Skip to main content

Outage Probability for Cognitive Heterogeneous Networks with Unreliable Backhaul Connections

  • Conference paper
  • First Online:
Book cover Industrial Networks and Intelligent Systems (INISCOM 2017)

Abstract

To enhance the spectrum scarcity of cooperative heterogeneous networks (HetNets) with unreliable backhaul connections, we examine the impact of cognitive spectrum sharing over multiple small-cell transmitters in Nakagami-m fading channels. In this system, the secondary transmitters are connected to macro-cell via wireless backhaul links and communicate with the secondary receiver by sharing the same spectrum with the primary user. Integrating cognitive radio (CR), we address the combined power constraints: (1) the peak interference power and (2) the maximal transmit power. In addition, to exclude the signaling overhead for exchanging channel-state-information (CSI) at the transmitters, the selection combining (SC) protocol is assumed to employ at the receivers. The closed-form statistics of the end-to-end signal-to-noise (SNR) ratio are derived to attain the exact formulas of outage probability and its asymptotic performance to reveal further insights into the effective unreliable backhaul links.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In the literature in unreliable backhaul [4, 5], the perfect knowledge of CSI is not required at the transmitters, which is different from maximum ratio transmission (MRT) protocol [20, 21].

References

  1. Andrews, J.G.: Seven ways that HetNets are a cellular paradigm shift. IEEE Commun. Mag. 51(3), 136–144 (2013)

    Article  Google Scholar 

  2. Coldrey, M., Koorapaty, H., Berg, J.-E., Ghebretensae, Z., Hansryd, J., Derneryd, A., Falahati, S.: Small-cell wireless backhauling: a non-line-of-sight approach for point-to-point microwave links. In: Proceedings of IEEE Vehicular Technology Conference, Quebec City, Canada, pp. 1–5 (2012)

    Google Scholar 

  3. Mayer, Z., Li, J., Papadogiannis, A., Svensson, T.: On the impact of backhaul channel reliability on cooperative wireless networks. In: Proceedings of IEEE International Conference on Communications, Budapest, Hungary, pp. 5284–5289 (2013)

    Google Scholar 

  4. Kim, K.J., Orlik, P.V., Khan, T.A.: Performance analysis of finite-sized co-operative systems with unreliable backhauls. IEEE Trans. Wirel. Commun. 15(7), 5001–5015 (2016)

    Google Scholar 

  5. Kim, K.J., Khan, T., Orlik, P.: Performance analysis of cooperative systems with unreliable backhauls and selection combining. IEEE Trans. Veh. Technol. 66, 2448–2461 (2016)

    Article  Google Scholar 

  6. Peng, M., Liu, Y., Wei, D., Wang, W., Chen, H.-H.: Hierarchical cooperative relay based heterogeneous networks. IEEE Wirel. Commun. 18(3), 48–56 (2011)

    Article  Google Scholar 

  7. Al-Qahtani, F.S., Zhong, C., Alnuweiri, H.M.: Opportunistic relay selection for secrecy enhancement in cooperative networks. IEEE Trans. Commun. 63(5), 1756–1770 (2015)

    Article  Google Scholar 

  8. Kim, K.J., Duong, T.Q., Tran, X.-N.: Performance analysis of cognitive spectrum-sharing single-carrier systems with relay selection. IEEE Trans. Signal Process. 60(12), 6435–6449 (2012)

    Article  MathSciNet  Google Scholar 

  9. Andrews, J.G., Buzzi, S., Choi, W., Hanly, S.V., Lozano, A., Soong, A.C., Zhang, J.C.: What will 5G be? IEEE J. Sel. Areas Commun. 32(6), 1065–1082 (2014)

    Article  Google Scholar 

  10. Zhang, R., Liang, Y.-C.: Exploiting multi-antennas for opportunistic spectrum sharing in cognitive radio networks. IEEE J. Sel. Top. Signal Process. 2(1), 88–102 (2008)

    Article  Google Scholar 

  11. Niyato, D., Hossain, E.: Competitive pricing for spectrum sharing in cognitive radio networks: dynamic game, inefficiency of nash equilibrium, and collusion. IEEE J. Sel. Areas Commun. 26(1), 192–202 (2008)

    Article  Google Scholar 

  12. Duong, T.Q., da Costa, D.B., Elkashlan, M., Bao, V.N.Q.: Cognitive amplify-and-forward relay networks over Nakagami-m fading. IEEE Trans. Veh. Technol. 61(5), 2368–2374 (2012)

    Article  Google Scholar 

  13. Deng, Y., Wang, L., Elkashlan, M., Kim, K.J., Duong, T.Q.: Generalized selection combining for cognitive relay networks over Nakagami-m fading. IEEE Trans. Signal Process. 63(8), 1993–2006 (2015)

    Article  MathSciNet  Google Scholar 

  14. Duong, T.Q., Bao, V.N.Q., Alexandropoulos, G.C., Zepernick, H.-J.: Cooperative spectrum sharing networks with AF relay and selection diversity. IET Electron. Lett. 47(20), 1149–1151 (2011)

    Article  Google Scholar 

  15. Duong, T.Q., Bao, V.N.Q., Zepernick, H.-J.: Exact outage probability of cognitive AF relaying with underlay spectrum sharing. IET Electron. Lett. 47(17), 1001–1002 (2011)

    Article  Google Scholar 

  16. Guimaraes, F.R.V., da Costa, D.B., Tsiftsis, T.A., Cavalcante, C.C., Karagiannidis, G.K.: Multiuser and multirelay cognitive radio networks under spectrum-sharing constraints. IEEE Trans. Veh. Technol. 63(1), 433–439 (2014)

    Article  Google Scholar 

  17. Lodhi, A., Said, F., Dohler, M., Aghvami, A.H.: Closed-form symbol error probabilities of STBC and CDD MC-CDMA with frequency correlated subcarriers over Nakagami-m fading channels. IEEE Trans. Veh. Technol. 57(2), 962–973 (2008)

    Article  Google Scholar 

  18. Duong, T.Q., Yeoh, P.L., Bao, V.N.Q., Elkashlan, M., Yang, N.: Cognitive relay networks with multiple primary transceivers under spectrum-sharing. IEEE Signal Process. Lett. 19(11), 741–744 (2012)

    Article  Google Scholar 

  19. Khan, T.A., Orlik, P., Kim, K.J., Heath, R.W.: Performance analysis of cooperative wireless networks with unreliable backhaul links. IEEE Commun. Lett. 19(8), 1386–1389 (2015)

    Article  Google Scholar 

  20. Tsiftsis, T.A., Karagiannidis, G.K., Sagias, N.C., Kotsopoulos, S.A.: Performance of MRC diversity receivers over correlated Nakagami-m fading channels. In: Proceedings of Communication Systems, Networks and Digital Signal Processing, Patras, Greece, pp. 84–88 (2006)

    Google Scholar 

  21. Cavers, J.K.: Single-user and multiuser adaptive maximal ratio transmission for Rayleigh channels. IEEE Trans. Veh. Technol. 49(6), 2043–2050 (2000)

    Article  Google Scholar 

  22. Duong, T.Q., da Costa, D.B., Tsiftsis, T.A., Zhong, C., Nallanathan, A.: Outage and diversity of cognitive relaying systems under spectrum sharing environments in Nakagami-m fading. IEEE Commun. Lett. 16(12), 2075–2078 (2012)

    Article  Google Scholar 

  23. Duong, T.Q., Alexandropoulos, G.C., Zepernick, H.-J., Tsiftsis, T.A.: Orthogonal space-time block codes with CSI-assisted amplify-and forward relaying in correlated Nakagami-m fading channels. IEEE Trans. Veh. Technol. 60(3), 882–889 (2011)

    Article  Google Scholar 

  24. Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Series, and Products. Academic Press, New York (2007)

    MATH  Google Scholar 

Download references

Acknowledgement

This work was supported by the Ministry of Science, ICT and Future Planning, South Korea, through the Grand Information Technology Research Center Program under Grant IITP-2017-2016-0-00318

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Won-Joo Hwang .

Editor information

Editors and Affiliations

Appendices

Appendix A: Proof of Lemma 1

According to the definition of RV \(\gamma _{k}^s\) at particular \(\text {SU-T}_k\) , which was given as \(\gamma _{k}^s= \min \left( \bar{\gamma }_\mathcal {P}|h_k^s|^2, \dfrac{\bar{\gamma }_\mathcal {I}}{|h_k^p|^2}|h_k^s|^2 \right) \), results the CDF as

$$\begin{aligned} F_{{\gamma _{k}^s}}\left( {x}\right)&= \Pr \left\{ \min \left( \bar{\gamma }_\mathcal {P}|h_k^s|^2, \dfrac{\bar{\gamma }_\mathcal {I}}{|h_k^p|^2}|h_k^s|^2 \right) \le x \right\} \nonumber \\&= \underbrace{\Pr \left\{ |h_k^s|^2 \le \dfrac{x}{\bar{\gamma }_\mathcal {P}};\dfrac{\bar{\gamma }_{\mathcal {I}}}{|h_k^p|^2} \ge \bar{\gamma }_\mathcal {P}\right\} }_{\mathcal {J}_1} \nonumber \\&\qquad \qquad \qquad + \underbrace{\Pr \left\{ \dfrac{|h_k^s|^2}{|h_k^p|^2} \le \dfrac{x}{\bar{\gamma }_{\mathcal {I}}};\dfrac{\bar{\gamma }_{\mathcal {I}}}{|h_k^p|^2} \le \bar{\gamma }_\mathcal {P}\right\} }_{\mathcal {J}_2}. \end{aligned}$$
(A.1)

where

$$\begin{aligned} \mathcal {J}_1&= F_{|h_k^s|^2} \left( \dfrac{x}{\bar{\gamma }_\mathcal {P}} \right) F_{|h_k^p|^2} \left( \dfrac{\bar{\gamma }_{\mathcal {I}}}{\bar{\gamma }_\mathcal {P}} \right) , \; \text {and} \end{aligned}$$
(A.2)
$$\begin{aligned} \mathcal {J}_2&=\int _{\dfrac{\bar{\gamma }_{\mathcal {I}}}{\bar{\gamma }_\mathcal {P}}}^{\infty } f_{|h_k^p|^2}(y) F_{|h_k^s|^2} \left( \dfrac{xy}{\bar{\gamma }_{\mathcal {I}}} \right) dy. \end{aligned}$$
(A.3)

After some manipulations, we obtain the CDF of \(\gamma _{k}^s\) as follows.

$$\begin{aligned} F_{{\gamma _{k}^s}}\left( {x}\right)&= 1- \varPhi e^{-\left( \dfrac{x}{\bar{\gamma }_\mathcal {P}\eta _{s}}\right) } \sum _{i=0}^{\mu _{s}-1} \dfrac{1}{i!}\left( \dfrac{x}{\bar{\gamma }_\mathcal {P}\eta _{s}}\right) ^i \nonumber \\&- \sum _{j=0}^{\mu _{s}-1} \left( {\begin{array}{c}\mu _{p}+j-1\\ \mu _{p}-1\end{array}}\right) \epsilon ^{\mu _{p}} e^{-\left( \dfrac{\bar{\gamma }_{\mathcal {I}}}{\bar{\gamma }_\mathcal {P}\eta _{p}} \right) }\nonumber \\&\dfrac{x^{j}e^{- \left( \dfrac{x}{\bar{\gamma }_\mathcal {P}\eta _{s}}\right) } \sum _{g=0}^{\mu _{p}+j-1}\dfrac{1}{g!(\bar{\gamma }_\mathcal {P}\eta _{s})^g}\left( x + \epsilon \right) ^g}{\left( x + {\epsilon } \right) ^{\mu _{p}+j}}, \end{aligned}$$
(A.4)

with the help of [24, Eq. (8.352.4)]. The PDF of a particular RV \(\gamma _{k}^s\mathbb {I}_k\) is modeled by the mixed distribution as

$$\begin{aligned} f_{\gamma _{k}^s\mathbb {I}_k}(x)= (1-\varLambda )\delta (x)+\varLambda \dfrac{\partial F_{{\gamma _{k}^s}}\left( {x}\right) }{\partial x} , \end{aligned}$$
(A.5)

where \(\delta (x)\) indicates the Dirac delta function. Hence, the CDF of the RV \(\gamma _{k}^s\mathbb {I}_k\) can be written as follows

$$\begin{aligned} F_{\gamma _{k}^s\mathbb {I}_k}(x) = \int _{0}^{\infty }f_{\gamma _{k}^s\mathbb {I}_k}(x)dx = 1-\varLambda (\varTheta _1(x) + \varTheta _2(x)). \end{aligned}$$
(A.6)

Appendix B: Proof of Theorem 1

From the definition of S-SNR \(\gamma _S\) in (5), which is given by

$$\begin{aligned} \gamma _S = \max _{k \in K} \left( \gamma _1^s \mathbb {I}_1, \gamma _2^s \mathbb {I}_2,...,\gamma _k^s \mathbb {I}_k,...,\gamma _K^s \mathbb {I}_K \right) . \end{aligned}$$
(B.1)

Since all RVs \(\gamma _k^s \mathbb {I}_k\) are independent and identically distributed with each other, the CDF of SNR \(\gamma _S\) can be written as

$$\begin{aligned} F_{\gamma _S}(x)&=F_{{\gamma _{k}^s\mathbb {I}_k}}^{K} (x)\nonumber \\&=1+\sum _{k=1}^{K}\left( {\begin{array}{c}K\\ k\end{array}}\right) (-1)^k \varLambda ^k (\varTheta _1(x) +\varTheta _2(x))^k \nonumber \\&=1+\sum _{k=1}^{K}\left( {\begin{array}{c}K\\ k\end{array}}\right) (-1)^k \varLambda ^k \sum _{l=0}^{k}\left( {\begin{array}{c}k\\ l\end{array}}\right) \varTheta _1(x)^{k-l}\varTheta _2(x)^l. \end{aligned}$$
(B.2)

Applying multinomial theorem provides the following expression

$$\begin{aligned} \varTheta _1(x)^{k-l}&=\left( \varPhi e^{-\left( \dfrac{x}{\bar{\gamma }_\mathcal {P}\eta _{s}}\right) } \sum _{i=0}^{\mu _{s}-1} \dfrac{1}{i!}\left( \dfrac{x}{\bar{\gamma }_\mathcal {P}\eta _{s}}\right) ^i \right) ^{k-l} \nonumber \\&=\sum _{u_1...u_{\mu _{s}}}^{k-l} \dfrac{(k-l)!}{u_1!...u_{\mu _{s}}!} \dfrac{\varPhi ^{k-l} e^{-\left( (k-l)/{\bar{\gamma }_\mathcal {P}\eta _{s}}\right) x} x^{\sum _{\vartheta =0}^{\mu _{s}-1}\vartheta u_{\vartheta +1}}}{\prod _{\vartheta =0}^{\mu _{s}-1}\left( \vartheta !(\bar{\gamma }_\mathcal {P}\eta _{s})^\vartheta \right) ^{u_{\vartheta +1}}}. \end{aligned}$$
(B.3)

Again multinomial and binomial theorem give the following expression for \(\varTheta _2(x)^l\) as

$$\begin{aligned} \varTheta _2(x)^l&=\sum _{w_1...w_{\mu _{s}}}^{l} \dfrac{l!}{w_1!...w_{\mu _{s}}!} \prod _{t=0}^{\mu _{s}-1} {\left( {\begin{array}{c}\mu _{p}+t-1\\ \mu _{p}-1\end{array}}\right) }^{w_{t+1}} \nonumber \\&e^{-\left( \bar{\gamma }_{\mathcal {I}}l/{\bar{\gamma }_\mathcal {P}\eta _{p}} \right) } \epsilon ^{\mu _{p}l} e^{-\left( l/{\bar{\gamma }_\mathcal {P}\eta _{s}}\right) x} x^{\sum _{t=0}^{\mu _{s}-1} tw_{t+1} } \nonumber \\&\underbrace{ \prod _{t=0}^{\mu _{s}-1} \left( \sum _{g=0}^{\mu _{p}+t-1} \dfrac{1}{g!(\bar{\gamma }_\mathcal {P}\eta _{s})^g}(x+\epsilon )^g \right) ^{w_{t+1}}}_{\mathcal {J}_3} \left( \underbrace{ \prod _{t=0}^{\mu _{s}-1}\left( (x+\epsilon )^{\mu _{p}+t}\right) ^{w_{t+1}}}_{\mathcal {J}_4} \right) ^{-1} . \end{aligned}$$
(B.4)

Let denotes \(\widetilde{L_{a_n}} = \sum _{b_n=0}^{\mu _{p}+n-2} b_na_{b_n +1}\). By expanding \(\mathcal {J}_3\) and \(\mathcal {J}_4\), together with (B.2), (B.3), (B.4), yields (9).

Appendix C: Proof of Theorem 3

From (7), we can rewrite it as the Gamma form as

$$\begin{aligned} F_{\gamma _{k}^s\mathbb {I}_k}(x) = 1-&\varLambda \varPhi \dfrac{\varUpsilon \left( \mu _{s},\dfrac{x}{\bar{\gamma }_\mathcal {P}\eta _{s}}\right) }{\varGamma (\mu _{s})} \nonumber \\&- \varLambda \sum _{j=0}^{\mu _{s}-1}\dfrac{\epsilon ^{\mu _{p}} x^j \varGamma \left( \mu _{p}+j,\dfrac{x+\epsilon }{\bar{\gamma }_\mathcal {P}\eta _{s}} \right) }{j!\varGamma (\mu _{p}) \left( x+\epsilon \right) ^{\mu _{p}+j}}. \end{aligned}$$
(C.1)

It can be easily seen that as y goes to infinity,

$$\begin{aligned}&\lim _{y\rightarrow \infty } \dfrac{\varUpsilon (\mu _\chi ,x/y)}{\varGamma (\mu _\chi )} \approx 0 \; \text {and} \nonumber \\&\lim _{y\rightarrow \infty } \dfrac{\varGamma (\mu _\chi ,x/y)}{\varGamma (\mu _\chi )} \approx 1. \end{aligned}$$
(C.2)

Substituting (C.2) into (C.1) with the given outage threshold \(\gamma _\text {th}\), we can obtain

$$\begin{aligned} \mathcal {P}_{out}^{Asy}(\gamma _\text {th})&\overset{\bar{\gamma }_\mathcal {P}\rightarrow \infty }{=} \prod _{k=1}^{K} \left( 1-\varLambda \dfrac{1}{ \left( 1+\dfrac{x}{\epsilon }\right) ^{\mu _{p}}} \right) \nonumber \\&\overset{\bar{\gamma }_\mathcal {P}\rightarrow \infty }{=} \prod _{k=1}^{K} \left( 1-\varLambda \right) , \end{aligned}$$
(C.3)

where \(\sum _{j=0}^{\mu _{s}-1}(.)\) is dominated by \(j=0\) as \(\bar{\gamma }_\mathcal {P}\rightarrow \infty \).

Rights and permissions

Reprints and permissions

Copyright information

© 2018 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nguyen, H.T., Ha, DB., Nguyen, S.Q., Hwang, WJ. (2018). Outage Probability for Cognitive Heterogeneous Networks with Unreliable Backhaul Connections. In: Chen, Y., Duong, T. (eds) Industrial Networks and Intelligent Systems. INISCOM 2017. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 221. Springer, Cham. https://doi.org/10.1007/978-3-319-74176-5_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-74176-5_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-74175-8

  • Online ISBN: 978-3-319-74176-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics