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Abstract. Simultaneous Embedding with Fixed Edges (SEFE) [1] is a problem where given
k planar graphs we ask whether they can be simultaneously embedded so that the embedding
of each graph is planar and common edges are drawn the same. Problems of SEFE type have
inspired questions of Simultaneous Geometrical Representations and further derivations.
Based on this motivation we investigate the generalization of the simultaneous paradigm
on the classical combinatorial problem of minimum spanning trees. Given k graphs with
weighted edges, such that they have a common intersection, are there minimum spanning
trees of the respective graphs such that they agree on the intersection? We show that the
unweighted case is polynomial-time solvable while the weighted case is only polynomial-time
solvable for k = 2 and it is NP-complete for k ≥ 3.

1 Introduction

The problem of finding a minimum spanning tree is one of the most important and most well-
studied problems in graph algorithms. We consider a variant of this problem inspired by the
following motivation.

In a Sunflower land, there is a capital city and several smaller cities around it. In the past,
there was a telecommunication company based in the capital city, but it is now bankrupt. The
inhabitants of each of the small cities want to establish their own telecommunication company
that would connect all of the houses in their city as well as all of the houses in the capital. The
representatives of each city meet to coordinate their soon-to-be networks so that they all agree
on the capital and can split the cost of covering the capital evenly. However, all of the companies
are so afraid of bankruptcy that none of them would accept a solution that would cost them a
single dollar more than necessary. Is it always possible to plan all of the networks so that all of the
companies reach their goal simultaneously while each of the individual costs is minimized? How
hard is it to find such a plan, if it exists, or recognize that it does not exist?

Problem 1 (Simultaneous Minimum Spanning Trees). Let k be a positive integer and let G1 =
(V1, E1), G2 = (V2, E2), . . . , Gk = (Vk, Ek) be graphs and w a non-negative weight function of all

of their edges (w :
⋃k

i=1Ei → R+
0 ) such that there is a graph Ḡ satisfying that Ḡ = Gi[V̄ ] for

any i from 1 to k, where V̄ = Vi ∩ Vj for any i 6= j from 1 to k (i.e. the graphs together form a
“sunflower” shape with no lateral edges). Find minimum spanning trees Ti ⊆ Gi, such that they
all coincide on Ḡ, or answer NO if there are no such spanning trees. We shall abbreviate this
problem as SMST .

Note that the Ti’s do not have to induce a spanning tree on Ḡ, nor does the union of Ti’s have
to be acyclic on the union of all of the Gi’s. Indeed both of these situations necessarily happen in
solutions of some instances of the SMST problem. Unlike the minimum spanning tree problem,
the SMST problem does not always have a solution.

As an example, let G1 be a triangle xzy, let G2 be a triangle xwy and let xy be the heavies edge.
Although G1∩G2 induces a connected graph (edge xy), we have a unique solution {xz, zy, yw,wx}
which is not connected on G1 ∩G2 and is not acyclic on G1 ∪G2. Furthermore, if we remove any
light edge, e.g. xz, then there is no solution.
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We show that SMST is an NP-complete problem already for a fairly small number of graphs
(more than 2) and even when limited to simplified instances. We present a scheme that allows us
to solve any SMST for two graphs in polynomial time using a tandem of reductions and multiple
runs of matroid intersection algorithm.

1.1 Preliminaries

The problem of finding a minimum spanning tree for a single graph has been studied thoroughly
since Bor̊uvka [2], Jarńık-Prim [3][4] and Kruskal [5]. See [6] for more details. Currently, the optimal
algorithm is known [7], but its asymptotics is still an open problem.

We do not distinguish instances where the input graph is connected from instances where it
is disconnected. The inclusion of disconnected instances is natural as many constructions work
just as well under such circumstances. Furthermore, usual incremental and iterative approaches
typically work on subsets of the input graph and it is therefore not strictly clear whether they
maintain a spanning tree or a spanning forest. For convenience, we define the usual term spanning
tree as a maximal acyclic subgraph. In doing so we include the disconnected case, where the more
proper term would be spanning forest.

We focus mainly on the Kruskal’s algorithm and use its known properties. Kruskal’s algorithm
starts by sorting the edges in a non-decreasing order (by weight) or obtains the edges in a non-
decreasing order on input. Then it processes all the edges one by one in sorted order while greedily
maintaining maximum acyclic subgraph which we refer to as partial spanning tree.

Definition 1. Consider the run of Kruskal’s algorithm. A stage is a collection of steps in which
the algorithm processes edges of the same weight.

Fact 1 Let G = (V,E,w) be a graph with weighted edges. Then all of the following holds for
Kruskal’s algorithm applied to graph G and a non-decreasing order of edges π:

– Kruskal’s algorithm is complete (finishes) and correct (answers correctly) for any non-decreasing
π, although the created spanning trees might be different.

– Let T be a minimum spanning tree of G and let πT be the non-decreasing order such that
all edges from T are ordered before all edges of the same weight that are not from T . Then
Kruskal’s algorithm using πT outputs exactly T .

– After every stage, components of the partial spanning tree span across the same vertices for
all non-decreasing π.

– Edges added to the partial spanning tree in each stage depend only on their ordering, not on
the edges chosen in the previous stages.

– Kruskal’s algorithm accesses π in a read-once fashion, accepting or refusing each edge before
accessing the next one.

2 Simultaneous Kruskal’s algorithm

Consider a SMST task for a given k and graphs G1, G2, . . . , Gk. Let us denote the union of all
Gis as G and their intersection as Ḡ. Suppose we order all the edges of G in a non-decreasing
order π which we call a universal order and denote π[E(Gi)] the restrictions of π to edges in Gi

for every i. For a set of edges F , we also say that a universal order is F-preferring if all the edges
from F are ordered before any other edges of the same weight.

Consider the following construction. First, we fix an arbitrary non-decreasing universal order
π. We simulate k independent instances of Kruskal’s algorithm, K1,K2, ...,Kk where the job of
each Ki is to find a minimum spanning tree Ti of Gi using the order π[E(Gi)], not considering the
other instances. In parallel with the instances of the Kruskal’s algorithm we try to incrementally
build a simultaneous minimum spanning tree.

In the beginning, we start with an empty simultaneous spanning tree T and process all the
edges one by one according to the universal order. We present each edge e to all instances Ki such



that e ∈ Gi. If we assume a sunflower intersection, we can rephrase this in the following way: if
e ∈ Ḡ then we present e to all instances and if e /∈ Ḡ then e ∈ Gj for some unique j and we
present e only to one instance Kj . If every invoked Ki adds e to its local Ti, we also add e to T .
If every invoked instance Ki refuses to add e to its local Ti, we also throw e away. If the invoked
instances do not agree, we fail. If the algorithm processes all edges without failing, we output T
as a solution.

We call this construction Simultaneous Kruskal’s algorithm or SKA in short. There are two
natural versions of the SKA. If SKA expects the universal order π on input, then it is a deter-
ministic algorithm. Alternatively, SKA may be formulated as a non-deterministic algorithm which
guesses a correct universal order which avoids failure (if any such order exists), then we speak of
a non-deterministic simultaneous Kruskal’s algorithm or NSKA in short. We naturally extend the
definition of a stage from Kruskal’s algorithm to the (N)SKA as the collection of steps in which
the algorithm processes edges of the same weight.

Lemma 1. Let I be an instance of the SMST problem. Then all of the following holds for simul-
taneous Kruskal’s algorithm:

– NSKA is complete (finishes) and correct (answers correctly).
– Let T be a solution of I and a let πT be a T -preferring universal order. Then SKA using πT

outputs exactly T .
– After every successful stage of SKA and NSKA, components of the partial simultaneous span-

ning tree after restriction to any Gi span across the same vertices for all choices of universal
order π.

– Edges added to the partial simultaneous spanning tree in each stage depend only on their
ordering, not on the edges chosen in the previous stages.

– SKA accesses π in a read-once fashion, accepting or refusing each edge before accessing the
next one.

Proof. Let us first prove the second point. Suppose we run the SKA using the T -preferring universal
order. Let us analyze the behavior of an arbitrary Ki. Let Ti denote the restriction of T to Gi.
By definition Ti is a minimum spanning tree of Gi and π[Gi] is a Ti-preferring order. From the
properties of the Kruskal’s algorithm (fact 1) we know that Ki constructs exactly Ti. Since every
Ki would construct exactly Ti should it run on its own, we observe that all the invoked instances
Kj accept each edge if and only if it belongs to T , and the whole algorithm never fails. At the end
of the computation the algorithm gives exactly T as a solution.

To prove correctness, let us first suppose that the NSKA terminates with success. Then the set
T on output is a union of the local spanning trees from all Ki algorithms. Since each algorithm
Kj processes all the edges from Gj in a non-decreasing order of weight and Kruskal’s algorithm is
sound, each of the local spanning trees is a minimum spanning tree. Thus, T is a solution of the
SMST problem. If NSKA terminates with a failure, then from the second point it follows that
there was no solution T , as otherwise NSKA guesses a T -preferring universal order and terminates
successfully.

The last three points are simple observations extending the facts 1 into simultaneous setting
using the previous two points. ut

3 Cases and variants

Lemma 2. Let I be a feasible instance of the SMST problem. Then any solution T ′ of I restricted
to edges of weight at most w can be extended to a solution T of the whole I by adding some edges
of weight greater than w. Furthermore, this extension does not depend on T ′.

Proof. Let T be a solution of the SMST problem. We choose any w and split the edges into a set
of light edges L of weight at most w and a set of heavy edges H with weight strictly greater than
w.



Consider running SKA on the instance I restricted to edges from L using any T -preferring uni-
versal order. Since SKA does not look ahead, it cannot distinguish whether it runs on a restricted
instance or the full instance and therefore it does not fail and outputs T restricted to L (denoted
T [L]), which is a solution of the restricted instance. Since T ′ is also a solution of the restricted
instance, both T ′ and T [L] define the same components on all individual graphs and have the
same weight. Let us define T̄ = T ′ ∪ T [H]. Clearly T̄ is acyclic on each graph and has the same
weight as T . Therefore T̄ is a solution of the full instance, extending (any) T ′. ut

Observation 2 Let us have an SMST instance I where m(I) denotes the number of edges and
R(I) denotes the maximum number of repeats of any weight. If R(I)! ∈ m(I)O(1), in other words
R(I) is asymptotically very small, then I can be solved in a polynomial time.

Proof. Suppose we implement the NSKA deterministically and use backtracking to guess the
next edge in the universal order. The previous lemma shows that it is sufficient to consider only
backtracks within the current stage. If we ever need to backtrack into the previous stage, then the
solution of the previous stage cannot be extended and therefore no solution exists.

If all of the weights in our instance of the SMST are either distinct, or the number of repeats
of each value is asymptotically very small, then we can try all possible orders within each stage in
polynomial time. More precisely whenever R(I)! ∈ m(I)O(1) we have at most polynomially many
orderings in each stage and the algorithm finishes in polynomial time. If R(I) ∈ O(log log n) then
there are at most linearly many possible orderings and the algorithm’s running time differs by
only a factor of O(m) from the NSKA’s running time on a non-deterministic machine. ut

Definition 2. A Simultaneous {0, 1} Minimum Spanning Tree problem, or 01-SMST in short,
is an instance of SMST where we restrict all the edge weights to be either 0 or 1.

We show an equivalence of the general SMST and 01-SMST up to a polynomial factor of
complexity.

Lemma 3. Any algorithm solving 01-SMST in polynomial time can be used to solve general
SMST problem in polynomial time.

Proof. First let us consider an instance of SMST using at most two distinct values for weights.
Then we can replace these by 0 and 1. From the point of view of the individual graphs, each subset
of edges is a minimum spanning tree after the modification if and only if the same holds before
the modification; and so the same applies to the simultaneous minimum spanning trees.

