Skip to main content

Secure Energy Harvesting Communications with Partial Relay Selection over Nakagami-m Fading Channels

  • Conference paper
  • First Online:
  • 825 Accesses

Abstract

In this paper, a secure energy harvesting relay communication system with partial relay selection over Nakagami-m fading channels is proposed. A power beacon can provide wireless energy for the source and relay. A time-switching-based (TS) radio frequency energy harvesting technique is deployed at the power beacon. An eavesdropper is able to wiretap to the signal transmitted from the source and the relays. The exact closed-form expression of secrecy outage probability is derived. The results show that with increasing number of relays the system performs better in terms of secrecy outage probability (SOP). In addition, the energy harvesting duration has a significant effect on the secrecy outage probability. There exist an optimal energy harvesting duration that can achieve the lowest SOP and therefore this parameter should be carefully designed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Yuen, C., Elkashlan, M., Qian, Y., Duong, T.Q., Shu, L., Schmidt, F.: Energy harvesting communications: Part 1 [Guest Editorial]. IEEE Commun. Mag. 53(6), 54–55 (2015)

    Article  Google Scholar 

  2. Yuen, C., Elkashlan, M., Qian, Y., Duong, T.Q., Shu, L., Schmidt, F.: Energy harvesting communications: Part 2 [Guest Editorial]. IEEE Commun. Mag. 53(6), 54–55 (2015)

    Article  Google Scholar 

  3. Yuen, C., Elkashlan, M., Qian, Y., Duong, T.Q., Shu, L., Schmidt, F.: Energy harvesting communications: Part 3 [Guest Editorial]. IEEE Commun. Mag. 53(6), 54–55 (2015)

    Article  Google Scholar 

  4. Zhong, C., Zheng, G., Zhang, Z., Karagiannidis, G.: Optimum wirelessly powered relaying. IEEE Signal Process. Lett. 22(10), 1–1 (2015)

    Article  Google Scholar 

  5. Zhou, X., Zhang, R., Ho, C.K.: Wireless information and power transfer: Architecture design and rate-energy tradeoff. IEEE Trans. Commun. 61(11), 4754–4767 (2013)

    Article  Google Scholar 

  6. Nasir, A.A., Zhou, X., Durrani, S., Kennedy, R.A.: Relaying protocols for wireless energy harvesting and information processing. IEEE Trans. Wirel. Commun. 12(7), 3622–3636 (2013)

    Article  Google Scholar 

  7. Michalopoulos, D.S., Suraweera, H.A., Schober, R.: Relay selection for simultaneous information transmission and wireless energy transfer: A tradeoff perspective. IEEE J. Sel. Areas Commun. 33(8), 1 (2015)

    Article  Google Scholar 

  8. Mohammadi, M., Chalise, B.K., Suraweera, H.A., Zhong, C., Zheng, G., Krikidis, I.: Throughput analysis and optimization of wireless-powered multiple antenna full-duplex relay systems. IEEE Trans. Commun. 64(4), 1769–1785 (2016)

    Article  Google Scholar 

  9. Rankov, B., Wittneben, A.: Spectral efficient protocols for half-duplex fading relay channels. IEEE J. Sel. Areas Commun. 25(2), 379–389 (2007)

    Article  Google Scholar 

  10. Bao, V.N.Q., Duong, T.Q., da Costa, D.B., Alexandropoulos, G.C., Nallanathan, A.: Cognitive amplify-and-forward relaying with best relay selection in non-identical Rayleigh fading. IEEE Commun. Lett. 17(3), 475–478 (2013)

    Article  Google Scholar 

  11. Chen, G., Tian, Z., Gong, Y., Chambers, J.: Decode-and-forward buffer-aided relay selection in cognitive relay networks. IEEE Trans. Veh. Technol. 63(9), 4723–4728 (2014)

    Article  Google Scholar 

  12. Yang, M., Guo, D., Huang, Y., Duong, T.Q., Zhang, B.: Secure multiuser scheduling in downlink dual-hop regenerative relay networks over Nakagami-\(m\) fading channels. IEEE Trans. Wireless Commun. 15(12), 8009–8024 (2016)

    Article  Google Scholar 

  13. Fan, L., Lei, X., Yang, N., Duong, T.Q., Karagiannidis, G.K.: Secrecy cooperative networks with outdated relay selection over correlated fading channels. IEEE Trans. Veh. Technol. 66(8), 7599–7603 (2017)

    Article  Google Scholar 

  14. Hoang, T.M., Duong, T.Q., Vo, N.S., Kundu, C.: Physical layer security in cooperative energy harvesting networks with a friendly jammer. IEEE Wirel. Commun. Lett. 6(2), 174–177 (2017)

    Article  Google Scholar 

  15. Fan, L., Lei, X., Yang, N., Duong, T.Q., Karagiannidis, G.K.: Secure multiple amplify-and-forward relaying with cochannel interference. IEEE J. Sel. Topics Signal Process. 10(8), 1494–1505 (2016)

    Article  Google Scholar 

  16. Duong, T.Q., Hoang, T.M., Kundu, C., Elkashlan, M., Nallanathan, A.: Optimal power allocation for multiuser secure communication in cooperative relaying networks. IEEE Wirel. Commun. Lett. 5(5), 516–519 (2016)

    Article  Google Scholar 

  17. Huang, Y., Wang, J., Zhong, C., Duong, T.Q., Karagiannidis, G.K.: Secure transmission in cooperative relaying networks with multiple antennas. IEEE Trans. Wireless Commun. 15(10), 6843–6856 (2016)

    Article  Google Scholar 

  18. Nguyen, N.P., Duong, T.Q., Ngo, H.Q., Hadzi-Velkov, Z., Shu, L.: Secure 5G wireless communications: A joint relay selection and wireless power transfer approach. IEEE Access 4, 3349–3359 (2016)

    Article  Google Scholar 

  19. Fan, L., Yang, N., Duong, T.Q., Elkashlan, M., Karagiannidis, G.K.: Exploiting direct links for physical layer security in multiuser multirelay networks. IEEE Trans. Wireless Commun. 15(6), 3856–3867 (2016)

    Article  Google Scholar 

  20. Hoang, T.M., Duong, T.Q., Suraweera, H.A., Tellambura, C., Poor, H.V.: Cooperative beamforming and user selection for improving the security of relay-aided systems. IEEE Trans. Wireless Commun. 63(12), 5039–5051 (2015)

    Article  Google Scholar 

  21. Rodriguez, L.J., Tran, N.H., Duong, T.Q., Le-Ngoc, T., Elkashlan, M., Shetty, S.: Physical layer security in wireless cooperative relay networks: State of the art and beyond. IEEE Commun. Mag. 53(12), 32–39 (2015)

    Article  Google Scholar 

  22. Wang, L., Kim, K.J., Duong, T.Q., Elkashlan, M., Poor, H.V.: Security enhancement of cooperative single carrier systems. IEEE Trans. Inf. Forensics Secur. 10(1), 90–103 (2015)

    Article  Google Scholar 

  23. Fan, L., Lei, X., Duong, T.Q., Elkashlan, M., Karagiannidis, G.K.: Secure multiuser communications in multiple amplify-and-forward relay networks. IEEE Trans. Commun. 62(9), 3299–3310 (2014)

    Article  Google Scholar 

  24. Wang, L., Elkashlan, M., Huang, J., Tran, N.H., Duong, T.Q.: Secure transmission with optimal power allocation in untrusted relay networks. IEEE Wirel. Commun. Lett. 3(3), 289–292 (2014)

    Article  Google Scholar 

  25. Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Series, and Products, 7th edn. Academic press, San Diego (2007)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nam-Phong Nguyen .

Editor information

Editors and Affiliations

A Appendices

A Appendices

1.1 A.1 Proof of Lemma 1

The SNR of first hop and second hop in PRS scheme can be written as

$$\begin{aligned} \gamma _{1\mathsf {PRS}}= \frac{1 + {\gamma }_{\mathsf {M}}\xi |h_{\mathsf {B}\mathsf {S}}|^2|h_{\mathsf {S}\mathsf {R}_{k^*}}|^2}{1+ {\gamma }_{\mathsf {E}}\xi |h_{\mathsf {B}\mathsf {S}}|^2|h_{\mathsf {S}\mathsf {E}}|^2}, \end{aligned}$$
(A.1)
$$\begin{aligned} \gamma _{2\mathsf {PRS}}= \frac{1+ {\gamma }_{\mathsf {M}}\xi |h_{\mathsf {B}\mathsf {R}_{k^*}}|^2|h_{\mathsf {R}_{k^*} \mathsf {D}}|^2}{1+{\gamma }_{\mathsf {E}}\xi |h_{\mathsf {B}\mathsf {R}_{k^*}}|^2|h_{\mathsf {R}_{k^*} \mathsf {E}}|^2}. \end{aligned}$$
(A.2)

The CDF of \(\gamma _{1\mathsf {PRS}}\) is expressed as

$$\begin{aligned}&P{(\gamma _{1\mathsf {PRS}}<x)}= 1+\sum _{k=1}^{K}\sum _{v=0}^{l}\sum _{l=0}^{k(m_{\mathsf {S}\mathsf {R}}-1)}\left( {\begin{array}{c}K\\ k\end{array}}\right) \left( {\begin{array}{c}v\\ l\end{array}}\right) (-1)^{k}(x-1)^{l-v}(\xi )^{v-l}\left( {\gamma }_{\mathsf {E}}x\right) ^{v}\nonumber \\&\quad \times \frac{\varGamma (v+m_{\mathsf {S}\mathsf {E}})}{\varGamma (m_{\mathsf {S}\mathsf {E}})\theta _{\mathsf {S}\mathsf {E}}^{m_{\mathsf {S}\mathsf {E}}}}\frac{w(l,k,m_{\mathsf {S}\mathsf {R}})}{\theta _{\mathsf {S}\mathsf {R}}^{l} {\gamma }_{\mathsf {M}}^{l}} \frac{1}{\varGamma (m_{\mathsf {B}\mathsf {S}})\theta _{\mathsf {B}\mathsf {S}}^{m_{\mathsf {B}\mathsf {S}}}} \left( \frac{\theta _{\mathsf {S}\mathsf {R}}{\gamma }_{\mathsf {M}}\theta _{\mathsf {S}\mathsf {E}}}{k {\gamma }_{\mathsf {E}}x \theta _{\mathsf {S}\mathsf {E}}+ \theta _{\mathsf {S}\mathsf {R}}{\gamma }_{\mathsf {M}}}\right) ^{v+ m_{\mathsf {S}\mathsf {E}}}\nonumber \\&\quad \times \mathbf {K}_{{m_{\mathsf {B}\mathsf {S}}-l+v}}\left( {2\sqrt{\frac{k(x-1)}{\theta _{\mathsf {S}\mathsf {R}}\theta _{\mathsf {B}\mathsf {S}}{\gamma }_{\mathsf {M}}\xi }}}\right) \times 2\times \left( \frac{k(x-1)\theta _{\mathsf {B}\mathsf {S}}}{\theta _{\mathsf {S}\mathsf {R}}{\gamma }_{\mathsf {M}}\xi }\right) ^{\frac{m_{\mathsf {B}\mathsf {S}}-l+v}{2}} \end{aligned}$$
(A.3)

The CDF of \(\gamma _{2\mathsf {PRS}}\) is expressed as

$$\begin{aligned}&P{(\gamma _{2\mathsf {PRS}}<x)} =1-\sum _{i=0}^{m_{\mathsf {R}\mathsf {D}}-1}\sum _{j=0}^{i}\left( {\begin{array}{c}i\\ j\end{array}}\right) \frac{1}{i!}\frac{(x-1)^{i-j}({\gamma }_{\mathsf {E}}x)^{j}}{{\gamma }_{\mathsf {M}}^{i} \xi ^{i-j}\theta _{\mathsf {R}\mathsf {D}}^{i}}\frac{\varGamma (v+m_{\mathsf {R}\mathsf {E}})}{\varGamma (m_{\mathsf {R}\mathsf {E}})\theta _{\mathsf {R}\mathsf {E}}^{m_{\mathsf {R}\mathsf {E}}}\varGamma (m_{\mathsf {B}\mathsf {R}})\theta _{\mathsf {B}\mathsf {R}}^{m_{\mathsf {B}\mathsf {R}}}}\nonumber \\&\quad \times \left( \frac{x {\gamma }_{\mathsf {E}}}{{\gamma }_{\mathsf {M}}\theta _{\mathsf {R}\mathsf {D}}}+\frac{1}{\theta _{\mathsf {R}\mathsf {E}}}\right) ^{-(v+m_{\mathsf {R}\mathsf {E}})} \mathbf {K}_{{m_{\mathsf {B}\mathsf {R}}-i+j}}\left( {2\sqrt{\frac{x-1}{\theta _{\mathsf {R}\mathsf {D}}\theta _{\mathsf {B}\mathsf {R}}{\gamma }_{\mathsf {M}}\xi }}}\right) \nonumber \\&\quad \times 2 \times \left( \frac{\theta _{\mathsf {B}\mathsf {R}}(x-1)}{\theta _{\mathsf {R}\mathsf {D}}{\gamma }_{\mathsf {M}}\xi }\right) ^{\frac{m_{\mathsf {B}\mathsf {R}}-i+j}{2}} \end{aligned}$$
(A.4)

The SOP of the considered system in PRS scheme is formulated as follows:

$$\begin{aligned} F_{{\gamma _{\mathsf {PRS}}}}\left( {\beta }\right) =1-\left[ (1-F_{{\gamma _{1\mathsf {PRS}}}}\left( {\beta }\right) ) (1-F_{{\gamma _{2\mathsf {PRS}}}}\left( {\beta }\right) )\right] \end{aligned}$$
(A.5)

After performing some mathematical manipulations, (20) can be achieved with the help of [25, Eq. (3.471.9)].

Rights and permissions

Reprints and permissions

Copyright information

© 2018 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yin, C., He, X., Nguyen, NP., Garcia-Palacios, E. (2018). Secure Energy Harvesting Communications with Partial Relay Selection over Nakagami-m Fading Channels. In: Chen, Y., Duong, T. (eds) Industrial Networks and Intelligent Systems. INISCOM 2017. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 221. Springer, Cham. https://doi.org/10.1007/978-3-319-74176-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-74176-5_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-74175-8

  • Online ISBN: 978-3-319-74176-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics