Skip to main content

An Intrusion Detection System Based on Machine Learning for CAN-Bus

  • Conference paper
  • First Online:

Abstract

The CAN-Bus is currently the most widely used vehicle bus network technology, but it is designed for needs of vehicle control system, having massive data and lacking of information security mechanisms and means. The Intrusion Detection System (IDS) based on machine learning is an efficient active information security defense method and suitable for massive data processing. We use a machine learning algorithm—Gradient Boosting Decision Tree (GBDT) in IDS for CAN-Bus and propose a new feature based on entropy as the feature construction of GBDT algorithm. In detection performance, the IDS based on GBDT has a high True Positive (TP) rate and a low False Positive (FP) rate.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Senn, S.: Analysis and application for CAN-bus controller integrated in AVR MCU, pp. 2661–2674 (1996)

    Google Scholar 

  2. Ricci, C.P.: Controller area network bus (2013)

    Google Scholar 

  3. Taha, A.E.M., Nasser, N.: Utilizing CAN-Bus and smartphones to enforce safe and responsible driving, pp. 111–115 (2015)

    Google Scholar 

  4. Guerrero-Ibanez, J.A., Zeadally, S., Contreras-Castillo, J.: Integration challenges of intelligent transportation systems with connected vehicle, cloud computing, and internet of things technologies. IEEE Wirel. Commun. 22, 122–128 (2015)

    Article  Google Scholar 

  5. Huang, C.H., Chen, H.Y., Huang, T.F., Tzeng, Y.Y., Li, P.Y., Wu, P.S.: A self-adaptive system for vehicle information security applications. In: IEEE/IFIP International Conference on Embedded and Ubiquitous Computing, pp. 188–192 (2015)

    Google Scholar 

  6. Matsui, M.: The first experimental cryptanalysis of the data encryption standard. In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 1–11. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-48658-5_1

    Google Scholar 

  7. Biryukov, A., Cannière, C.D.: Data encryption standard (DES) (2005)

    Google Scholar 

  8. Lowe, G.: An attack on the Needham-Schroeder public-key authentication protocol. Inf. Process. Lett. 56(3), 131–133 (1995)

    Article  MATH  Google Scholar 

  9. Manner, J., Karagiannis, G., Mcdonald, A.: NSIS Signaling Layer Protocol (NSLP) for quality-of-service signaling. IETF 31(2), 152–160 (2010)

    Google Scholar 

  10. Huang, M.Y., Jasper, R.J., Wicks, T.M.: A large scale distributed intrusion detection framework based on attack strategy analysis. Comput. Netw. 31(23–24), 2465–2475 (1998)

    Google Scholar 

  11. Hoppe, T., Kiltz, S., Dittmann, J.: Security Threats to Automotive CAN networks – practical examples and selected short-term countermeasures. In: Harrison, Michael D., Sujan, M.-A. (eds.) SAFECOMP 2008. LNCS, vol. 5219, pp. 235–248. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-87698-4_21

    Chapter  Google Scholar 

  12. Cheng, K., Zhang, C.: Feature-based weighted Naive Bayesian classifier. Comput. Simul. 23(10), 92–94 (2006)

    Google Scholar 

  13. Müter, M., Asaj, N.: Entropy-based anomaly detection for in-vehicle networks. In: Intelligent Vehicles Symposium, pp. 1110–1115 (2011)

    Google Scholar 

  14. Robnikšikonja, M., Kononenko, I.: Theoretical and empirical analysis of ReliefF and RReliefF. Mach. Learn. 53(1), 23–69 (2003)

    Article  MATH  Google Scholar 

  15. Larson, U.E., Nilsson, D.K., Jonsson, E.: An approach to specification-based attack detection for in-vehicle networks. In: Intelligent Vehicles Symposium, pp. 220–225 (2008)

    Google Scholar 

  16. Friedman, J.H.: Greedy function approximation: a gradient boosting machine. Annal. Stat. 29, 1189–1232 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  17. Hamid, Y., Sugumaran, M., Journaux, L.: Machine learning techniques for intrusion detection: a comparative analysis. In: International Conference on Informatics and Analytics (2016)

    Google Scholar 

  18. Xu, M., Watanachaturaporn, P., Varshney, P.K., Arora, M.K.: Decision tree regression for soft classification of remote sensing data. Remote Sens. Environ. 97, 322–336 (2005)

    Article  Google Scholar 

  19. Takimoto, E., Maruoka, A.: Top-down decision tree learning as information based boosting. Theor. Comput. Sci. 292, 447–464 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  20. Iqbal, M.R.A., Rahman, S., Nabil, S.I., Chowdhury, I.U.A.: Knowledge based decision tree construction with feature importance domain knowledge. In: International Conference on Electrical & Computer Engineering, pp. 659–662 (2012)

    Google Scholar 

  21. Liang, J., Shi, Z., Li, D., Wierman, M.J.: Information entropy, rough entropy and knowledge granulation in incomplete information systems. Int. J. Gen. Syst. 35(6), 641–654 (2006)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

This research was supported by the National Key Research and Development Program of China (2016YFB0100902).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yunpeng Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tian, D. et al. (2018). An Intrusion Detection System Based on Machine Learning for CAN-Bus. In: Chen, Y., Duong, T. (eds) Industrial Networks and Intelligent Systems. INISCOM 2017. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 221. Springer, Cham. https://doi.org/10.1007/978-3-319-74176-5_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-74176-5_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-74175-8

  • Online ISBN: 978-3-319-74176-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics