
Computing Storyline Visualizations
with Few Block Crossings?

Thomas C. van Dijk, Fabian Lipp??, Peter Markfelder, and Alexander Wolff? ? ?

Lehrstuhl für Informatik I, Universität Würzburg, Germany
www1.informatik.uni-wuerzburg.de/en/staff, first.last@uni-wuerzburg.de

Abstract. Storyline visualizations show the structure of a story, by de-
picting the interactions of the characters over time. Each character is
represented by an x-monotone curve from left to right, and a meeting is
represented by having the curves of the participating characters run close
together for some time. There have been various approaches to drawing
storyline visualizations in an automated way. In order to keep the visual
complexity low, rather than minimizing pairwise crossings of curves, we
count block crossings, that is, pairs of intersecting bundles of lines.
Partly inspired by the ILP-based approach of Gronemann et al. [GD
2016] for minimizing the number of pairwise crossings, we model the
problem as a satisfiability problem (since the straightforward ILP formu-
lation becomes more complicated and harder to solve). Having restricted
ourselves to a decision problem, we can apply powerful SAT solvers to
find optimal drawings in reasonable time. We compare this SAT-based
approach with two exact algorithms for block crossing minimization, us-
ing both the benchmark instances of Gronemann et al. and random in-
stances. We show that the SAT approach is suitable for real-world in-
stances and identify cases where the other algorithms are preferable.

1 Introduction

A storyline visualization is a particular abstraction of the structure of a narrative.
A good visualization reveals the underlying structure by removing the details of
how the story is presented and, instead, focusing on which entities interact as
time passes within the narrative. This type of diagram was originally conceived
to visualize meetings between characters in movies and, though it has since
been interpreted more generally as an elegant way to visualize a sequence of
interconnected interactions over time, the term storyline visualization remains.

In a storyline visualization, each character is represented by an x-monotone
curve in the plane; we will refer to curves and characters interchangeably. Time
goes from left to right, and a meeting between a set of characters (occurring for
the duration of a given time interval) is represented by a corresponding region
? Appears in the Proceedings of the 25th International Symposium on Graph Drawing
and Network Visualization (GD 2017).

?? F. Lipp was supported by Cusanuswerk. ORCID: orcid.org/0000-0001-7833-0454
? ? ? ORCID: orcid.org/0000-0001-5872-718X

ar
X

iv
:1

70
9.

01
05

5v
1

 [
cs

.C
G

]
 4

 S
ep

 2
01

7

http://www1.informatik.uni-wuerzburg.de/en/staff
http://orcid.org/0000-0001-7833-0454
http://orcid.org/0000-0001-5872-718X

2 T. C. van Dijk et al.

in the plane where those curves come closely together. This drawing style is
commonly attributed to Munroe [12], who represented several popular movies
in this fashion. See Figure 1 for an example drawn using our system.

Block Crossings in Storyline Visualization. When formalizing the drawing of
storyline visualizations as an optimization problem, it is natural to minimize the
number of crossings among the characters. As with graph drawing in general,
this is not the be-all-end-all objective. For example, two groups of curves crossing
each other in a grid structure are easier to understand visually than the same
number of crossings scattered wildly throughout the drawing. In this paper we
continue the study of such block crossings in storyline visualization.

Intuitively, a block crossing consists of two sets of locally parallel curves in-
tersecting each other without any further curves in the crossing area [3]. (A
formal definition is given below.) In the design of his movie narrative charts,
Munroe seems aware (at least implicitly) of the concept of block crossings. In-
deed, the Gestalt principle of “continuity” or “good continuation” [14] suggests
that block crossings are easier to read, but what exactly makes the most readable
drawing should be analyzed in proper user studies. Here we focus on practical
computational aspects, having decided to minimize block crossings.

Concurrent Meetings. An important modeling decision that the literature has
handled variously is whether it is possible for multiple meetings to occur at over-
lapping time intervals. Some papers define the input to the storyline visualization
problem such that these concurrent meetings are impossible, for example by rep-
resenting the meetings as a totally ordered set. Whether or not it is important
to support concurrent meetings is open for discussion. One could, for example,
represent each scene of a movie as a separate meeting that includes precisely
the characters that participate: then meetings do not overlap. However, this is a
rather mechanical interpretation of what storyline visualizations are for. Indeed,
rather than strictly following the order of appearance in the movies, Munroe’s
“movie narrative charts” [12] visualize the spatio-temporal structure underlying
the story, rather than the presentation of the story: the x-axis in his charts
represents time within the story, not time in the movie.1 This paper supports
concurrent meetings.

Previous Work. Tanahashi and Ma [13] computed storyline visualizations auto-
matically and discuss various aesthetic criteria to be optimized. Kim et al. [9]
used storylines to visualize genealogical data: meetings correspond to marriages
and special techniques are used to indicate child–parent relationships.

Kostitsyna et al. [11] formalized the problem of crossing minimization for
storylines. Their aim was to minimize the number of pairwise crossings (that is,
not block crossings) in storylines. They proved the problem NP-hard, presented

1 For example, Gandalf meets Éomer while the host of elves arrives at Helm’s Deep. In
the movie, we learn about this only afterward; Munroe’s visualization of The Lord
of the Rings [12] makes clear that this is concurrent.

Computing Storyline Visualizations with Few Block Crossings 3

an FPT algorithm, and gave an upper bound on the number of crossings in a
restricted setting. Gronemann et al. [8] designed an integer linear program (ILP)
to minimize the number of pairwise crossings and evaluated it experimentally.
Their approach is able to solve instances with 10–20 characters and up to about
50 meetings from real-world movies (and to a lesser degree, books) to optimality
in a few seconds.

In an earlier paper [3], we introduced the concept of minimizing block cross-
ings for drawing storylines. We showed that block crossing minimization in sto-
rylines is NP-hard. For special cases, we provided an approximation algorithm.
Of particular relevance to the current paper are two exact algorithms, one of
which is fixed-parameter tractable (FPT) in the number of characters.

The current paper improves on the above in two ways. Firstly, we have devel-
oped a new SAT-based algorithm for computing optimal storyline visualizations.
We note that SAT formulations have been used before in graph drawing, for ex-
ample by Bekos et al. [2]. Whereas we previously restricted ourselves to meetings
that are points in time, we now handle concurrent meetings. (This more general
problem is clearly NP-hard as well.) Secondly, we have now implemented the ex-
act algorithms of our earlier paper [3], which enables an experimental evaluation
and comparison. We see that the new algorithm is able to handle larger realistic
instances than our previous algorithms, but that the FPT algorithm also has
practical relevance.

Problem Definition. We generalize the problem statement compared to our pre-
vious paper [3] in order to handle the instances used by Gronemann et al. [8]. In
this more general statement, we support meetings that span a certain amount
of time (instead of allowing only instantaneous meetings); thus, meetings can
overlap with other meetings. Additionally, we allow for birth and death of char-
acters, that is, each character is only drawn in the storyline during its lifespans
(being a set of time intervals).

A storyline S is a triple (C,M,E) where C = {1, . . . , κ} is a set of characters,
M = {m1,m2, . . . ,mn} is a set of meetings, and E : C → P(IR) describes the
lifespans of a character with IR being the set of intervals of real numbers. A
meeting mj is a triple (sj , ej , Cj) where sj ∈ R is the start time of the meeting,
ej ∈ R is the end time of the meeting, sj < ej , and Cj ⊆ C contains the involved
characters. A meeting mj is said to be active at time t ∈ R if t ∈ [sj , ej). The
set E(i) = {[b1i , d1i), . . . , [b

ηi
i , d

ηi
i)} contains the lifespans of character i, that is,

ηi disjoint time intervals, in which the character is alive. For each of these time
intervals (1 ≤ ι ≤ ηi), bιi describes the “birth” while dιi describes the “death” of
the character. Character i is said to be alive at time t ∈ R if t ∈ I for some
I ∈ E(i).

We forbid that a character participates in two meetings at the same time: in
our drawing style, it wouldn’t be possible to distinguish the two groups. More
formally, for any two meetings mj ,m` with sj < s` < ej , we require that Cj ∩
C` = ∅. Obviously, character i can only be part of a meeting mj if i is alive
during the time span of the meeting, that is, if [sj , ej) ⊆ I for some I ∈ E(i). In
particular, a character cannot be born or die during a meeting.

4 T. C. van Dijk et al.

A solution for a storyline instance S = (C,M,E) consists of a sequence
Π = [π1, . . . , πλ] of permutations of subsets of C and a nondecreasing function
A : R → {1, . . . , λ} describing the connection between points in time and the
permutations in the solution. A solution is admissible if it fulfills the following
conditions.

(a) For any point in time t ∈ R,
(i) πA(t) contains exactly the characters that are alive at time t, and
(ii) for any meeting that is active at time t, its set of characters must be a

contiguous block in πA(t).
(b) For p ∈ {2, . . . , λ}:

(i) If the character sets of πp−1 and πp are identical, then either πp−1
and πp are identical or they differ in a block crossing, that is, two
adjacent blocks of characters switch their order. Suppose that, after
renumbering, πp−1 = 〈1, . . . , a, . . . , b, . . . , c, . . . , κ〉. Then exchanging
the two adjacent blocks 〈a, . . . , b〉 and 〈b+ 1, . . . , c〉 yields the permu-
tation πp = 〈1, . . . , a− 1, b+ 1, . . . , c, a, . . . , b, c+ 1, . . . , κ〉.

(ii) If the character sets of πp−1 and πp are not identical, then their inter-
section must be in the same order in πp−1 and in πp. They need not
remain contiguous.

Now we can formally state the problem that we consider in this paper, General
Storyline Block Crossing Minimization: Given a storyline instance (C,M,E),
find an admissible solution (Π,A) that minimizes the number of block crossings.

We define E to be the finite set of events, that is, points in time, at which
a meeting starts or ends or a character is born or dies. Our aim is to find the
smallest number λOPT of permutations that accommodates all events subject to
the constraints above. This also minimizes the number of block crossings bcOPT

since bcOPT = λOPT − |E ′|+ 1, where E ′ denotes the points in time at which at
least one character is born or dies (including the birth of the first character and
death of the last character in the storyline).

Our Results. Partly inspired by the ILP from Gronemann et al. [8], we developed
a SAT formulation of the problem that can be used to decide whether there is
a solution using a fixed number of permutations (and, hence, block crossings);
see Section 2. Initial experiments with a similar ILP model performed poorly
and led us to explore SAT solvers. We experimentally compare our new SAT
approach to the two exact algorithms from our previous paper [3]; see Section 3.
The source code of all three implementations is available online2.

2 SAT Formulation for the Decision Problem

We present a SAT formulation that encodes, for a given storyline S and an
integer λ, whether there is a solution whose sequence of permutations consists
2 http://www1.pub.informatik.uni-wuerzburg.de/pub/data/storylines/

http://www1.pub.informatik.uni-wuerzburg.de/pub/data/storylines/

Computing Storyline Visualizations with Few Block Crossings 5

of exactly λ elements. From a satisfying truth assignment we can derive the
solution for S. The optimal number of block crossings can then be found using
this decision problem by searching for the minimum satisfiable λ, for example
using linear or exponential search. Our formulation is inspired by the ILP of
Gronemann et al. [8], which minimizes the number of pairwise crossings in a
storyline visualization.

In the following, we do not always describe the clauses in conjunctive normal
form, using other operators where this improves readability. The transformation
into conjunctive normal form is straightforward. For the sake of completeness, the
result of this transformation is shown in Appendix A. In the following, unless
specified or bound otherwise, the variables and clauses are quantified over all
i, j, k ∈ C with i 6= j, i 6= k, j 6= k and all r, p ∈ {1, . . . , λ}, r 6= p, and
` ∈ {1, . . . , µ}, where µ is the number of meeting groups, a concept we introduce
later on.

Describing the Permutations. To describe a solution, we start with the se-
quence of permutations Π = [π1, . . . , πλ]. Each permutation πr is represented by
Boolean variables of type xrij . These variables describe the relative order of the
characters in the permutation. The truth assignment of variable xrij indicates
whether character i is above character j in permutation πr. To handle “dead”
characters, we introduce another set of variables ori . Character i is omitted in
permutation πr if and only if ori is true. The clauses described here and under un-
der the following two headers (constraints for permutations, crossings between
characters, and block crossings) are only active if all involved characters are
available (that is, ¬ori) in the permutation considered. We model this by adding
ori as a positive literal to each clause for each affected character i.

To ensure that the variables describe a permutation, we add the following
clauses. We guarantee antisymmetry by xrij ⇔ ¬xrji. We ensure transitivity by
xrij ∨ xrjk ∨ xrki and ¬xrij ∨ ¬xrjk ∨ ¬xrki; this forces one of the three variables to
have a different value than the others.

Crossings Between Characters. To simplify the treatment of crossings, we intro-
duce variables that indicate when they occur. For r ∈ {1, . . . , λ−1}, variable χrij
encodes whether characters i and j have a crossing between permutations r and
r + 1. This is the case precisely if they change their relative order between the
two permutations, that is: χrij ⇔ (xrij 6= xr+1

ij) for all r ∈ {1, . . . , λ − 1}. Note
that this – together with the previously described clauses – implies χrij ⇔ χrji.
(Recall that constraints involving omitted characters are “switched off” using the
variables of type ori .)

According to our problem definition we have to ensure that if there is an
addition or removal of characters between successive permutations, then there
can be no block crossing. So we forbid crossings for all pairs of characters between
permutation πr and πr+1 if a character i is added or removed between these
permutations: (ori 6= or+1

i)⇒ ¬χrjk for all r ∈ {1, . . . , λ− 1}.

6 T. C. van Dijk et al.

Block Crossings. By the problem definition, there is at most one block crossing
between any two successive permutations πr and πr+1. We describe this block
crossing by partitioning the character set of permutation πr into three sets Fr,
Gr, and Hr. For simplicity, we drop the subscript r in the following. We express
the membership of a character i in any of these sets using variables fri , gri and hri ,
respectively. Let G and H be the two sets of characters that are involved in the
potential block crossing between πr and πr+1, and let F be the set of characters
that are not affected by the crossing. If there is no block crossing between the
two permutations, at least one of the two sets G and H is empty.

First we add clauses that ensure that every character is in one of the three
sets, that is, exactly one of the variables fri , gri , and hri is true. Next, the charac-
ters of G and the characters of H must each form a contiguous block. We enforce
this by requiring that a character j is in G if j lies between two characters i and k
in G: xrij∧xrjk∧gri ∧grk ⇒ grj . Similarly, for H we require xrij∧xrjk∧hri ∧hrk ⇒ hrj .

We ensure that the blocks G and H are adjacent, by requiring that no char-
acter in F lies between characters in G and in H: xrij ∧ xrjk ∧ gri ∧ hrk ⇒ ¬frj .
Additionally, we prescribe the order of the blocks G and H in the permutation
by restricting the characters in G to be above the characters of H: gri ∧hrj ⇒ xrij .

Finally, we ensure that two characters cross each other if and only if they
participate in the block crossings, that is, if one of the characters is in G and
the other is in H: gri ∧ hrj ⇔ χrij for all r ∈ {1, . . . , λ− 1}.

Meeting Groups. So far we have introduced various structural constraints to our
variables, but we haven’t yet established the connection to our input storyline S.
We implement this connection now through the concept of meeting groups. A
meeting group is a set of meetings that contain a common point in time. Instead
of the meeting triples (that is, a set of characters, start time, and end time), we
only consider the character sets for the meeting group. Characters who are alive
at that time, but are not part of any meeting, are added to the meeting group
as a singleton meeting.3 We transform the storyline S to a sequence of meeting
groupsM = [M1, . . . ,Mµ] by sorting the events in E and putting together the
meetings and live characters for each event in the correct order. We useM only
to construct our SAT instance; afterward we transform the satisfying assignment
back into a solution for S.

We add variables that connect these meeting groups to the permutations of
the solution. The variable qr` indicates whether the meeting groupM` is assigned
to permutation πr. We require that every meeting group is assigned to exactly
one permutation, that is, every group is assigned somewhere (

∨λ
r=1 q

r
`) and no

group is assigned twice (¬(qr` ∧ q
p
`)).

The meeting groups must be assigned to permutations in the correct order.
If we map M` to πr, M`−1 has to be assigned to the same permutation or an
earlier one: qr` ⇒

∨r
j=1 q

j
`−1 for ` ∈ {2, . . . , µ}. We can assume that the first

3 This concept of meeting groups is similar to the trees constructed by Gronemann et
al. [8] to generate MLCM-TC instances.

Computing Storyline Visualizations with Few Block Crossings 7

meeting group is assigned to the first permutation, as it is not optimal to use
block crossings before the first meetings. Therefore, we set q11 to true.

Next, we handle the birth and death of characters. Let Li be the meeting
groups that contain character i. A permutation πr should contain exactly the
characters that are contained in the assigned meeting groups: those are precisely
the alive characters. We add the clause qr` ⇒ ¬ori if M` ∈ Li and the clause
qr` ⇒ ori ifM` /∈ Li. This makes sure that characters involved in meetings must
be present and dead characters are omitted.

Note that we allow permutations to not have any meeting groups assigned
to them. This is necessary, for example to allow multiple block crossings be-
tween successive meetings (which may be necessary in an optimal drawing [4]).
However, such “loose” permutations can be exploited to avoid block crossings by
omitting all characters for one permutation and reintroducing them afterward
in an arbitrary order. To forbid this, for r = 2, . . . , λ, if no meeting group is
assigned to permutation πr, we do not allow characters to be removed or added
in πr:

∧µ
`=1 ¬qr` ⇒ (ori = or−1i).

Finally, we come to the actual storyline visualization constraint: characters
in a meeting must form a contiguous group in the corresponding permutation.
We add clauses that prohibit characters that are not part of a meeting from
being between characters in the meeting. That is, if characters i and k are part
of a certain meeting inM` and j is not, we have qr` ⇒ (xrij = xrkj).

This concludes our SAT formulation. If the resulting formula has a satisfy-
ing assignment, a solution to our storyline block crossing minimization problem
exists, and it is easy to extract the permutations. To get the function A that
maps the time to the permutations, we have to remember which meeting group
corresponds to which point in time.

Counting the quantifiers in the above construction shows that there are
O(λ(κ2 + µ)) variables and O(λµ(λκ3)) clauses. The conjunctive normal form
of this SAT formula can clearly be constructed from the storyline in polynomial
time.

3 Experimental Evaluation

We refer to the approach from Section 2 as Sat. Additionally, we have imple-
mented two exponential-time exact algorithms that minimize block crossings [3].
The first is a branching algorithm that searches for the shortest sequence of block
crossings using iterative deepening depth-first search (ItD). This search strategy
ensures low memory usage. The second algorithm is fixed-parameter tractable
in the number of characters and works by performing a breadth-first search in
an exponentially-large state graph. Note that these two algorithms do not sup-
port concurrent meetings, whereas Sat does. We also consider an algorithm by
Gronemann et al. [8] that optimizes pairwise crossings.

Implementation Details. All implementations are written in C++, with the ex-
ception of some “driver” code in Python for Sat. Comparable effort has been

8 T. C. van Dijk et al.

Fig. 1. A snippet of a block-crossing optimal drawing of The Matrix based on the
sequence of permutations found by Sat, and the start and end times of the meetings
(visualized by the gray blocks). The drawing reflects the linear order of the events but
not their absolute points in time.

put into optimizing each program. Memory usage was not optimized, but there
are no flagrant memory inefficiencies.

Sat uses the SAT formulation from Section 2 and performs exponential
search on λ. We use Python to write CNF SAT instances in DIMACS format, to
run minisat [5,6] on these instances, and to perform the search; the exponential
search uses factor 2. We have used version 2.2.0 of minisat.4. As runtime of
Sat, we report the total time spent by minisat. This includes all “real” work,
as well as launching minisat for each formula and the time it spends reading
the DIMACS files; it does not include the runtime of our Python code, which
has unnecessarily-poor performance and would be unfair in comparison to the
other algorithms.

ItD and Fpt are implemented in C++ following the description in [3], in-
cluding the data structure for block crossings and checking meetings. For ItD,
we branch and “unbranch” on a single data structure rather than making copies.
Fpt performs a breadth-first search in a large graph. We store the nodes explic-
itly in a flat array addressed by Lehmer codes [10]: this requires Θ(κ!n) space,
but enables efficient lookup. The edges of the graph are enumerated lazily using
the “forward pointers” from the original paper.

All runtime experiments have been performed on an Intel® Core™ i5-2400
CPU at 3.10GHz with 8GB of RAM and running Windows 7. This configuration
is in some contrast to the experimental setup of Gronemann et al.: a 2× 10-core
machine with 128GB of RAM. Our implementations are single-threaded; their
implementation, being based on CPLEX, presumably makes use of the available
cores, but this is not reported explicitly.

Real-World Instances. We use the same real-world instances as Gronemann et
al. [8]. These include three movies and chapters from several books. See Figure 1
for a block-crossing optimal drawing of The Matrix computed using Sat. More
drawings computed using Sat are found in Appendix B.

Table 1 compares our block crossing optimization to solutions optimized for
pairwise crossings. It shows that the optimal number of block crossings is much
4 Slightly modified to measure peak memory usage on Windows.

Computing Storyline Visualizations with Few Block Crossings 9

Block crossings using Sat Gronemann et al. [8]

Instance λOPT Memory cr bcOPT Time [s] crOPT bc Time [s]

Star Wars 20 79MB 54 10 3.77 39 18 0.99
The Matrix 18 67MB 21 4 2.86 12 8 0.77
Inception 23 39MB 51 12 1.54 35 20 2.02

Table 1. Comparison of pairwise crossings (cr) and block crossings (bc) on movie
instances; subscript OPT indicates the value that the algorithm optimized. The run-
time of both approaches is similar, even on rather different machines (see Section 3 –
“Implementation Details”.).

0 20 40
0

1

2

OPT

↓

The Matrix

Permutations

T
im

e
[s
]

0 20 40
0

1

2

OPT

↓

Star Wars

Permutations

0 20 40
0

1

2

OPT

↓

Inception

Permutations

Fig. 2. Runtime of minisat for different numbers of permutations on the movie in-
stances. Recall that the number of permutations does not equal the number of block
crossings.

lower than the optimal number of pairwise crossings. This decrease is not just
counting things differently: Gronemann et al.’s drawing of The Matrix, for ex-
ample, has the optimal number of 12 crossings and happens to have 8 block
crossings, whereas we give an optimal drawing with 4 block crossings. Our draw-
ing happens to have 33 pairwise crossings: this presents an interesting trade-off.

The book instances unfortunately present a strong challenge for our algo-
rithms. Even though there are no concurrent meetings, the number of characters
immediately disqualifies Fpt and the optimum is too large for ItD. This leaves
Sat, but these instances (as modeled in Gronemann et al.) contain an extreme
number of ‘births’ and ‘deaths.’ While this is convenient for their algorithm
(or at least: not detrimental), our SAT formulation requires a large number of
permutations to handle this. One might hope that – even though large – these
formulas are still relatively easy for minisat: alas, they are not.

Finally, we look at the exponential search that Sat uses to find the optimal
number of permutations. If testing a number of permutations takes exponential
time (we are solving a SAT instance, after all), a single overestimate would
be disastrous. However, on the real-world instances we observe fairly modest
time for overestimated λ (see Figure 2). This means exponential search can
have a significant advantage over linear search. On the movie instances, using
exponential search is indeed faster than linear search, but just by about a third.

Random Instances. We test using random instances of two kinds. The first are
uniform instances and these are the same as in previous work [3]. First, pick κ,

10 T. C. van Dijk et al.

n, and a probability p. (We report here on p = 0.5.) Then generate a meeting
by picking, independently at random with probability p, whether each character
is in the meeting. Reject meetings with fewer than two characters, and repeat
until there are n meetings. We let all characters be alive at all times, so we can
run all three algorithms.

Figure 3 shows the runtime of Fpt on these instances as a function of n, for
various numbers of characters. It confirms the fixed-parameter tractable runtime
in practice. Note that the plot reports the runtime for solving 100 instances. The
other algorithms have trouble handling 1000 meetings in any reasonable setting;
with κ = 5, Fpt solves 100 such instances in little more than a second. However,
the explosive dependence on κ is also clear.

Figure 4 similarly shows the runtime of Sat. Since there is more variance,
we show 10 data points for every number of meetings, rather than the sum. For
κ = 5, Sat can easily handle 100 meetings: except for an outlier, we are not yet
hit by a runtime explosion. Note, however, that it is significantly slower than
Fpt: approximately three orders of magnitude at n = 100. As for ItD: it is so
slow on these instances that its runtime escapes the plot almost immediately.

For κ = 9, a different picture develops. Firstly, Sat experiences difficulty as
the number of meetings increases. With instances approaching 50 meetings, the
runtime starts to explode. For these instances, the runtime of Fpt is similar
since it too has become slow at κ = 9. The difference is that, if we are willing to
wait longer, Sat can be run on instances with more than 9 characters, whereas
Fpt is quite fundamentally limited by its memory usage (see “Memory Usage”).

Yet another picture emerges when we look at instances that have a solu-
tion with few block crossings. To consider such instances is fair since in practice
we are particularly interested in instances that can be realized with few block
crossings. First, pick κ, n, a probability p, and a number β: we generate ran-
dom instances that have optimum at most β as follows. Start from the identity
permutation and sample β uniformly-random block crossings: this results in a
sequence of β + 1 permutations. Now generate n meetings: pick, for each one
independently, one of the permutations at random and then c adjacent charac-
ters from this permutation at random, where c is binomially distributed with
success probability p so as to match the uniform model; put these meetings in
the order of the permutations they come from. By construction, these instances
have a solution with (at most) β block crossings.

Figure 5 shows that Sat and ItD can solve much larger instances of this
kind. This is as expected, since β directly bounds the branching depth of ItD
and the number of permutations required by Sat. We see that Sat practically
dominates ItD; the only reason to use ItD is if no high-quality SAT solver is
available, or if memory usage is important (the redeeming quality of ItD).

Memory Usage. Table 2 shows that the (peak) memory usage of the algorithms is
quite different. ItD is implemented to branch with a single data structure. This
is good for runtime (no copying), and has the additional benefit that memory
usage is very low. In fact, it is hardly impacted by recursion depth since we use

Computing Storyline Visualizations with Few Block Crossings 11

0 200 400 600 800 1,000
0

0.5

1 κ = 5

κ = 4

Number of meetings

T
im

e
o
n
1
0
0
in
st
a
n
ce
s
[s
]

0 200 400 600 800 1,000
0

10

20

κ = 5

κ = 6
κ = 7

Number of meetings

T
im

e
o
n
1
0
0
in
st
a
n
ce
s
[s
]

Fig. 3. Total runtime of Fpt on 100 random instances from the uniform model with
p = 0.5, increasing number of meetings, and κ ∈ {3, 4, 5, 6, 7}.

0 50 100
0

0.5

1

1.5

2
κ = 5

Number of meetings

T
im

e
o
n
1
in
st
a
n
ce

[s
]

0 20 40
0

20

40

60

80

100
κ = 9

Number of meetings

T
im

e
o
n
1
in
st
a
n
ce

[s
]

Fig. 4. Circular marks: runtime of Sat on instances from the uniform model with
p = 0.5, and κ = 5 (left) and κ = 9 (right). Crosses, left plot: runtime of ItD. It is
highly variable and practically dominated by Sat.

iterative deepening depth-first search and, rather than having the entire data
structure at each level of the recursion, there is only a small stack frame.

The memory usage of Sat increases significantly with λ and the overhead is
more than for ItD: this is because of the large, explicitly-stated SAT formulas
and the use of a general-purpose SAT solver.

For small κ, Fpt uses less memory than Sat due to the latter’s overhead.
However, Fpt clearly uses the most memory as κ increases, since it quite fun-
damentally relies on the memoization of a large recurrence. Its memory usage
in fact limits the number of characters that can be supported – in practice by
the available memory, but even more generally by the memory architecture of
normal environments.

Concluding Remarks. We conclude with some practical advice about picking an
algorithm. The first consideration is a hard constraint: if concurrent meetings
are required, ItD and Fpt are disqualified and Sat remains as a fine default.
We now assume concurrent meetings are not required.

If the number of characters is small, the use of Fpt is clearly preferred.
This algorithm can truly be considered fixed-parameter tractable in the number

12 T. C. van Dijk et al.

0 50 100 150 200
0

1

2
κ = 5↪ β ≤ 5

Number of meetings

T
im

e
o
n
1
in
st
a
n
ce

[s
]

0 50 100 150 200
0

0.5

1

1.5

2

κ = 10, β ≤ 10

Number of meetings

T
im

e
o
n
1
in
st
a
n
ce

[s
]

Fig. 5. Circular marks: runtime of Sat on random instances from the small-opt model
with p = 0.5, and κ = 5 (left) and κ = 10 (right). Crosses, left plot: runtime of ItD.
It is highly variable and practically dominated by Sat.

κ ItD Sat Fpt

5 0.69 13 – 31 1.2
6 0.69 44 – 48 1.7
7 0.69 64 – 76 8.3
8 0.69 110 – 218 64.0
9 0.70 338 – 422 645.9

1000 4.00 × ×

Table 2. Memory usage in MB on uniform random instances (p = 0.5) with 100
meetings and a variable number of characters κ. Only Sat’s memory usage varies
considerably over different instances with the same number of characters.

of characters κ. However, the dependence on κ includes factorial space, which
makes it impractical to run the algorithm on personal computers beyond κ = 10
and impossible to run at all for even a few characters more than that. Many
real-world instances have too many characters for Fpt.

The runtime of both ItD and Sat depends heavily on the number of block
crossings in the optimum. For very small optimum, ItD can be faster, but only
if the number of characters is also quite small: there is still the branching factor
of κ!. If memory is a problem and the optimum is small, then ItD is an option,
but in general Sat is vastly preferable.

As a final remark, we note that all these implementations are single-threaded,
and as such achieve only “25%” utilization on our quad-core test machine. ItD
could be trivially parallelized by dividing the search space; Fpt is trickier to
parallelize from an engineering perspective. It would be possible to use a par-
allelized SAT solver, like PMSat [7] or HordeSAT [1]. However, it is not clear
a priori how effective those would be for our specific SAT formulas.

Computing Storyline Visualizations with Few Block Crossings 13

4 Conclusion

In this paper we have presented a SAT-based algorithm for computing block-
crossing optimal storyline visualizations and extensive experimentation on ran-
dom instances. We have demonstrated that on some real-world instances (in
particular, the movies), Sat has runtime similar to the ILP of Gronemann et
al., who optimize pairwise crossings. For other instances (the books), Sat fares
poorly. We have also evaluated implementations of two further algorithms for
storyline block crossing optimization.

For future work, it would be interesting to perform further algorithm engi-
neering on Sat. In particular, it may be possible to handle the birth/death of
characters more efficiently or to better integrate with SAT algorithms.

In a different direction, one might use an ILP solver on a model very similar
to that of Section 2. This would, for example, enable us to minimize the number
of pairwise crossings subject to the number of block crossings being optimal.
However, preliminary experiments showed very poor performance.

From a graphic design perspective, optimizing for block crossings intuitively
makes sense. However, we are not aware of any user studies that investigated
whether block crossings are good, and what the trade-offs are. For example, is
a 4× 4 block crossing equally bad as a 2× 8 block crossing?

