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Abstract. A monotone drawing of a graph G is a straight-line drawing of G such that every
pair of vertices is connected by a path that is monotone with respect to some direction.

Trees, as a special class of graphs, have been the focus of several papers and, recently, He and
He [6] showed how to produce a monotone drawing of an arbitrary n-vertex tree that is contained in
a 12n× 12n grid.

All monotone tree drawing algorithms that have appeared in the literature consider rooted or-
dered trees and they draw them so that (i) the root of the tree is drawn at the origin of the drawing,
(ii) the drawing is confined in the first quadrant, and (iii) the ordering/embedding of the tree is
respected. In this paper, we provide a simple algorithm that has the exact same characteristics and,
given an n-vertex rooted tree T , it outputs a monotone drawing of T that fits on a n× n grid.

For unrooted ordered trees, we present an algorithms that produces monotone drawings that
respect the ordering and fit in an (n + 1) × (n

2
+ 1) grid, while, for unrooted non-ordered trees we

produce monotone drawings of good aspect ratio which fit on a grid of size at most b 3
4

(n + 2)c ×
b 3
4

(n + 2)c.

Key words. Monotone tree drawings, graph drawing, grid drawing, area of drawing, algorithm.

1. Introduction. A straight-line drawing Γ of a graph G is a mapping of each
vertex to a distinct point on the plane and of each edge to a straight-line segment
between the vertices. A path P = {p0, p1, . . . , pn} is monotone if there exists a line l
such that the projections of the vertices of P on l appear on l in the same order as on
P . A straight-line drawing Γ of a graph G is monotone, if a monotone path connects
every pair of vertices.
Monotone graph drawing has gained the recent attention of researchers and several
interesting results have appeared. Given a planar fixed embedding of a planar graph
G, a planar monotone drawing of G can be constructed, but at the cost of some bends
on some edges (thus no longer a straight-line drawing) [2]. In the variable embedding
setting, there exists a planar monotone drawing of any planar graph without any
bends [8].
One way to find a monotone drawing of a graph is to simply find a monotone draw-
ing of one of its spanning trees. For that reason, the problem of finding monotone
drawings of trees has been the subject of several recent papers, starting from the
work by Angelini et al. [1] which introduced monotone graph drawings. Angelini et
al. [1] provided two algorithms that used ideas from number theory and more specif-
ically Stern-Brocot trees [11, 3], [4, Sect. 4.5]. The first algorithm used a grid of
size O(n1.6) × O(n1.6) (BFS-based algorithm) while the second one used a grid of
size O(n) × O(n2) (DFS-based algorithm). Later, Kindermann et al. [9] provided
an algorithm based on Farey sequence (see [4, Sect. 4.5]) that used a grid of size
O(n1.5) × O(n1.5). He and He [7] gave an algorithm based on Farey sequence and
reduced the required grid size to O(n1.205) × O(n1.205), which was the first result
that used less than O(n3) area. Recently, He and He [5] firstly reduced the grid size
for a monotone tree drawing to O(n log(n)) × O(n log(n)) and, in a sequel paper, to
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O(n)×O(n) [6]. Their monotone tree drawing uses a grid of size at most 12n× 12n
which turns out to be asymptotically optimal as there exist trees which require at
least n

9 × n
9 area [6].

Our Contribution:
All monotone tree drawing algorithms that have appeared in the literature consider
rooted ordered trees and they draw them so that (i) the root of the tree is drawn at the
origin of the drawing, (ii) the drawing is confined in the first quadrant, and (iii) the
embedding of the tree is respected. In this paper, we provide a simple algorithm that
has the exact same characteristics and, given an n-vertex rooted tree T , it outputs a
monotone drawing of T that fits on a n×n grid. Despite its simplicity, our algorithm
improves the 12n× 12n result of He and He [6].
By relaxing the drawing restrictions we can achieve smaller drawing area. More
specifically, by carefully selecting a new root for the tree, which we draw it at the
origin, we can produce a “two-quadrants” drawing that fits in an (n + 1) × (n2 + 1)
grid. We note that the produced drawing respects the given embedding of the tree.
By further relaxing this requirement, i.e., by allowing to change the order of the
neighbors of a tree vertex around it, we can achieve a drawing of better aspect ratio
and smaller area (compared to our n × n algorithm). More specifically, we describe
a “four-quandrants” algorithm that draws an n-vertex tree on a grid of size at most
b 34 (n+ 2)c × b 34 (n+ 2)c.
The paper is organized as follows: Section 2 provides definitions and preliminary
results. In Sections 3, 4 and 5 we present our one-, two- and four-quadrants algorithms,
respectively. We conclude in Section 6. A preliminary version of this paper which
included the one-quadrant algorithm for monotone tree drawings was presented in [10].

2. Definitions and Preliminaries. Let Γ be a drawing of a graph G and
(u, v) be an edge from vertex u to vertex v in G. The slope of edge (u, v), denoted
by slope(u, v), is the angle spanned by a counter-clockwise rotation that brings a
horizontal half-line starting at u and directed towards increasing x-coordinates to
coincide with the half-line starting at u and passing through v. We consider slopes that
are equivalent modulo 2π as the same slope. Observe that slope(u, v) = slope(v, u)−π.
We only deal with planar monotone drawings of trees, as it was proved by Angelini
et al. that every monotone drawing of tree is planar [1].
Let T be a tree rooted at a vertex r. Denote by Tv the subtree of T rooted at a vertex
v. By |Tv| we denote the number of vertices of Tv. Let v be a child of u. By Tuv
we denote the tree that consists of edge (u, v) and Tv. In the rest of the paper, we
assume that all tree edges are directed away from the root. A rooted tree is said to
be ordered if there is an order imposed on the children of each vertex. A drawing is
said to respect the ordering of the tree (or the embedding) if the children of a vertex
are drawn around it in the specified order.
When producing a grid drawing, it is common to refer to the side-length of the required
grid and to its dimensions. We emphasize that we measure length (width/height) in
units of distance, but when we denote the dimensions of a grid we use the number of
grid points in each dimension. So, a grid of width w and height h fits in a (w + 1)×
(h+ 1) grid.

2.1. Slope-disjoint Tree Drawings. Angelini et al. [1] defined the notion of
slope-disjoint tree drawings. Let Γ be a drawing of a rooted tree T . Γ is called a
slope-disjoint drawing of T if the following properties are satisfied:

1. For every vertex u ∈ T , there exist two angles a1(u) and a2(u), with 0 <
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a1(u) < a2(u) < π such that for every edge e that is either in Tu or that
enters u from its parent, it holds that a1(u) < slope(e) < a2(u).

2. For every two vertices u, v ∈ T such that v is a child of u, it holds that
a1(u) < a1(v) < a2(v) < a2(u).

3. For every two vertices v1, v2 having the same parent, it holds that either
a1(v1) < a2(v1) < a1(v2) < a2(v2) or a1(v2) < a2(v2) < a1(v1) < a2(v1).

The idea behind the definition of slope-disjoint tree drawings is that all edges in the
subtree Tu as well as the edge entering u from its parent have slopes that strictly fall
within the angle-range 〈a1(u), a2(u)〉 defined for vertex u. 〈a1(u), a2(u)〉 is called the
angle-range of u with a1(u) and a2(u) being its boundaries. The convex angle formed
between two half-lines with slopes a1(u) and a2(u) is denoted by φu = a2(u)− a1(u)
and is called angle-range length of u.
Angelini et al. [1] proved the following theorems:

Theorem 1 (Angelini et al.[1]). Every monotone drawing of a tree is planar.

Theorem 2 (Angelini et al.[1]). Every slope-disjoint drawing of a tree is monotone.

In order to simplify the description of our algorithm, we extend the definition of
slope-disjoint tree drawings to allow for angle-ranges of adjacent vertices (parent-child
relationship) or sibling vertices (children of the same parent) to share angle-range
boundaries.

Definition 3. A tree drawing Γ of a rooted tree T is called a non-strictly slope-
disjoint drawing if the following properties are satisfied:

1. For every vertex u ∈ T , there exist two angles a1(u) and a2(u), with 0 ≤
a1(u) < a2(u) ≤ π such that for every edge e that is either in Tu or enters u
from its parent, it holds that a1(u) < slope(e) < a2(u).

2. For every two vertices u, v ∈ T such that v is a child of u, it holds that
a1(u) ≤ a1(v) < a2(v) ≤ a2(u).

3. For every two vertices v1, v2 with the same parent, it holds that either a1(v1) <
a2(v1) ≤ a1(v2) < a2(v2) or a1(v2) < a2(v2) ≤ a1(v1) < a2(v1).

In our extended definition, we allow for angle-ranges of adjacent vertices (parent-child
relationship) or sibling vertices (children of the same parent) to share angle-range
boundaries. Note that replacing the “≤” symbols in our definition by the “<” symbol
gives us the original definition of Angelini et al. [1] for the slope disjoint tree drawings.

Lemma 4. Every non-strictly slope-disjoint drawing of a tree T is also a slope-disjoint
drawing.

Proof. Intuitively, the theorem holds since we can always adjust (by a tiny amount)
the angle-ranges of vertices that share an angle-range boundary so that, after the
adjustment no two tree vertices share an angle-range boundary. Note that the actual
drawing of the tree does not change. Only the angle-ranges are adjusted.
More formally, let Γ be a non-strictly slope-disjoint drawing of a tree T rooted at r.
We show how to compute for every vertex u a new angle-range 〈b1(u), b2(u)〉 such
that the current drawing of T with the new angle-range is slope-disjoint.
Let e(u) be the edge that connects the parent of u to u in T , for u ∈ T\r.
We make use of the following definitions:

δ1 = minu∈T\r (slope(e(u))− a1(u))

δ2 = minu∈T\r (a2(u)− slope(e(u)))

δ = min(δ1, δ2)
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For any vertex u ∈ T\r it holds that:

slope(e)− a1(u) ≥ δ(1)

a2(u)− slope(e) ≥ δ(2)

By Property-1 of the non-strictly slope-disjoint drawing, we have that δ1, δ2 > 0 and,
therefore, δ > 0. By adding the two previous inequalities we get that,

(3) (1) + (2)⇒ a2(u)− a1(u) ≥ 2δ where u ∈ T\r
For any descendant v of the root r of T , by inductive use of Property-2 of the non-
strictly slope-disjoint drawings, it holds that:

a1(r) ≤ a1(v)(4)

a2(r) ≥ a2(v)(5)

By subtracting (5) from (4) we get

(5)− (4)⇒ a2(r)− a1(r) ≥ a2(v)− a1(v)
(3)

≥ 2δ

Therefore, for any vertex u ∈ T it holds:

(6) a2(u)− a1(u) ≥ 2δ

Let the root r of T be at level-0, let u be a vertex in level-i, i > 0 and let h be the
height of tree T . Define the slope-disjoint angle-ranges 〈b1(u), b2(u)〉 for each vertex
u ∈ T as follows:

b1(u) =

{
a1(r) if u = r

a1(u) + δ · i
h+1 if u 6= r

b2(u) =

{
a2(r) if u = r

a2(u)− δ · i
h+1 if u 6= r

Firstly, we show that the new angle-range boundaries b1(·), b2(·) satisfy Property-2
of slope-disjoint drawings. Let u be a level-i vertex ∈ T and v be its child. By the
non-strictly slope-disjoint Property-2, it holds that:

a1(u) ≤ a1(v)⇒ a1(u) + δ · i

h+ 1
< a1(v) + δ · i+ 1

h+ 1

⇔ b1(u) < b1(v)

Similarly, we have that b2(v) < b2(u). We also have,

b2(v)− b1(v) = a2(v)− δ · i+ 1

h+ 1
−
(
a1(v) + δ · i+ 1

h+ 1

)
= (a2(v)− a1(v))− 2δ · i+ 1

h+ 1
(6)

≥ 2δ − 2δ · i+ 1

h+ 1

= 2δ ·
(

1− i+ 1

h+ 1

)
= 2δ · h− i

h+ 1

> 0

⇒ b1(v) < b2(v)
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The last inequality holds since vertex u has a child and, thus, u is at a level i such
that i < h. Thus, Property-2 holds.
Secondly, we show that the new angle-range boundaries b1(·), b2(·) satisfy Property-3
of slope-disjoint drawings. Let v1, and v2 be two level-i vertices having the same
parent. Then, by Property-3 of the non-strictly slope disjoint drawings we have that
a1(v1) < a2(v1) ≤ a1(v2) < a2(v2) or a1(v2) < a2(v2) ≤ a1(v1) < a2(v1). The
two cases are symmetric, so we only prove that b1(v1) < b2(v1) < b1(v2) < b2(v2)
when a1(v1) < a2(v1) ≤ a1(v2) < a2(v2). As proved for the case of Property-2,
b1(v1) < b2(v1) and b1(v2) < b2(v2) and thus, it remains to prove that b2(v1) < b1(v2).
But we have that,

a2(v1) ≤ a1(v2)⇒ a2(v1)− δ · i

h+ 1
< a1(v2) + δ · i

h+ 1

⇔ b2(v1) < b1(v2)

Finally, we turn our attention to Property-1 of slope-disjoint drawings. Angle-range
boundaries a1(·) and a2(·) satisfy Property-1 of non-strictly slope-disjoint drawings
and thus, for every vertex u at level i and for every edge e that belongs in Tu or that
enters u from its parent inequality (1) holds. By definition, we have that b1(u) =
a1(u) + δ · i

h+1 which implies

(7) a1(u) = b1(u)− δ · i

h+ 1

(1)
(7)⇔ slope(e)−

(
b1(u)− δ · i

h+ 1

)
≥ δ

⇔ slope(e)− b1(u) ≥ δ ·
(

1− i

h+ 1

)
⇔ slope(e)− b1(u) ≥ δ ·

(
h+ 1− i
h+ 1

)
⇒ slope(e)− b1(u) > 0

The last inequality holds since δ > 0 and i < h + 1. The later is true since u is a
level-i vertex where i ≤ h.
In a similar way, we show that b2(u) − slope(e) > 0 and we conclude that b1(u) <
slope(e) < b2(u). Thus, Property-1 of slope-disjoint drawing is also satisfied.

Theorem 5. Every non-strictly slope-disjoint drawing of a tree is monotone and pla-
nar.

Proof. By Lemma 4 every non-strictly slope-disjoint drawing of a tree T is slope-
disjoint and by Theorem 1 and Theorem 2 it is monotone and planar.

2.2. Locating Points on the Grid. Based on geometry, we now prove that
it is always possible to identify points on a grid that satisfy several properties with
respect to their location.

Lemma 6. Consider two angles θ1, θ2 with 0 ≤ θ1 < θ2 ≤ π
4 and let d = d 1

θ2−θ1 e.
Then, edge e connecting the origin (0, 0) to point p = (d, btan(θ1) · d + 1c) satisfies
θ1 < slope(e) < θ2.
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Proof. Let l1 and l2 be the half-lines from origin with slopes θ1 and θ2, respectively.
Let a and b be the intersection points of l1 and l2 with line x = d, respectively.
We prove that |ab| > 1, so a point of the grid must lie between a and b, since the
x-coordinate is integer and line segment ab is parallel to y-axis as seen in Figure 1.
From trigonometry, we know identities :

(8) tan(a− b) =
tan(a)− tan(b)

1 + tan(a) · tan(b)

and

(9) tan(a) > a , when 0 < a <
π

2

By (8), it holds that tan(a) − tan(b) = tan(a − b) · (1 + tan(a)tan(b)) and thus, for
0 ≤ a, b ≤ π

2 it holds:

(10) tan(a)− tan(b) > tan(a− b), when 0 ≤ a, b ≤ π

2

The coordinates of point a are (d, tan(θ1) · d) while the coordinates of point b are
(d, tan(θ2) · d). Therefore,

|ab| = tan(θ2) · d− tan(θ1) · d
= (tan(θ2)− tan(θ1)) · d
(10)
> tan(θ2 − θ1) · d
(9)

≥ (θ2 − θ1) · d

= (θ2 − θ1) · d 1

θ2 − θ1
e

≥ (θ2 − θ1) · 1

θ2 − θ1
= 1

Given that |ab| > 1, the grid point p = (d, btan(θ1) · d + 1c) falls within the angular
sector defined by half-lines l1 and l2 and satisfies the lemma.

Lemma 7. Consider angles θ1, θ2 with 0 ≤ θ1 < θ2 ≤ π
2 and let d = d 1

θ2−θ1 e.
Then, a grid point p such that the edge e that connects the origin (0, 0) to p sat-
isfies θ1 < slope(e) < θ2, can be identified as follows:

θ2 − θ1 >
π

4
: p = (1, 1)

π

4
≥ θ2 − θ1 > arctan(

1

2
) :


p = (1, 2) if θ1 ≥ π

4

p = (1, 1) if π
4 > θ1 ≥ arctan( 1

2 )

p = (2, 1) if arctan( 1
2 ) > θ1

arctan(
1

2
) ≥ θ2 − θ1 :


p = (d, btan(θ1) · d+ 1c) if π

4 ≥ θ2 > θ1 ≥ 0

p = (1, 1) if θ2 >
π
4 > θ1

p = (btan(π2 − θ2) · d+ 1c, d) if θ2 > θ1 ≥ π
4
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θ1

θ2

b

a

p

x = d

l2

l1

Figure 1. Geometric representation of
Lemma 6.

(2, 1)
(1, 1)

(1, 2)

arctan(12)

π
4 − arctan(12)

arctan(12)

Figure 2. Point, slopes angular sectors
used in Lemma 7.

Moreover, if p = (x, y) is the identified point, it also holds that:

max(x, y) ≤ π

2
· 1

θ2 − θ1
Proof. See Figure 2 for points, slopes and angular sectors relevant to Lemma 7. For
each case, we show that the identified points in the statement of the lemma satisfy
the “slope” (“θ1 < slope(e) < θ2”) and the “length” (“max(x, y) < . . .”) conditions.
Case-1: θ2 − θ1 > π

4 . Point (1, 1) is the identified point. In this case, the edge e from
the origin (0, 0) to (1, 1) has slope π

4 . For the “slope” condition, given that
0 ≤ θ1 < θ2 ≤ π

2 and θ2 − θ1 > π
4 , it is enough to show that θ1 <

π
4 < θ2

which implies that θ1 < slope(e) < θ2. If θ1 >
π
4 we have that,

θ2 − θ1 >
π

4
⇔ θ2 > θ1 +

π

4

>
π

4
+
π

4

=
π

2

A clear contradiction. So, θ1 <
π
4 . In a similar way we can show that θ2 >

π
4 .

For the “length” condition, we have to show that,

max(1, 1) = 1 ≤ π

2
· 1

θ2 − θ1
This is true since,

0 ≤ θ1 < θ2 ≤
π

2
⇒ θ2 − θ1 ≤

π

2

⇔ 1

θ2 − θ1
≥ 1

π
2

⇔ π

2

1

θ2 − θ1
≥ π

2
· 1
π
2

= 1

Case-2: π
4 ≥ θ2 − θ1 > arctan( 1

2 ). We first establish the “slope” condition.
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For the case where arctan( 1
2 ) > θ1 the identified point is (2, 1). We note that

the slope of the edge e from the origin (0, 0) to (2, 1) is slope(e) = arctan( 1
2 ).

Then, by the assumption we have:

θ2 − θ1 > arctan

(
1

2

)
⇔ θ2 > θ1 + arctan

(
1

2

)
≥ arctan

(
1

2

)
It follows that θ1 < arctan( 1

2 ) < θ2 ⇒ θ1 < slope(e) < θ2.
For the case where π

4 > θ1 ≥ arctan( 1
2 ) the identified point is (1, 1). We note

that the slope of the edge e from the origin (0, 0) to (1, 1) is slope(e) = π
4 . By

the assumption, and by taking into account that arctan( 1
2 ) > π

8 , we have:

θ2 − θ1 > arctan

(
1

2

)
⇔ θ2 > θ1 + arctan

(
1

2

)
≥ arctan

(
1

2

)
+ arctan

(
1

2

)
= 2 · arctan

(
1

2

)
> 2 · π

8

=
π

4

It follows that θ1 <
π
4 < θ2 ⇒ θ1 < slope(e) < θ2.

For the case where θ1 ≥ π
4 the identified point is (1, 2). We note that the slope

of the edge e from the origin (0, 0) to (1, 2) is slope(e) = arctan(2). We want
to establish that θ1 < arctan(2) < θ2. This can be easily proved by taking
into account that arctan(2) = π

2 −arctan( 1
2 ) as well as that 2·arctan( 1

2 ) > π
4 .

For the “length” condition, it is enough to show that:

max(max(2, 1),max(1, 1),max(1, 2)) = 2 ≤ π

2
· 1

θ2 − θ1
This is true since,

θ2 − θ1 ≤
π

4

⇔ 1

θ2 − θ1
≥ 1

π
4

⇔ π

2

1

θ2 − θ1
≥ π

2
· 1
π
4

= 2

Case-3: arctan( 1
2 ) ≥ θ2 − θ1. We first establish the “slope” condition. In the case

where π
4 ≥ θ2 > θ1 ≥ 0, by Lemma 6 the identified point immediately

satisfies the “slope” condition. The same holds for the symmetric case where
θ2 > θ1 ≥ π

4 . Finally, in the case where θ2 >
π
4 > θ1 the slope condition

trivially holds since the edge from the origin (0, 0) to (1, 1) has slope π
4 .
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For the “length” condition, we note that in all three cases we have that,

max(x, y) ≤ d = d 1

θ2 − θ1
e

<
1

θ2 − θ1
+ 1

But it also holds:

(11)
1

x
+ 1 ≤ π

2
· 1

x
, where 0 < x ≤ π

2
− 1

And since θ2 − θ1 ≤ arctan
(
1
2

)
< π

2 − 1 we get that,

max(x, y) <
1

θ2 − θ1
+ 1

(11)

≤ π

2
· 1

θ2 − θ1
The lemma is now proved.

3. One-Quadrant “Traditional” Monotone Drawing of Rooted Ordered
Trees. In this Section, we describe an algorithm that builds a monotone drawing of
an n-vertex tree on a grid of size at most n × n. We refer to this algorithm as
“traditional” since it satisfies all drawing conventions followed by all algorithms that
have appeared in the literature, that is, it take as input a rooted ordered tree T and
produces a monotone drawing of T where (i) the root of T is drawn at the origin of
the drawing, (ii) the drawing of T is confined in the first quadrant, and (iii) the order
of the children of each node of T is respected. The algorithm produces a non-strictly
slope-disjoint tree drawing which, by Theorem 5, is monotone and planar.
***
In order to describe a non-strictly slope-disjoint tree drawing, we need to identify for
each vertex u of the tree a grid point to draw u as well as to assign to it two angles
a1(u), a2(u), with a2(u) > a1(u). For every tree node, the identified grid point and the
two angles should be such that the three properties of the non-strictly slope-disjoint
drawings are satisfied.
The basic idea behind our algorithm is to split in a balanced way the angle-range
〈a1(u), a2(u)〉 of vertex u to its children based on the size of the subtrees rooted at
them. The following strategy formalizes this idea.

Strategy 1. Let u be a non-leaf vertex of an n-vertex rooted tree T such that we al-
ready have assigned values for a1(u) and a2(u), with a1(u) < a2(u). Let v1, v2, . . . , vm,
m ≥ 1 be the children of u. We assign angle-range for the children of u in the following
way:

a1(vi) =

{
a1(u) if i = 1

a2(vi−1) if 1 < i ≤ m

a2(vi) = a1(vi) + (a2(u)− a1(u)) · |Tvi ||Tu| − 1
, 1 ≤ i ≤ m

The following lemma proves that Strategy 1 satisfies Property-2 and Property-3 of
the non-strictly slope-disjoint drawings.

Lemma 8. Let u be a vertex of the rooted tree T such that we already have assigned
values for a1(u) and a2(u), with a1(u) < a2(u). Let v1, v2, . . . , vm, m ≥ 1, be the
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children of u in T . If we assign values for angle-ranges of the children of u according to
Strategy 1, then Property-2 and Property-3 of the non-strictly slope-disjoint drawings
are satisfied.

Proof. For Property-3, we have to show that for every k, l, 1 ≤ k < l ≤ m, it holds:
a1(vk) < a2(vk) ≤ a1(vl) < a2(vl). For any j, 1 ≤ j ≤ m, we have that,

a2(vj) = a1(vj) + (a2(u)− a1(u)) · |Tvj ||Tu| − 1

> a1(vj)

The last inequality holds since, by assumption, a2(u) − a1(u) > 0 and because the
size of a rooted tree is always positive. Therefore,

a1(v1) < a2(v1)

= a1(v2)

< a2(v2)

= a1(v3)

...

< a2(vm−1)

= a1(vm)

< a2(vm)

So, for any k, l, 1 ≤ k < l ≤ m, it holds that a1(vk) < a2(vk) ≤ a1(vl) < a2(vl) and,
thus, Property-3 holds.
For Property-2, since we proved that a1(v1) < a2(v1) ≤ a1(v2) < . . . < a2(vm−1) ≤
a1(vm) < a2(vm), it is sufficient to show that a1(u) ≤ a1(v1) and a2(vm) ≤ a2(u).
The first part trivially holds since a1(v1) = a1(u) by definition. For the second part,
by using repeatedly the assignment for a1 and a2 provided in the statement of the
lemma we get that,

a2(vm) = a1(v1) + (a2(u)− a1(u))

∑m
i=1 |Tvi |
|Tu| − 1

Since the subtree rooted at u, consists of the root vertex u and the subtrees rooted at
u’s children, it holds that |Tu| =

∑n
i=1 |Tvi | + 1. It follows that a2(vm) = a2(u) and

Property-2 is satisfied.

Observation 1. If a vertex u has only one child, say v1, then the angle assignment
Strategy 1 assigns a1(v1) = a1(u) and a2(v1) = a2(u), which means that the child
“inherits” the angle-range of its parent.

Algorithm 1 describes our monotone tree drawing algorithm. It consists of three
steps: Procedure AssignAngles which assigns angle-ranges to the vertices of the tree
according to Strategy 1, Procedure DrawVertices which assigns each tree vertex to
a grid point according to Lemma 7 and Procedure BalancedTreeMonotoneDraw
which assigns the root to point (0, 0) with angle-range

〈
0, π2

〉
and initiates the drawing

of the tree.

Lemma 9. The drawing produced by Algorithm 1 is monotone and planar.

10



Algorithm 1 One-Quadrant Monotone Rooted Ordered Tree Drawing

1: procedure BalancedTreeMonotoneDraw
2: Input: An n-vertex tree T rooted at vertex r.
3: Output: A monotone drawing of T on a grid of size at most n× n.
4: a1(r)← 0, a2(r)← π

2
5: AssignAngles(r, a1(r), a2(r))
6: Draw r at (0, 0)
7: DrawVertices(r)

8:

9: procedure AssignAngles(u, a1, a2)
10: Input: A vertex u and the boundaries of the angle-range 〈a1, a2〉 assigned to u.
11: Action: It assigns angle-ranges to the vertices of Tu.
12: for each child vi of u do
13: Assign a1(vi), a2(vi) as described in Strategy 1.
14: AssignAngles(vi, a1(vi), a2(vi))

15:

16: procedure DrawVertices(u)
17: Input: A vertex u where u has already been drawn of the grid and angle-ranges

have been defined for all vertices of Tu.
18: Action: It draws the vertices of Tu.
19: for each child vi of u do
20: Find a valid pair (x, y) as described in Lemma 7 where
21: θ1 ← a1(u) and θ2 ← a2(u)
22: If u is drawn at (ux, uy), draw vi at (ux + x, uy + y)
23: DrawVertices(vi)

Proof. The angle-range assignment of Strategy 1 satisfies Property-2 and Property-3
of the non-strictly slope disjoint drawing as proved in Lemma 8. In addition, the
assignment of the vertices to grid points satisfies Property-1 of the non-strictly slope
disjoint drawing as proved in Lemma 7. Thus, the produced drawing by Algorithm 1
is non-strictly slope disjoint and, by Theorem 5, it is monotone and planar.

It remains to establish a bound on the grid size required by Algorithm 1. Our proof
uses induction on the number of tree vertices having more than one child.

Lemma 10. Let T be a rooted tree and u ∈ T be a vertex. Consider φu = a2(u)−a1(u)
as assigned by Algorithm 1. Then the side-length of the grid which Algorithm 1 uses
for the drawing of the subtree Tu rooted at u is bounded by:

(|Tu| − 1)
π

2

1

φu

Proof. We use induction on the number of vertices having at least two children. Let
i be the number of vertices of ∈ Tu with at least two children.
Base Case (i=0): In that case, Tu is just a path and by Observation 1, Algorithm 1

assigns to every vertex the same angle-range. From this observation, for any
vertex v ∈ Tu, it holds that a2(v)− a1(v) = a2(u)− a1(u) = φu, therefore by
Lemma 7 we have that each edge expands our grid at most by:

11



π

2

1

φu

Since the tree has |Tu| vertices, we expand the grid |Tu| − 1 times, therefore
the side-length of the grid required for the drawing of tree Tu is:

(|Tu| − 1)
π

2

1

φu

The base case is now settled.
Induction Step: We assume that for any rooted subtree which contains at most i

vertices with at least two children each, the statement holds. We prove that
for any subtree rooted at vertex u with i + 1 vertices in Tu having at least
two children each, the statement also holds.
At first we prove that the only case of interest is when the subtree is rooted
at a vertex with at least two children. Let’s assume Tu is the union of a
path starting from u and ending at v where each vertex has exactly one child
except v and the subtree rooted at v. The number of vertices in Tv having
at least two children is i + 1 by assumption since the vertices in the path
between u and v have exactly one child. If the statement holds for v we have,
by Observation 1, a2(v) = a2(u) and a1(v) = a1(u), and thus,

(12) φv = a2(v)− a1(v) = a2(u)− a1(u) = φu

The side-length of the required grid for Tv is,

(|Tv| − 1)
π

2

1

φv

(12)
= (|Tv| − 1)

π

2

1

φu

Also, the side-length of grid required for the path from u to v, having |Tu|−|Tv|
vertices, is

(|Tu| − |Tv|)
π

2

1

φu

So, the total side-length of the required grid is:

(|Tv| − 1)
π

2

1

φu

Therefore, it is enough to only consider the case where the root u of the
subtree Tu has at least two children.
Let u be a vertex ∈ T such that u has at least two children and Tu has i+ 1
vertices with at least two children each. Let v1, v2, . . . , vm be the children of u
and observe that the largest grid devoted to any of the trees1. Tuvj , 1 ≤ j ≤ m,
determines the side-legth of the grid drawing of Tu since the subtrees rooted
at the children of u are drawn completely inside non-overlapping (but possibly
touching) angular sectors. The above statement holds because all the grids
that are used for the subtrees have the same origin (u) and all angular sectors

1Recall that by Tu
v , where v is a child of u, we denote the tree that consists of edge (u, v) and Tv

12



lies in the first quadrant since Algorithm 1 assigns to the root angle-range〈
0, π2

〉
. Therefore, the side-length of the grid required in order to draw Tu is

equal to the maximum of the grid side-lengths required to draw any of Tuvj .
For any vertex vj , since vertex u has at least two children, it holds that the
number of vertices in Tvj having at least two children each is less or equal to
i, and therefore the induction hypothesis applies. Thus, Tvj is drawn on a
grid with side-length bounded by,

(|Tvj | − 1)
π

2

1

φvj

For the edge connecting u to vj , by Lemma 7 we require a grid of side-length
bounded by,

π

2

1

φvj

Therefore, the required grid has total side-length bounded by:

|Tvj |
π

2

1

φvj

Since we applied Strategy 1, it holds that

(13) φvj =
|Tvj |
|Tu| − 1

φu

Thus, the required total grid side-length required can be restated as:

|Tvj |
π

2

1

φvj

(13)
= |Tvj |

π

2

1
|Tvj
|

|Tu|−1φu

= (|Tu| − 1)
π

2

1

φu

Therefore, the statement holds for the induction step. This completes the
proof of the lemma.

Theorem 11. Given a rooted n-vertex Tree T , Algorithm 1 produces a monotone grid
drawing using a grid of size at most n× n.

Proof. The monotonicity of the drawing follows directly from Lemma 9. By applying
Lemma 10 to the root of the tree which is assigned angular sector < 0, π2 > (and thus,
θ2 = π

2 and θ1 = 0) we get that in the worst case the drawing of T uses a grid of
side-length that is smaller or equal to:

(n− 1)
π

2

1
π
2

= n− 1

Therefore, the required grid is of size at most n× n.

13



Figures 3-5 present drawings produced by Algorithm 1. Figure 3 shows the drawing
of a 5-layer complete binary tree (31 vertices). While Theorem 11 indicates that a
grid of size 31 × 31 may be required, the binary tree is drawn on a 23 × 22 grid.
Figure 4 shows the drawing of a path (15 vertices). All paths that are rooted at
one of their endpoints are drawn along the main diagonal of a grid with side-length
matching the bound stated in Theorem 11. Finally, Figure 5 shows a drawing of tree
(out of all 10-vertex rooted trees) that requires maximum area (when produced by
Algorithm 1. We have drawn all 10-vertex rooted trees and have identified non-path
trees that require a grid of the dimensions stated in Themorem 11.

Figure 3. A full binary
tree (31 vertices) as drawn by
Algorithm 1. Grid size: 23 ×
22.

Figure 4. A path (15
vertices) as drawn by Algo-
rithm 1. Grid size: 15× 15.

Figure 5. A non-
path tree (10 vertices) with
maximum required area when
drawn by Algorithm 1. Grid
size: 10× 10.

4. Two-Quadrants Monotone Unrooted Ordered Tree Drawing. In this
Section, we examine monotone drawings for unrooted ordered trees. Our approach is
to carefully select a vertex r and designate it as the root of the tree. The produced
tree drawing occupies the first two quadrants, with respect to the location of its root r
which is drawn at the origin. We note that the drawing respects the initial embedding
of the tree, that is, the order of the neighbors of each vertex around it is maintained.
The ability to choose a vertex r and to designate it as the root of the tree, in addition
to the use of the first two quadrants, allows us to reduce the used grid to at most
n× n

2 .
We first describe how to select the vertex to be designated as the root of the tree.
A desirable property of the root node, given the nature of our algorithm, is that its
children have as much balanced subtrees (with respect to their number of vertices) as
possible.
Let T be an unrooted tree. Let r ∈ T be a vertex such that if we root T at r then
for any child v of r, the size of subtree Tv is |Tv| ≤ n

2 . We refer to r as a gravity root
of T . Therefore, if an n-vertex tree T is rooted at a gravity root vertex r there is no
vertex u ∈ T\r such that |Tu| > n

2 . Also, if n ≥ 3, r has at least two children.
We now show that every tree has a gravity root.

Lemma 12. Let T be an n-vertex unrooted tree. Algorithm 2 always succeeds in iden-
tifying a gravity root of T .

Proof. At each iteration, Algorithm 2 gets a step closer to finding a gravity root.
Denote by Tlcc(r) the largest connected component of T\r. By definition, vertex r
is a gravity root if |Tlcc(r)| ≤ n

2 . We show that at each iteration of Algorithm 2 the
value of |Tlcc(r)| decreases; this continues until a gravity root is reached.

14



Algorithm 2 Identify a gravity root

procedure GravityRootFinder(T)
Input: A unrooted tree T .
Output: A gravity root vertex r.

r ← An arbitary vertex u ∈ T
while r is not a gravity root do

u← the vertex connected to r which lies in the largest connected component
of T\r.

r ← u

Assume that r is not a gravity root. Then, |Tlcc(r)| ≥ n+1
2 . Let u be the neighbor

of r in Tlcc(r). Since Algorithm 2 selects vertex u as the root for next iteration, it is
enough to show that |Tlcc(u)| < |Tlcc(r)|.
Note that the connected component of T\u that contains r has size less or equal than
n− n+1

2 = n−1
2 . Thus, if u is not a gravity root then the next candidate gravity root

will be a neighbor of u in Tlcc(r). Thus, Tlcc(u) will be a proper subtree of Tlcc(r),
and therefore, |Tlcc(u)| < |Tlcc(r)|.
We conclude that the value of |Tlcc(r)|, where r is the candidate gravity root in
Algorithm 2 decreases with each iteration until a gravity root is selected.

By rooting a tree at a gravity root, we can obtain a monotone drawing with bounded
angle-range length for any subtree rooted at a child of the root. This is formalized
in the Lemma that follows. Let function odd() : N → {0, 1} evaluate to 1 when its
parameter is odd, otherwise it evaluates to 0.

Lemma 13. Let T be an n-vertex tree rooted at a gravity root r. Let 〈θ1, θ2〉 be the
angle-range of r. Strategy 1 assigns at each vertex u ∈ T\r angle-range of length at

most θ2−θ1
2

n−odd(n)
n−1 .

Proof. Let T be an n-vertex tree rooted at a gravity root r. Since T is rooted at a
gravity root then, for any child u of r it holds that |Tu| ≤ n

2 . Furthermore, if n is
odd then it holds that |Tu| ≤ n−1

2 since the size of a subtree must be an integer.
By making use of the odd() function, we have that for any child u of r it holds that

|Tu| ≤ n−odd(n)
2 .

By Strategy 1, we assign to each child u of r an angle-range of length:

a2(u)− a1(u) = (θ2 − θ1)
|Tu|
n− 1

≤ (θ2 − θ1)
n−odd(n)

2

n− 1

=
θ2 − θ1

2

n− odd(n)

n− 1

We complete the proof by noticing that the observation holds not only for the children
of r but also for any other vertex of T\r. This is due to the fact that Strategy 1 always
assigns to a vertex of T an angle-range of length equal or smaller to that of its parent.

Observation 2. Let T be an n-vertex tree, n > 2, rooted at a gravity root r. Then,
r has at least two children.

Proof. If we assume that r has only one child, say u, then |Tu| = |T | − 1 > |T |
2 (for

n > 2), a contradiction since we assumed r is a gravity root.
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In our “two-quadrant” algorithm we again use Strategy 1 for angle assignment but,
we now assign the gravity root of the input tree T angle-range 〈0, π〉 instead of

〈
0, π2

〉
.

Consequently, in order to assign grid points to tree vertices we need to extend Lemma 7
to cover the case where a vertex has angle-range boundary θ2 >

π
2 .

Lemma 14. Consider angles β1, β2 with 0 ≤ β1 < β2 ≤ π. Then, a grid point p such
that the edge e that connects the origin (0, 0) to p satisfies β1 < slope(e) < β2, can be
identified as follows:

p =



(0, 1) if β1 <
π
2 < β2

(x, y) if β2 ≤ π
2 , where (x, y) is a valid pair according to Lemma 7

where θ1 ← β1 and θ2 ← β2

(−x, y) if β1 ≥ π
2 , where (x, y) is a valid pair according to Lemma 7

where θ1 ← π − β2 and θ2 ← π − β1

Proof. We prove the lemma by taking cases depending on the value of β1 and β2.
Case-1: β1 <

π
2 < β2. It is clear that β1 <

π
2 < β2 ⇔ β1 < slope(e) < β2.

Case-2: β2 ≤ π
2 . From Lemma 7 it holds that θ1 < slope(e) < θ2 ⇔ β1 < slope(e) <

β2.
Case-3: β1 ≥ π

2 . Let e′ be the edge that connects the origin to (x, y). Note that
slope(e) = π − slope(e′). From Lemma 7 it holds that:

θ1 < slope(e′) < θ2

⇔π − β2 < slope(e′) < π − β1
⇔β1 < π − slope(e′) < β2

⇔β1 < slope(e) < β2

Algorithm 3 describes our “two-quadrants” balanced monotone unrooted-tree draw-
ing algorithm. It consists of three procedures: Procedure AssignAngles (same as
in Algorithm 1) which assigns angle-ranges to the vertices of the tree according to
Strategy 1, Procedure ExpandedDrawVertices which assigns each tree vertex to a
grid point according to Lemma 14 and Procedure UnrootedTreeMonotoneDraw
which assigns a vertex as the root, draws it to point (0, 0) with angle-range 〈0, π〉 and
initiates the drawing of the tree.
The following observation highlights the connection between Algorithm 3 and Algo-
rithm 1.

Observation 3. Let v be a vertex that has been assigned angle-range 〈a1(v), a2(v)〉
and let u be its parent which is drawn at grid point (ux, uy). Algorithm 3 draws Tv in
the following way:
-a2(v) ≤ π

2 : Algorithm 3 draws Tv in the first quadrant, in exactly the same way as
Algorithm 1 does.

-a1(v) ≥ π
2 : Algorithm 3 draws Tv in the second quadrant as the reflex drawing (with

respect to line l : x = ux) of the drawing Algorithm 1 produces for Tu if we
reverse the order of the children for each vertex x ∈ Tv.

-a1(v) < π
2 < a2(v): Algorithm 3 draws v at the Y axis. Since all children are assigned

non-overlapping angle-ranges, at most one child includes π
2 in its angle-range

and, according to the two previous points, the other children are either drawn
at the first or second quadrant.
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Algorithm 3 Two-Quadrants Monotone Tree Drawing algorithm

1: procedure UnrootedTreeMonotoneDraw
2: Input: An n-vertex unrooted tree T .
3: Output: A monotone drawing of T on a grid of size at most n× 1

2n.
4: r ← GravityRootFinder(T ) (Finds a gravity root as described in
5: Algorithm 2)
6: a1(r)← 0, a2(r)← π
7: AssignAngle(r, a1(r), a2(r))
8: Draw r at (0, 0)
9: ExpandedDrawVertices(r)

10:

11: procedure AssignAngles(u, a1, a2)
12: Input: A vertex u and the boundaries of the angle-range 〈a1, a2〉 assigned to u.
13: Action: It assigns angle-ranges to the vertices of Tu.
14: for each child vi of u do
15: Assign a1(vi), a2(vi) as described in Strategy 1.
16: AssignAngles(vi, a1(vi), a2(vi))

17:

18: procedure ExpandedDrawVertices(u)
19: Input: A vertex u where u has already been drawn of the grid and angle-ranges

have been defined for all vertices of Tu.
20: Action: It draws the vertices of Tu.
21: for each child vi of u do
22: Find a valid pair (x, y) as described in Lemma 14 where
23: β1 ← a1(u) and β2 ← a2(u)
24: If u is drawn at (ux, uy), draw vi at (ux + x, uy + y)
25: ExpandedDrawVertices(vi)

By combining Lemma 13 with Lemma 14, we obtain an upper bound on the length
of an edge in the drawing produced by Algorithm 3.

Lemma 15. Let T be an n-vertex tree rooted at a gravity root r. Let v be a vertex in
T\r with angle-range 〈θ1, θ2〉 and let u be its parent. For the vector e = (x, y) that
connects u to v, as drawn by Algorithm 3, it holds:

max(|x|, y) ≤ π

2

1

θ2 − θ2
n− odd(n)

n− 1

Proof. First we note that, according to Lemma 14, the y-coordinate is always pos-
itive but the sign of the x-coordinate depends on the angle-range of v, as noted in
Observation 3.
-θ1 <

π
2 < θ2: The vector that connects u to v is e = (0, 1). Therefore, max(|x|, y) =

1. By Lemma 13, and since v is not the tree root, v has angle-range length

at most π
2 ·

n−odd(n)
n−1 . Therefore:
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π

2

n− odd(n)

n− 1
≥ θ2 − θ1

⇒π

2

n− odd(n)

n− 1

1

θ2 − θ1
≥ 1

⇒π

2

n− odd(n)

n− 1

1

θ2 − θ1
≥ max(x, y)

-Otherwise: When θ2 ≤ π
2 or θ1 ≥ π

2 , the grid point assignment is made according
to Lemma 14 which, in turn, makes use of Lemma 7. By applying Lemma 7

and by noticing that n−odd(n)
n−1 ≥ 1, the bound is guaranteed.

Lemma 16. The drawing produced by Algorithm 3 is monotone and planar.

Proof. The angle-range assignment of Strategy 1 satisfies Property-2 and Property-3
of the non-strictly slope disjoint drawing as proved in Lemma 8. In addition, the
assignment of the vertices to grid points satisfies Property-1 of the non-strictly slope
disjoint drawing as proved in Lemma 14. Thus, the produced drawing by Algorithm 3
is non-strictly slope disjoint and, by Theorem 5, it is monotone and planar.

It remains to establish a bound on the grid size required by Algorithm 3. We consen-
trate on trees of at least 3 vertices, since it is trivial to draw a tree with two vertices.
Our proof uses induction on the number of tree vertices having more than one child.

Lemma 17. Let T be an n-vertex tree, n > 2, rooted at a gravity root r and Γ be
the drawing of T produced by Algorithm 3. Let u ∈ T be a vertex which, in Γ, is
drawn on the Y -axis and consider φu = a2(u)−a1(u) as assigned by Algorithm 3. Let
ΓRu and ΓLu be the partial drawings of Tu that lie in the first and second quadrant2,
respectively. Then, each of ΓRu and ΓLu uses a grid of side-length bounded by:

(|Tu| − 1)
π

2

n− odd(n)

n− 1

1

φu

Proof. We firstly observe a property that plays a key role in the proof. All vertices
u ∈ T that are drawn by Algorithm 3 on the Y -axis satisfy, by construction, that
a1(u) < π

2 < a2(u). This is due to the fact that a vertex is drawn on the Y -axis only
if its placement was determined based on the first case of Lemma 14.
Secondly, we establish an inequality that holds for any vertex u ∈ T\r. Given that
Algorithm 3 assigns to the gravity root r angle-range 〈0, π〉 and since u is not the

gravity root, by Lemma 13 the angle range φ(u) of u satisfies φ(u) ≤ π
2
n−odd(n)
n−1 .

Thus,

(14) 1 ≤ π

2

n− odd(n)

n− 1

1

φ(u)

Similar to the proof of Lemma 10, we employ induction on the number of vertices
having at least two children. We also make use of the “edge-length bound” provided
by Lemma 15. Let i be the number of vertices in Tu with at least two children.
Base Case (i=0): In this case, Tu is just a path and, by Observation 1, Algorithm 3

assigns to every vertex of Tu the same angle-range. Since a1(u) < π
2 < a2(u),

2 The positive Y -axis in considered to be part of both the first and the second quadrant. So,
vertices that are drawn on the Y -axis appear in both ΓR

u and ΓL
u
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for any vertex v ∈ Tu the vector that connects v to its parent is e = (0, 1).
Therefore, by Algorithm 3, Tu is drawn on the Y -axis and has length |Tu|−1.
Thus, both ΓRu and ΓLu consist of only a path of length |Tu|−1 which is drawn
on the Y -axis. By Observation 2, u is not the gravity root and, thus, we can
make use of (14). It immediately follows that each of ΓRu and ΓLu uses a grid
of side-length bounded by:

(|Tu| − 1)
π

2

n− odd(n)

n− 1

1

φu

The base case is now settled.
Induction Step: We prove the bound only for the grid side-length of ΓRu as the case

for ΓLu is symmetric.
We first establish that the only case of interest is when u has two or more
children. If u has only one child, say v, then, by Observation 2 u is not
the gravity root. By Observation 1, v inherits the angle range of its parent
and, thus, π

2 is contained within v’s angle-range. Moreover, φ(u) = φ(v).
By Algorithm 3, the vector that connects u to v is e = (0, 1). If we assume
that the induction hypothesis holds for v, then the grid side-length of the ΓRu
is bounded by the grid side-length of ΓRv plus the length of the vector that
connects u to v. Therefore, the grid side-length of ΓRu is bounded by:

(|Tv| − 1)
π

2

n− odd(n)

n− 1

1

φv
+ 1

=(|Tu| − 2)
π

2

n− odd(n)

n− 1

1

φu
+ 1

(14)

≤ (|Tu| − 2)
π

2

n− odd(n)

n− 1

1

φu
+
π

2

n− odd(n)

n− 1

1

φu

=(|Tu| − 1)
π

2

n− odd(n)

n− 1

1

φu

Therefore, the only case of interest is when u has at least two children.
Let u ∈ T be a vertex such that u is drawn by Algorithm 3 on the Y -axis, u has
at least two children, and Tu has i+ 1 vertices with at least two children. Let
v1, v2, . . . , vm be the children of u such that the drawing of Tvj , 1 ≤ j ≤ m,
lies on the first quadrant. By Observation 3, the angle-range of any vj must be
in the form of 〈a1(vj), a2(vj)〉 where a2(vj) ≤ π

2 or a1(vj) <
π
2 < a2(vj). We

note that the largest grid (wrt its side-length) on the first quadrant devoted
to any tree3 Tuvj , 1 ≤ j ≤ m, determines the grid side-length of ΓRu since the
subtrees rooted at children of u are drawn completely inside non-overlapping
(but possibly touching) angular sectors. The above statement holds because
all the grids that are used for the subtrees share as common origin vertex u
and we only care about all angular sectors that at least partially lie in the
first quadrant. Therefore, the grid size required to draw Tu is the maximum
of the grid sizes required to draw any of Tuvj .
For any vertex vj with angle-range 〈a1(vj), a2(vj)〉, if a2(vj) ≤ π

2 , i.e., Tvj
lies entirely in the first quadrant, then, the statement holds from Lemma 10

and by noticing that n−odd(n)
n−1 ≥ 1. For the vertex vj (there exists at most

3Recall that by Tu
v when v is a child of u, we denote the tree that consists of edge (u, v) and Tv

19



one such vertex) that a1(vj) <
π
2 < a2(vj), the number of vertices in Tvj with

at least two children is less or equal to i, therefore the induction hypothesis
holds for ΓRvj . Therefore, the statement holds for the first quadrant for any
Tvj which is drawn on a grid with grid-length side bounded by,

(|Tvj | − 1)
π

2

n− odd(n)

n− 1

1

φvj

For the edge connecting u to vj , by Lemma 15 we require a grid of side-length
bounded by,

π

2

n− odd(n)

n− 1

1

φvj

Therefore, the total required grid has side-length bounded by:

|Tvj |
π

2

n− odd(n)

n− 1

1

φvj

Since we employ Strategy 1, it holds that:

(15) φvj =
|Tvj |
|Tu| − 1

φu

Thus, the bound on the side-length of the total required grid can be restated
as:

|Tvj |
π

2

n− odd(n)

n− 1

1

φvj

(15)
= |Tvj |

π

2

n− odd(n)

n− 1

1
|Tvj
|

|Tu|−1φu

= (|Tu| − 1)
π

2

n− odd(n)

n− 1

1

φu

Therefore, the statement holds for the induction step. The proof of the lemma
is complete.

We can now state our main result regarding “two-quadrant” drawings.

Theorem 18. Given a rooted n-vertex tree T , Algorithm 3 produces a monotone grid
drawing using a grid of size at most:

n×
(
n+ 1

2

)
when n is odd

(n+ 1)×
(n

2
+ 1
)

when n is even

Proof. The monotonicity of the drawing follows directly from Lemma 16. By applying
Lemma 17 with the gravity root r, where Algorithm 3 assigns a1(r) = 0 and a2(r) = π,
we get that in the worst case the drawing of T that consists of GRr on the first quadrant
and GLr on the second quadrant, uses for each one a grid of side-length that is smaller
or equal to:

(n− 1)
π

2

n− odd(n)

n− 1

1

π
=
n− odd(n)

2
20



The total width of the grid that Algorithm 3 draws T is the sum of the width of
GRr and GLr . The total height of the grid that Algorithm 3 draws T is the maximum
height of GRr and GLr . Given that a grid of width w and height h is an (w+1)×(h+1)
grid4, the size of the total grid used by Algorithm 3 is bounded by:

(
2

(
n− odd(n)

2

)
+ 1

)
×
(
n− odd(n)

2
+ 1

)
= (n+ 1− odd(n))×

(
n− odd(n)

2
+ 1

)
Therefore, when n is odd the grid size is bounded by n× n+1

2 while, when n is even
it is bounded by is (n+ 1)×

(
n
2 + 1

)
.

Figures 6-8 present drawings produced by Algorithm 3. Compare Figures 3 and 4
to Figures 6 and 7, respectively, as they depict drawings of the same trees. Figure 6
shows the drawing of a 5-layer complete binary tree (31 vertices). While Theorem 18
indicates that a grid of size 31 × 16 may be required, the binary tree is drawn on a
23×12 grid. Figure 7 shows the drawing of a path (15 vertices). The drawing matches
the bound stated in Theorem 18. Finally, Figure 8 shows a drawing of a non-path tree
(out of all 10-vertex rooted trees) that requires maximum area (when produced by
Algorithm 3. We have drawn all 10-vertex rooted trees and have identified non-path
trees that require a grid of the dimensions stated in Themorem 11.

Figure 6. A full binary
tree (31 vertices) as drawn by
Algorithm 3. Grid size: 23 ×
12.

Figure 7. A path (15
vertices) as drawn by Algo-
rithm 3. Grid size: 15× 8.

Figure 8. A non-
path tree (10 vertices) with
maximum required area when
drawn by Algorithm 3. Grid
size: 9× 6.

5. Four-Quadrants Unrooted Monotone Tree Drawing. In this Section,
we provide an algorithm that construct “four-quadrants” drawings of good aspect-
ratio for unrooted trees. Algorithm 4, which combines Algorithm 1 and Algorithm 3,
yields monotone drawings of n-vertex trees on an b 34 (n+ 2)c × b 34 (n+ 2)c grid. The
main idea of the algorithm is that we first locate a gravity root and partition the
subtrees rooted at it into two groups as balanced as possible and, finally, draw the
subtrees in each group into two disjoint areas. We emphasize that we consider “non-
ordered” trees, i.e., our algorithm will not respect (if given) the embedding of the
tree.

Lemma 19. Let T be an n-vertex tree rooted at a gravity root r. Then, we can identify
two subtrees T1 and T2 of T of at most 2n+1

3 vertices each, such that T1 ∪T2 = T and
T1 ∩ T2 = r.

4Recall that we measure length (width/height) in units of distance but, when we denote the
dimensions of a grid we use the number of grid points in each dimension.
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Drawing of T1

Drawing of T2

r′

Drawing of GL
r′

Drawing of GR
r′

r

Figure 9. Example of how does Algorithm 4 places T1 and T2.

Proof. Since we must have that T1 ∪ T2 = T and T1 ∩ T2 = r, it follows that one
of the wanted subtrees, say T1, is formed by r and some of the subtrees rooted at
its children, while the other, say T2, is formed by r and the subtrees rooted at its
remaining children. Given that T is rooted at a gravity root, the size of each subtree
rooted at a child of r is bounded by n

2 . Let m be the maximum size of a subtree
rooted at a child of r, where m ≤ n

2 . We consider cases depending on the value of m.
n−1
3
≤ m ≤ n

2
: T1 in formed by r and the subtree of size m that is rooted at a child

of r. T2 is formed by r and the subtrees rooted at the remaining children of
r. T2 is of size n−m. Since n−1

3 ≤ m ≤ n
2 ⇔ n

2 ≤ n−m ≤ 2n+1
3 , the size of

each subtree is bounded by 2n+1
3 .

m < n−1
3

: In this case, we form T1 and T2 as follows: Initially, both T1 and T2
consist of the gravity root r. We then consider the subtrees rooted at the
children of r in increasing order of their size. At any given step, we insert
the currently examined subtree to the smaller of T1 or T2 by attaching it to
r. At the end of this procedure, the difference in size between the T1 and
T2 is at most the size of the biggest subtree rooted at a child of r, that is,
at most m. Therefore the size of the largest of T1 and T2 is bounded by
n−m

2 +m < n+m−1
2 < 2n+1

3 .

Algorithm 4 describes at a high level our four-quadrant monotone tree drawing algo-
rithm. Let T be the input tree with gravity root r. Let T1 and T2, |T1| ≥ |T2|, be the
two subtrees of T according to Lemma 19. We draw the tree in two steps. In the first
step, we draw T1 according to Algorithm 3. In doing so, we take special care to place
the path from the gravity root r′ of T1 to r on the X-axis with the appropriate change
in the embedding of T1. In the second step, we draw T2 according to Algorithm 1.
Then, we combine the drawing of T1 with the reflect on the x axis of the drawing of
T2. The way we combine the two drawings is demonstrated in Figure 9. The drawing
produced is monotone and its grid size is bounded by b 34 (n+ 2)c × b 34 (n+ 2)c.
The next strategy explains how to change the embedding of T1 in order to place the
path from the gravity root r′ of T1 to r on the x-axis and to the left of r′.

Strategy 2. In T1, place each vertex in the path from the gravity root r′ of T1 to r as
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the last child of its parent. In that way, Strategy 1 (which is employed by Algorithm 3)
assigns each vertex from r′ to r angle-ranges in the from of 〈θ1, π〉. Moreover, each
edge in the path from the gravity root r′ of T1 to r lies on the X-axis, that is, it is
assigned slope π.

Observe, that when we apply Strategy 2 and draw the tree based on Algorithm 3,
Theorem 18 which bounds the drawing area still holds. This is due to the facts that
(i) each edge e that connects a vertex u (on the path from r′ to r) to its child with
slope slope(e) = π is drawn at the boundary of the the angle-range of u, and (ii) the
length of such an edge e is 1, i.e., the least length possible. Of course, the drawing
remains monotone as the following lemma indicates.

Algorithm 4 Four-Quadrants Monotone Tree Drawing algorithm

1: procedure 4QuadrantTreeMonotoneDraw
2: Input: An n-vertex unrooted tree T .
3: Output: A four-quadrant monotone drawing of T on a grid of size at most
b 34 (n+ 2)c × b34 (n+ 2)c.

4:

5: Find T1 and T2 according to Lemma 19, where |T1| ≥ |T2|.
6: Draw T1 according to Algorithm 3 with the modification of Strategy 2.
7: Draw T2 according to Algorithm 1.
8: Combine the drawing of T1 with the reflect on the X-axis drawing of T2.

Lemma 20. The drawing produced by Algorithm 4 is planar and monotone.

Proof. We prove the lemma by showing that the unique simple path that connects
two arbitrary vertices u, v of tree T is monotone with respect to some direction. This
will imply the monotonicity of the drawing of T and, by Theorem 1, its planarity.
Consider the drawing of an arbitrary tree T produced by Algorithm 4, and let u, v
be two arbitrary vertices of T .
Case 1: u ∈ T2 and v ∈ T2. By Lemma 9 the drawing of T2 is monotone. Given that

the simple path from u to v is entirely contained in T2, the path is monotone.
Case 2: u ∈ T1 and v ∈ T1. If T1 was drawn by Algorithm 3 (as it is described in

Section 4) then, by Lemma 16, the drawing of T1 would be monotone. Thus,
the simple path from u to v would also be monotone since it is entirely
contained in T1. However, Algorithm 4 additionally applies Strategy 2 when
drawing T1, and thus, we have to ensure that the changes in the drawing due
to Strategy 2 do not affect its monotonicity.
Let r and r′ be the gravity roots of T and T1, respectively. The only edges
that violate the non-strictly slope-disjoint property of the produced drawing
are those that enter nodes on the path from r′ to r. Recall that, by Strategy 2
all these edges lie on the X-axis and have slope π. Let e = (u, v) be such an
edge in T1 from vertex u to its child v of slope π.
This is a violation to Property-1 of non-strictly slope disjoint drawings (see
Definition 3). Property-1 requires that every edge e from a vertex u to any
of its children has a slope that falls within the angle-range of u and does not
take the boundary values, that is, a1(u) < slope(e) < a2(u). In our case, by
Strategy 2 we have that a2(u) = π and slope(e) = a2(u) = π. Therefore, for
edge e = (u, v) it holds that a1(u) < slope(e) ≤ a2(u).
We can rotate the whole drawing clockwise around the gravity root r′ of T1
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by an arbitrarily small amount ε > 0. If we denote by slope(e) the slope of
the edge e in the original drawing and by slope′(e) the slope of the edge e in
the new rotated drawing, it holds that slope′(e) = slope(e)− ε.
For any vertex u with angle-range in the form of 〈a1(u), a2(u)〉, for any edge
e = (u, v) that connects u to its child v, since ε > 0 is arbitrarily small, it
holds that:

a1(u) < slope(e) ≤ a2(u)

⇒a1(u)− ε < slope′(e) ≤ a2(u)− ε
⇒a1(u) < slope′(e) < a2(u)

So, for the slightly rotated drawing, all the properties of non-strictly slope dis-
joint drawings are satisfied and, by Theorem 5, the drawing of T1 is monotone
and planar.

if u ∈ T1 and v ∈ T2: The simple path from vertex u to vertex v is the concatenation
of the simple path from u to the gravity root r of T and of the simple path
from r to v. If we consider r as the origin, the edges from u and r lie inside
the first two quadrants, with the exception of the edges between r and the
gravity root r′ of T1 which lie on the X-axis, while the edges between r and
v lie inside the fourth quadrant.
It is easy to observe that the combined path is monotone with respect to a line
with slope π

2 + ε where ε > 0 is arbitrarily small. Crucial to this observation
is that the two drawing do not overlap. Indeeed, the drawing of T2, as it is
drawn with Algorithm 1, it lies entirely in the fourth quadrant (with respect
to r) and non of its vertices lies on the X-axis.

From the three cases above, we conclude that the produced drawing is monotone and
planar. This completes the proof.

Theorem 21. Given an n-vertex Tree T , Algorithm 4 draws T in a grid of size at
most b 34 (n+ 2)c × b 34 (n+ 2)c.

Proof. Let r and r′ be the vertices used by Algorithm 4 as the gravity roots of T and
T1, respectively. Based on the modification of the drawing of T1 by Strategy 2, r lies
in the second quadrant if we assume r′ as the origin node. Furthermore, T2 is drawn
in the fourth quadrant if we assume r as the origin node. From Figure 9, it is clear
that the worst case grid size for the combined drawing is realized when r′ coincides
with r.
By Theorem 18, the grid side-length of subdrawings ΓRr′ in the first quadrant and ΓLr′

in the second quadrant is bounded by |T1|
2 while in the fourth quadrant, according to

Theorem 11, the side-length is at most |T2| − 1.

Therefore, the grid width ismax(|T1|, |T1|
2 +|T2|−1) and the grid height is |T1|

2 +|T2|−1.

We consider two cases depending on whether |T1|
2 > |T2| − 1.

Case 1: |T1|
2

> |T2| − 1. It this case, it is clear that the both the width and the
height of the drawing are bounded by |T1|. Given that the gravity root r is
included in both T1 and T2, we have that:

(16) |T1|+ |T2| = n+ 1
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From the assumption, we have:

|T1|
2

> |T2| − 1

⇒ |T1|+ |T2|
2

>
3

2
|T2| − 1

(16)⇒ n+ 1

2
>

3

2
|T2| − 1

⇒ 1

3
n+ 1 > |T2|

Furthermore, we also have that:

|T2| = n+ 1− |T1|
(Lemma 19)

≥ n+ 1−
(

2

3
n+

1

3

)
≥ 1

3
n+

2

3

Therefore, since n
3 + 2

3 ≤ |T2| < n
3 + 1, the only integer that satisfies this set

of inequalities is |T2| = 1
3n+ 2

3 . So, |T1| = n+ 1−
(
1
3n+ 2

3

)
= 2

3n+ 1
3 . Thus,

the required grid is of size at most:(
2

3
n+

4

3

)
×
(

2

3
n+

4

3

)
This grid, for any n ≥ 1, fits in a grid of dimensions:(

3

4
(n+ 2)

)
×
(

3

4
(n+ 2)

)
Therefore, the statement holds.

Case 2: |T1|
2
≤ |T2| − 1. In this case, the grid side-length is:

|T1|
2

+ |T2| − 1

=
|T1|+ |T2|

2
+
|T2|
2
− 1

(16)
=

n+ 1

2
+
|T2|
2
− 1

|T2|≤|T1|
≤ n+ 1

2
+
n+ 1

4
− 1

=
3n− 1

4

Therefore, in this case the required grid is of size(
3

4
n+

3

4

)
×
(

3

4
n+

3

4

)
which, obviously, fits in a grid of size(

3

4
(n+ 2)

)
×
(

3

4
(n+ 2)

)
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Since the bound for the grid size must be integer, the floor of the bound also bounds
the grid size. Therefore, as stated in the lemma, the required grid is of size:⌊

3

4
(n+ 2)

⌋
×
⌊

3

4
(n+ 2)

⌋
Figures 10-12 present drawings produced by Algorithm 4. In the drawings, we indicate
by a solid square (rhombus) the gravity root of tree T (resp., T1). Figure 10 shows a
drawing of aspect-ratio equal to one for a 5-layer complete binary tree (31 vertices).
While Theorem 21 indicates that a grid of size 24 × 24 may be required, the binary
tree is drawn on a 17× 17 grid. Figure 11 shows the drawing of a path (15 vertices).
The drawing matches the bound stated in Theorem 18. Finally, Figure 8 shows a
drawing of a non-path tree (out of all 10-vertex rooted trees) that requires maximum
area (when produced by Algorithm 3. We have drawn all 10-vertex rooted trees and
have identified non-path trees that require the maximum area. While Themorem 21
indicates that an 9 × 9 grid may be used for a tree of 10 vertices, the drawing of
maximum area uses a grid of size 8× 7.

Figure 10. A full binary tree (31
vertices) as drawn by Algorithm 3. Grid
size: 17× 17.

Figure 11. A path
(15 vertices) as drawn by
Algorithm 3. Grid size:
8× 11.

Figure 12. A
non-path tree (10 ver-
tices) with maximum re-
quired area when drawn
by Algorithm 3. Grid
size: 8× 7.

6. Conclusion and Open Problems. We have described three algorithms that
produce monotone drawings of trees. The algorithm that has the best aspect ratio
produces a monotone drawing of an n-vertex tree on a grid of size at most b 34 (n+2)c×
b 34 (n+ 2)c. The following problems on monotone tree drawings are worth studying:

1. He and He [6] described a tree that requires for its monotone drawing a grid
of size at least n

9 × n
9 . Can this bound be improved? Is there a tree that

requires a larger grid for its monotone drawing?
2. The angular resolution of the produced drawing has not been studied. Is there

a trade-off between the angular resolution and the grid size of the monotone
drawing?
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