≤ ε < 90◦.

Proof. There are only two 4-regular multigraphs with at most 3 vertices and each of them
has a plane Lombardi drawing as depicted in Figure 18a. For some 0◦ < ε < 90◦, we can
obtain a plane ε-regular Lombardi drawing by simply making the circular arcs larger or
smaller, as depicted in Figure 18b.

We are now ready to present the main result of this section. The proof boils down
to a large case distinction using the tools developed in the previous discussion. We split
the original graph into biconnected components and then use Lemma 20 and 16 as base
cases. With the help of lens extensions, lens multiplications, and knot sums we can combine
the �near-Lombardi� drawings of the biconnected graphs to generate an �near-Lombardi�
drawing of the original graph. As a consequence, every knot is near-Lombardi.

Theorem 21. Let G = (V,E) be a biconnected 4-regular plane multigraph wihtout loops and

let ε > 0. Then G admits a plane ε-angle Lombardi drawing.

Proof. If G has at most 3 vertices, then we obtain a plane Lombardi drawing of G by
Lemma 20. So assume that G is a biconnected 4-regular plane graph with n ≥ 4. We seek
to draw G by recursively by splitting it into smaller graphs. We prove our algorithm by
induction on the number of vertices; to this end, suppose that every biconnected 4-regular
plane graph with at most n − 1 vertices admits a plane ε′-angle Lombardi drawing for
every ε′ > 0; this holds initially for n = 4. We proceed as follows.

Case 1. G is polyhedral. In this case, we can draw it plane Lombardi using Theorem 5.

Case 2. G contains a multilens, that is, a sequence of lenses between the vertices u1, . . . , uk
with k ≥ 2. We contract the lenses to a single lens, that is, we remove the vertices u2, . . . , uk−1
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Figure 19: Illustrations for the proof of Theorem 21.

and their incident edges fromG and add two edges between u1 and uk to form a new graphG′;
see Figure 19a. This operation is essentially a reverse lens multiplication and introduces no
self-loops.

Case 3. G contains a lens between two vertices u and v, but it contains no multilens. We
consider three subcases based on the number of edges between u and v in G.

Case 3.1. There are four edges between u and v in G. Since G is 4-regular, it consists
exactly of these two vertices and four edges and can be drawn by Lemma 20.

Case 3.2. There are three edges between u and v in G; see Figure 19b. Then there exists
also some edge (u, u′) and some edge (v, v′) in G. Since G is biconnected, we have u′ 6= v′;
otherwise, it would be a cutvertex. We remove u and v from G and add an edge between u′

and v′ to form a new graph G′. This operation preserves biconnectivity as u′ and v′ form
a separation pair in G and it introduces no self-loops because v 6= v′. Hence, the graph G′

is a biconnected 4-regular plane graph with n− 2 vertices and by induction admits a plane
ε-angle Lombardi drawing. Let G′′ be the graph that consists of u and v and four multi-
edges between them. This graph has a plane ε-regular Lombardi drawing by Lemma 20.
Furthermore, G can be obtained by adding G′ and G′′ along the edge (u′, v′) of G′ and one
of the edges of G′′. Using Lemma 18, we can obtain a plane ε-angle Lombardi drawing of G.

Case 3.3. There are two edges between u and v in G. We consider two subcases.

Case 3.3.1. Removal of u and v from G preserves connectivity; see Figure 20a. We
contract u and v to a new vertex: we remove them from G and add a new vertex x that is
connected to the neighbors of u and v di�erent from u and v to form G′. This operation
preserves biconnectivity: Since G is biconnected, the only cutvertex in G′ can be x; but
since the removal of u and v from G preserves connectivity, so does the merged vertex x.
Since there are exactly two edges between u and v, the new vertex x has degree 4. Hence, G′

is a biconnected 4-regular plane graph with n− 1 vertices and by induction admits a plane
ε/2-angle Lombardi drawing. Furthermore, G can be obtained from G′ by a lens extension
on x. We obtain a plane ε-angle Lombardi drawing of G using Lemma 19.

Case 3.3.2. The removal of u and v from G disconnects the graph, that is, u and v
form a separation pair in G; see Figure 20b. Since there are exactly two edges between u
and v, their removal disconnects G into two connected components A and B with at least
two vertices each (otherwise, there would be a self-loop). Furthermore, G contains an edge
from u to a vertex uA in A and another edge from u to a vertex uB in B. If this would not
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Figure 20: Illustrations for Case 3.3 in the proof of Theorem 21.

be the case than v would be a cutvertex in G. Analogously, there is an edge from v to a
vertex vA in A and an edge from v to a vertex vB in B. We have uA 6= vA (and uB 6= vB);
otherwise, this vertex would be a cutvertex in G.

Let A′ be the graph G − B with an additional edge between u and v. Since G is
biconnected, there are two disjoint paths in G between any two vertices from A. Only one
of these paths can �leave� A through the separation pair u, v. Hence, we can redirect the
part outside A to the new edge (u, v) in A′, which shows that every two vertices in A′ are
connected with at least two disjoint paths. This shows that A′ is biconnected.

Let B′ be the graph B with an additional edge between uB and vB. We can show
that B′ is biconnected by the same arguments we have applied for A′: In G there have to be
two disjoint paths between every vertex pair from B. Only one of these paths can leave B
over the separation pair u, v and this part can be replaced by the new edge that we added
to B′. Hence between every two vertices in B′ we have two disjoint paths, which proves
that B′ is a biconnected 4-regular plane graph with at most n− 4 vertices. By induction B′

admits a plane ε-angle Lombardi drawing. Furthermore, G can be obtained by adding A′

and B′ along one of the edges between u and v of A′ and the edge (uB, vB) of B′. Using
Lemma 18, we can obtain a plane ε-angle Lombardi drawing of G.

Case 4. G is simple, but not 3-connected, so there exists at least one separation pair
that splits G into at least two connected components. Let Au,v be a smallest connected
component induced by the separation pair u, v. We say that u, v is a minimal separation

pair if Au,v does not contain any separation pair and there is no separation pair between a
vertex of Au,v and either u or v.

We create two biconnected 4-regular plane plane graphs as follows; see Figure 21a.
Let A be the subgraph of G induced by the vertices in Au,v, u, and v, let B be the sub-
graph of G that contains all vertices not in Au,v and all edges not in A; in particular,
there is no edge (u, v) in B. By this construction, all edges of G are either part of A
or part of B and both A and B are connected, and every vertex is part of either A
or B, except the two vertices u and v which are part of both. However, A and B are
not 4-regular, so we create two 4-regular graphs A′ and B′ for the recursion as follows.
Let degA(u), degA(v), degB(u),degB(v) be the degree of u and v in A and B, respectively,
with degA(u) + degB(u) = degA(v) + degB(v) = 4.

Case 4.1. degA(u) = 1 or degA(v) = 1. Without loss of generality, let degA(u) = 1. Let x
be the neighbor of u in A. We have that x 6= v since otherwise A consists only of a single
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Figure 21: Illustrations for Case 4 in the proof of Theorem 21.

edge (if degA(v) = 1) or v is a cutvertex in G (if degA(v) = 3). Then x, v is a separation
pair of G whose removal gives a connected component Ax,v with less vertices than Au,v,
as it contains the same vertices but not x, contradicting the minimality of the separation
pair u, v.

Case 4.2. degA(u) = degA(v) = 3; see Figure 21b. We add an edge between u and v
to A to obtain the graph A′. The resulting graph is biconnected: consider any pair of
vertices a, b ∈ A′. There were at least two vertex-disjoint paths in G between a and b.
Since u, v is a separation pair in G, at most one of these two paths traverses vertices in G−A,
and any path through these vertices must contain u and v. Hence, there is a path that
traverses the same edges in A′ and uses the newly introduced edge between u and v instead.

We remove u and v from B and add an edge between their neighbors to form B′.
Let x be the neighbor of u in B and let y be the neighbor of v in B. We have that x 6= y
since otherwise x would be a cutvertex in G. Hence, we introduce no self-loops. With a
similar argument, B′ is also biconnected, as any path between two vertices through vertices
in A has to traverse u and v and�since they both have degree 1 in B� their neighbors, so
the path can use the newly introduced edge instead.

We recursively obtain a plane ε-angle Lombardi drawing of A′ and B′. Since both A′

and B′ have fewer vertices than G, they admit one by induction. To obtain a drawing of G
from A′ and B′, we have to remove the edge (u, v) from A′ and the edge (x, y) from B′ and
we have to add the edges (u, x) and (v, y). This procedure is equivalent to adding A′ and B′

along these respective edges, so we can solve it using the algorithm described in Lemma 18.

Case 4.3. degA(u) = degA(v) = 2. We consider two more subcases.

Case 4.3.1. The separation pair u, v splits G into three connected components Au,v, Bu,v,
and Cu,v; see Figure 22. We add two edges between u and v to A to obtain A′. Let uB be
the neighbor of u in Bu,v and let vB be the neighbor of v in Bu,v. We have that uB 6= vB, as
otherwise it would be a cutvertex of G. We obtain the 4-regular multigraph B′ by adding an
edge between uB and vB to Bu,v. By the same argument as in Case 3.3.2, B′ is biconnected.
Analogously, we obtain the biconnected 4-regular multigraph C ′ by adding an edge between
the neighbor uC of u in Cu,v and the neighbor vC of v in Cu,v to Cu,v. We recursively
create a plane ε-angle Lombardi drawing of A′, B′, and C ′. Then, we create a plane ε-angle
Lombardi drawing with the use of Lemma 18 by adding A′ and B along one edge between u
and v of A′ and the edge (uB, vB) of B, and adding the resulting graph and C along the
other edge between u and v and the edge (uC , vC) of C.
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Figure 22: Illustration for Case 4.3.1 in the proof of Theorem 21.

Case 4.3.2. The separation pair u, v splits G into two connected components Au,v and
Bu,v; see Figure 23. In this case, the graph B consists of Bu,v, u, and v and the edges
incident to u or v and a vertex of Bu,v.

We add two edges between u and v to both graphs A and B to obtain A′ and B′.
Let M and M ′ be the primal-dual pair for which A′ is the medial graph. We claim that M
orM ′ is simple. Let u1 and u2 be the neighbors of u in A and let v1 and v2 be the neighbors
of v in A. Since G is simple, there is no multi-edge between u and v in A. Furthermore,
there is no single edge (u, v) in A, since otherwise u and v would each only have one neighbor
in Au,v and these neighbors would be a separation pair of G that induces a smaller connected
component. Thus, each of u1, u2, v1, v2 is di�erent from u and v and we introduce no self-
loops. By construction, the graph Au,v contains no separation pair and thus has either at
most 3 vertices or is 3-connected. We claim that A′ is 3-connected. If Au,v has only 1 vertex,
then u1 = u2, so there is a multi-edge in Au,v which contradicts simplicity of G. If Au,v has
only 2 vertices, then there has to be a multi-edge between them, which again contradicts
simplicity of G. If Au,v has only 3 vertices, then there have to be 4 edges in Au,v, which
also contradicts simplicity of G. If Au,v has at least 4 vertices, then u and v have at least 3
di�erent neighbors in Au,v, as otherwise there would be a cutvertex or a separation pair
that gives a smaller connected component than the separation pair u, v. Thus, if u and v
are connected to at least 3 vertices of Au,v and u and v are connected by an edge, which
preserves 3-connectivity. Hence, A′ is 3-connected. Since G is simple, there is no multi-edge
between u and v in A. Furthermore, there is no single edge (u, v) in A, since otherwise u
and v would each only have one neighbor in Au,v and these neighbors would be a separation
pair of G that induces a smaller connected component. Hence, A′ has no separation pair
and exactly one multi-edge between u and v. By Lemma 6, that means that M and M ′

have exactly one pair of parallel edges in total, so one of them has to be simple.

We recursively obtain a plane ε-angle Lombardi drawing of B′. Let 90◦ + α be the
angle described by the tangents of the two edges between u and v at u. Note that α might be
negative, but |α| ≤ ε. Since the primal or dual of A′ is simple, we obtain a plane |α|-regular
Lombardi drawing of A′ by Lemma 16. Thus, the angle described by the tangents of the
two edges between u and v at u is either 90◦ + α or 90◦ − α. We can make sure that the
angle is 90◦ + α by inverting the direction of all edges in the proof of Lemma 16 in case it
is not.

We perform a Möbius-transformation on the drawing of A′ such that the edges
between u and v are drawn with an angle of 45◦+α/2 between either edge and the segment
between u and v. We pick the Möbius-transformation such that u and v are very close to
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Figure 23: Illustration for Case 4.3.2 in the proof of Theorem 21.

each other; in particular, we want them to be close enough such that the two circles that
the edges between u and v lie on contain no other vertex of A′ and no edges of A′ that is
incident to neither u nor v. Note that the radius of these circles are the same and approach 0
as the distance between u and v approaches 0; hence, such a Möbius-transformation exists.

We apply another Möbius-transformation on B′ such that the distance between u
and v is the same as in the drawing of A′ and such that the two edges between u and v are
drawn with an angle of 135◦ − α/2 between either edge and the segment between u and v.
We now place the drawing of B′ on the drawing of A′ such that both copies of u lie on
the same coordinate and both copies of v lie on the same coordinate and then we remove
all edges between u and v. By construction, the whole drawing of B′ lies inside the region
described by the two edges between u and v in the drawing of B′. Further, since these
edges lie on the same circles as the two edges between u and v in A′, this region contains no
vertices or edges in the drawing of A′ (except u and v and their incident edges themselves).
Since the drawings of A′ and B′ are plane and we cannot introduce a crossing between an
edge of A′ and an edge of B′ after removing the multi-edges between u and v, the resulting
drawing of G is also plane. Since u and v use the same ports in the drawing of A′ and the
drawing of B′, the resulting drawing is a plane |α|-angle Lombardi drawing of G. Because
of |α| ≤ ε, this drawing is also a plane ε-angle Lombardi drawing of G.

Corollary 22. Every vertex-minimal embedding of a knot or link admits a plane ε-angle
Lombardi drawing.

7 Conclusion and Open Problems

We have studied plane Lombardi drawings of knots and links, which can be modeled as
4-regular multigraphs. We have shown that not all knots admit a crossing-minimal plane
Lombardi drawing. On the other hand, we have given an algorithm to draw 4-regular
polyhedral graphs plane Lombardi. Further, we have shown that every biconnected 4-regular
plane multigraph admits a plane 2-Lombardi drawing, where every edge is composed of two
circular arcs, and a plane near-Lombardi drawing, where the angle between two edges at a
vertex is at least 90◦−ε for any ε > 0, while the angle between opposite edges remains 180◦.

Although we made progress on the original question, there are several questions that
remain open. As main questions concerning Lombardi drawings we have the following.
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Question 1. Can we give a complete characterization of 4-regular plane multigraphs that
admit a plane Lombardi drawing?

Question 2. What is the complexity of deciding whether a given 4-regular plane multigraph
admits a plane Lombardi drawing?

Question 3. Given a 4-regular plane multigraph, what is the minimum number of edges
consisting of two circular arcs in any plane 2-Lombardi drawing?
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A A Full Example for Drawing Knots 51, 62, 77, and 818 via Circle Packing

Figure 24: Extension of the primal graph (dotted) of knot 51 to the square pyramid and its
dual (dashed). The medial graph in the top right is the knot 62, the medial graph in the
bottom left is the knot 77, and the medial graph in the bottom right is the knot 818.
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(a) (b)

(c) (d)

(e) (f)

Figure 25: (a) A circle packing for the square pyramid (dotted) and its dual (dashed), and
a plane Lombardi drawing for the medial graph 818 (solid); (b) eliminating an edge of the
primal and the plane Lombardi drawing of 77; (c) eliminating an edge of the primal; (d) the
plane Lombardi drawing of 62; (e) eliminating an edge of the primal; (f) the plane Lombardi
drawing of 51.
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B Drawings of all Lombardi Knots up to 8 Vertices

31 51 61 62 63

71 72 73 74 75

76 77 81 82 83

84 85 86 87 88

89 810 811 812 813

814 815 816 817 818

819 820 821

Figure 26: Plane Lombardi drawings of all Lombardi knots up to 8 vertices.
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