Acknowledgments. We thank Martin Gronemann for providing the exact input
files used in the experiments of [8].

References

1. Balyo, T., Sanders, P., Sinz, C.: HordeSat: a massively parallel portfolio SAT solver.
In: Heule, M., Weaver, S. (eds.) Proceedings of the 18th International Conference
on Theory and Applications of Satisfiability Testing 2015. LNCS, vol. 9340, pp.
156–172. Springer, Heidelberg (2015)

2. Bekos, M.A., Kaufmann, M., Zielke, C.: The book embedding problem from a SAT-
solving perspective. In: Di Giacomo, E., Lubiw, A. (eds.) Proc. 23rd Int. Symp.
Graph Drawing & Network Vis. (GD’15). LNCS, vol. 9411, pp. 125–138. Springer,
Heidelberg (2015), http://dx.doi.org/10.1007/978-3-319-27261-0_11

3. van Dijk, T.C., Fink, M., Fischer, N., Lipp, F., Markfelder, P., Ravsky, A., Suri,
S., Wolff, A.: Block crossings in storyline visualizations. In: Hu, Y., Nöllenburg,
M. (eds.) Proc. 24th Int. Symp. Graph Drawing & Network Vis. (GD’16). LNCS,
vol. 9801, pp. 382–398. Springer, Heidelberg (2016), http://arxiv.org/abs/1609.
00321

4. van Dijk, T.C., Fink, M., Fischer, N., Lipp, F., Markfelder, P., Ravsky, A., Suri, S.,
Wolff, A.: Block crossings in storyline visualizations. J. Graph Algorithms Appl.
(2017), to appear

5. Eén, N., Mishchenko, A., Sörensson, N.: Applying logic synthesis for speeding up
SAT. In: Marques-Silva, J., Sakallah, K.A. (eds.) Proceedings of the International
Conference on Theory and Applications of Satisfiability Testing 2007. LNCS, vol.
4501, pp. 272–286. Springer, Heidelberg (2007)

6. Eén, N., Sörensson, N.: Minisat sat solver. http://minisat.se (2003)

http://dx.doi.org/10.1007/978-3-319-27261-0_11
http://arxiv.org/abs/1609.00321
http://arxiv.org/abs/1609.00321
http://minisat.se

14 T. C. van Dijk et al.

7. Gil, L., Flores, P., Silveira, L.M.: Pmsat: a parallel version of minisat. Journal on
Satisfiability, Boolean Modeling and Computation 6, 71–98 (2008)

8. Gronemann, M., Jünger, M., Liers, F., Mambelli, F.: Crossing minimization in
storyline visualization. In: Hu, Y., Nöllenburg, M. (eds.) Proc. 24th Int. Symp.
Graph Drawing & Network Vis. (GD’16). LNCS, vol. 9801, pp. 367–381. Springer,
Heidelberg (2016), https://arxiv.org/abs/1608.08027

9. Kim, N.W., Card, S.K., Heer, J.: Tracing genealogical data with timenets. In: Proc.
Int. Conf. Adv. Vis. Interfaces (AVI’10). pp. 241–248 (2010)

10. Knuth, D.E.: The Art of Computer Programming, Volume 3: Sorting and Search-
ing. Addison Wesley Longman Publishing Co., Inc., Redwood City, CA, USA, 2
edn. (1998)

11. Kostitsyna, I., Nöllenburg, M., Polishchuk, V., Schulz, A., Strash, D.: On minimiz-
ing crossings in storyline visualizations. In: Giacomo, E.D., Lubiw, A. (eds.) Proc.
23rd Int. Symp. Graph Drawing & Network Vis. (GD’15). LNCS, vol. 9411, pp.
192–198. Springer, Heidelberg (2015)

12. Munroe, R.: Movie narrative charts. https://xkcd.com/657/ (2009), accessed
16.02.2017

13. Tanahashi, Y., Ma, K.: Design considerations for optimizing storyline visualiza-
tions. IEEE Trans. Vis. Comput. Graph. 18(12), 2679–2688 (2012)

14. Wertheimer, M.: Untersuchungen zur Lehre von der Gestalt. II. Psychologische
Forschung 4(1), 301–350 (1923)

https://arxiv.org/abs/1608.08027
https://xkcd.com/657/

Computing Storyline Visualizations with Few Block Crossings 15

Appendix

A Complete SAT formulation

In the following, we describe our complete SAT formula in conjunctive normal
form. We do not justify the effect of the clauses here, as this was already done
in Section 2. To be able to link the clauses with their description, the title of the
paragraphs and order of the clauses are the same as in the main text.

Remember that the input consists of a storyline S = (C,M,E) and the num-
ber of permutations λ. The number µ of meeting groups and their composition
(represented byM` and Li), which is used in the definition of the clauses, can
be derived from S easily.

Variables.

xrij for all i, j ∈ C with i 6= j, r ∈ {1, . . . , λ}
ori for all i ∈ C, r ∈ {1, . . . , λ}
χrij for all i, j ∈ C with i 6= j, r ∈ {1, . . . , λ− 1}

fri
gri
hri

 for all i ∈ C, r ∈ {1, . . . , λ}

qr` for all ` ∈ {1, . . . , µ}, r ∈ {1, . . . , λ}

Describing the Permutations.

xrij ∨ xrji ∨ ori ∨ orj
¬xrij ∨ ¬xrji ∨ ori ∨ orj

}
for all i, j ∈ C, i 6= j,

r ∈ {1, . . . , λ}

xrij ∨ xrjk ∨ xrki ∨ ori ∨ orj ∨ ork
¬xrij ∨ ¬xrjk ∨ ¬xrki ∨ ori ∨ orj ∨ ork

}
for all i, j, k ∈ C, i 6= j, i 6= k, j 6= k,

r ∈ {1, . . . , λ}

Crossings Between Characters.

χrij ∨ xrij ∨ ¬x
r+1
ij ∨ ori ∨ orj

χrij ∨ ¬xrij ∨ xr+1
ij ∨ ori ∨ orj

¬χrij ∨ xrij ∨ xr+1
ij ∨ ori ∨ orj

¬χrij ∨ ¬xrij ∨ ¬x
r+1
ij ∨ ori ∨ orj

for all i, j ∈ C, i 6= j,

r ∈ {1, . . . , λ− 1}

¬χrjk ∨ ori ∨ ¬o
r+1
i ∨ orj ∨ o

r+1
j ∨ ork ∨ o

r+1
k

¬χrjk ∨ ¬ori ∨ or+1
i ∨ orj ∨ o

r+1
j ∨ ork ∨ o

r+1
k

}
for all i, j, k ∈ C,

i 6= j, i 6= k, j 6= k,

r ∈ {1, . . . , λ− 1}

16 T. C. van Dijk et al.

Block Crossings.

fri ∨ gri ∨ hri ∨ ori
¬fri ∨ ¬gri ∨ ¬hri ∨ ori
fri ∨ ¬gri ∨ ¬hri ∨ ori
¬fri ∨ gri ∨ ¬hri ∨ ori
¬fri ∨ ¬gri ∨ hri ∨ ori

for all i ∈ C,

r ∈ {1, . . . , λ}

¬xrij ∨ ¬xrjk ∨ ¬gri ∨ ¬grk ∨ grj ∨ ori ∨ orj ∨ ork
¬xrij ∨ ¬xrjk ∨ ¬hri ∨ ¬hrk ∨ hrj ∨ ori ∨ orj ∨ ork
¬xrij ∨ ¬xrjk ∨ ¬gri ∨ ¬hrk ∨ ¬frj ∨ ori ∨ orj ∨ ork

for all i, j, k ∈ C,

i 6= j, i 6= k, j 6= k,

r ∈ {1, . . . , λ}

¬gri ∨ ¬hrj ∨ xrij ∨ ori ∨ orj for all i, j ∈ C, i 6= j,

r ∈ {1, . . . , λ}

χrij ∨ ¬gri ∨ ¬hrj ∨ ori ∨ orj
¬χrij ∨ ¬fri ∨ ori ∨ orj
¬χrij ∨ ¬gri ∨ ¬grj ∨ ori ∨ orj
¬χrij ∨ ¬hri ∨ ¬hrj ∨ ori ∨ orj

for all i, j ∈ C, i 6= j,

r ∈ {1, . . . , λ− 1}

Meeting Groups.

λ∨
r=1

qr` for all ` ∈ {1, . . . , µ}

¬qr` ∨ ¬q
p
` for all ` ∈ {1, . . . , µ}, r, p ∈ {1, . . . , λ}, r 6= p

¬qr` ∨
r∨
j=1

qj`−1 for all ` ∈ {2, . . . , µ}, r ∈ {1, . . . , λ}

q11

¬qr` ∨ ¬ori for all i ∈ C, ` ∈ {1, . . . , µ}, r ∈ {1, . . . , λ},M` ∈ Li
¬qr` ∨ ori for all i ∈ C, ` ∈ {1, . . . , µ}, r ∈ {1, . . . , λ},M` /∈ Li

µ∨
`=1

qr` ∨ ori ∨ ¬o
r−1
i

µ∨
`=1

qr` ∨ ¬ori ∨ or−1i

for all i ∈ C,

r ∈ {2, . . . , λ}

¬qr` ∨ xrij ∨ ¬xrkj
¬qr` ∨ ¬xrij ∨ xrkj

}
for all i, j, k ∈ C, i 6= j, i 6= k, j 6= k,

` ∈ {1, . . . , µ}, r ∈ {1, . . . , λ}
if there exists an m ∈M` with i, k ∈ m, j /∈ m

Computing Storyline Visualizations with Few Block Crossings 17

B Example Drawings

On the following pages, we show our solutions for the movie instances described
in the paper. For some of the movies, the storyline is split into multiple rows or
onto multiple pages. In this case the parts from top to bottom of a page need to
be recombined from left to right.

18 T. C. van Dijk et al.

F
ig.6.

A
block-crossing

optim
aldraw

ing
of

T
he

M
atrix.

Computing Storyline Visualizations with Few Block Crossings 19

F
ig.7.

A
block-crossing

optim
aldraw

ing
of

Star
W
ars.

20 T. C. van Dijk et al.

F
ig.8.

A
block-crossing

optim
aldraw

ing
of

Inception;part
1
of

2.

Computing Storyline Visualizations with Few Block Crossings 21

F
ig.9.

A
block-crossing

optim
aldraw

ing
of

Inception;part
2
of

2.

	Computing Storyline Visualizations with Few Block Crossings
	1 Introduction
	2 SAT Formulation for the Decision Problem
	3 Experimental Evaluation
	4 Conclusion
	A Complete SAT formulation
	B Example Drawings