We continue via induction. Let us have an algorithm based on any 01-SMST algorithm that
solves any SMST instance with at most k distinct values of weight. We will extend this algorithm
to k + 1 values. Let us have an instance that uses k + 1 values and let w denote the highest one.
We restrict G to G′ by restricting to edges lighter than w. We already know how to solve SMST
for G′, acquiring a partial solution T ′ or showing that no solution exists in which case the original
SMST has no solution. If we have the solution T ′, then according to lemma 2 T ′ can be extended
by some edges of weight w to a full solution.

We once again modify G into Ḡ as follows. We restrict G to edges from T ′ and edges of weight
w. We set the weight of all edges from T ′ to 0 and the weight of the remaining edges to 1. We
now have an instance of 01-SMST such that any solution contains all the edges from T ′ as they
form a partial simultaneous spanning tree and the SKA would accept all of the edges regardless
of the universal order used. Let T̄ be a solution of the 01-SMST problem on Ḡ, then T̄ is also a
solution of the original SMST problem and the algorithm outputs T̄ , otherwise we answer ”no”.

To show completeness, suppose that there exists a solution T . Then we necessarily obtain T ′

in the first step and T ′ can be extended to a solution of the whole problem (not necessarily T )
and thus the 01-SMST on Ḡ has a solution T̄ . ut

Definition 3. An Intersection-Heavy Simultaneous {0, 1} Minimum Spanning Tree problem, or
∩-01-SMST in short, is an instance of SMST where we restrict all the edge weights to be either 0
or 1. Furthermore all the edges of weight 1 are only in the intersection of all the individual graphs.



The motivation behind this restriction comes from a simple observation.

Observation 3 Let I be an instance of 01-SMST (for any number of graphs) where no edges of
weight 1 appear in the intersection. Then after solving the first stage, the SKA algorithm always
finishes for any universal order π

Proof. This is easy to see as each edge of weight 1 will be presented by the SKA to a single
instance of the Kruskal’s algorithm and therefore in no step can the algorithm fail (get two opposite
answers). Furthermore, one can see that the order of edges of weight 1 no longer matters, though
different orders may give different solutions. ut

This observation formalizes an intuition that it is in some sense harder to deal with weight 1
edges in the intersection than in the exclusive parts.

It might therefore seem that to solve a 01-SMST problem, one might first greedily find a
subset of edges from the intersection and then extend it to the exclusive parts. This approach
fails on a simple example. Let us have exactly four vertices a1, a2, b1, b2 in the intersection. Let
G1 contain four weight 0 edges a1c1, a2c2, b1d1, b2d2, and let G2 contain two weight 0 paths Pi

connecting ai and bi for both values of i. Finally let a1a2, b1b2 and c1c2 be weight 1 edges where
the last one is exclusive for G1. Clearly the only solution takes exactly the weight-1 edges b1b2
and c1c2. However if the graphs contains d1d2 rather than c1c2 then picking the edge b1b2 is not
correct. Therefore an algorithm may not be oblivious to the exclusive parts.

It seems logical to also consider the opposite approach, that is to first solve the exclusive parts
where the solution seems rather fixed and then exploit the information from exclusive parts to
extend the partial solution to the intersection. It is no surprise that this approach is flawed as
well. As an example, let us have two graphs G1 and G2 where G1 is only one edge xy and G2 is a
triangle xyz. If we were to first find a maximum acyclic set of each exclusive part, we would get
the subset {xz, yz}. However now we cannot extend this subset into a solution as there are only
two solutions {xy, yz} and {xy, xz}.

Both of these greedy approaches to a 01-SMST are flawed, even under the assumption that we
are able to solve the first stage correctly in polynomial time. However according to the observation
3 limiting all of the edges of weight 1 to the intersection gives instances that are in some sense
easier, as the hardness of the problem is focused in the intersection which can be solved without
considering exclusive weight 1 edges, as there are none. Later we show that ∩-01-SMST is actually
equivalent to 01-SMST , which will be a key step in solving the 01-SMST problem.

Definition 4. A Simultaneous Spanning Tree problem, SST in short, is an unweighted version
of the SMST problem, in other words a SMST problem using only one weight.

The SST is clearly at most as hard problem as all of the previous versions of the SMST and
is an interesting problem on its own. We use the SST as a simple base case in our construction
later on.

Observation 4 SST ⊆ ∩-01-SMST ⊆ 01-SMST ⊆ SMST

4 Case k ≥ 3 is NP-complete

Problem 2 (3D matching). Let U, V,W be disjoint finite sets such that |U | = |V | = |W | = k and
let T be a subset of U×V ×W . Is there a set M ⊂ T with |M | = k, such that for any x ∈ U∪V ∪W
there is exactly one hyperedge e ∈M such that x ∈ e.

Fact 5 ([8]) 3D matching is NP-complete.

Theorem 6. The problem of 3D matching can be polynomially reduced to ∩-01-SMST problem
for 3 graphs.



Proof. Without loss of generality we assume that every element of U, V and W is element of at
least one hyperedge in T , otherwise the original 3D matching trivially has no solution.

We define graphs G1, G2, G3 and H where H = G1∩G2∩G3 forming a ”sunflower” intersection,
that is H = Gi ∩Gj for each i 6= j. We associate G1 with U , G2 with V and G3 with W .

First put a central vertex c in H. For each hyperedge e ∈ T , put a vertex ve ∈ H and connect
it to c by an edge in H of weight 1. For each element x ∈ U , put a vertex vx into the exclusive
part of G1 (G1\H) and for every e ∈ T such that x ∈ e, connect ve and vx by an edge of weight
0. Do the same for V and W with graphs G2 and G3 respectively. By construction these graphs
form the required ”sunflower” configuration.

The structure of the graph H can be alternatively described as follows. The intersection H
contains exactly a star with center c and all edges of weight 1 where each ray represents a different
element from T .

Let us focus on G1 and U , for the other graphs and sets the arguments are symmetrical.
The graph G1 is composed of the central star and exclusive vertices representing elements of the
associated set U . Every vertex representing an element x is connected via edges of weight 0 to all
vertices representing the hyperedges that contain x. So for every element x, vx is a center of a
weight-0 star in G1. All of these weight-0 stars are disjoint as in each hyperedge there is at most
one element from U . Since all the edges of weight 0 form an acyclic subgraph of G1, every solution
of this SMST instance must contain all of them. Let S be a solution of the SMST problem. As
for each x ∈ U , the vx is in the same component as c in G1, it must also be in the same component
of S[E(G1)] and therefore at least one edge cve ∈ S for some hyperedge e such that x ∈ e. If it
happened that cvf ∈ S for some other hyperedge f with x ∈ f , then cve, vevx, vxvf , vfc form a
cycle in G1 and we get a contradiction.

This means that the hyperedges represented by the edges (where e is represented by edge cve)
of weight 1 in S are a solution of the 3D-matching. This is true as each x ∈ U belongs to exactly
one of the hyperedges from S and the same applies to every y ∈ V and every z ∈W .

On the other hand, let M be a solution of the 3D-matching. Then we can construct a solution of
the SMST by simply picking all the edges of weight 0 and all the edges of weight 1 that represent
the hyperedgesedges from M . As previously, we observe that everything in G1 is connected into
a single component. If we only consider the edges of weigh 0 on the other hand, then for each
x, y ∈ U the vertices vx and vy are in distinct components and can only be connected via the
central star. Therefore any solution must connect G1 into a single component using at least |U |
edges of weight 1. Since |U | = |M |, the solution of the SMST constructed from M is clearly
minimal. ut

Corollary 1. The problem SMST and its variants 01-SMST and ∩-01-SMST are NP-complete
for 3 and more graphs.

5 Case k = 2 is in P

In this section we show that the general SMST problem is polynomially solvable. We progress via a
tandem of reductions. We already know that the general SMST can be solved using an algorithm
for 01-SMST for a cost of some polynomial factor. We further reduce instances of 01-SMST
to tasks that are more orderly and symmetrical in some sense. We then use this to reduce the
task to ∩-01-SMST . Finally, we show that solving ∩-01-SMST can be reduced to a problem of
intersection of two matroids, which is a polynomial problem for two graphs. As an intermediate
step, we will also solve the SST problem by reduction to a matroid intersection problem.

Definition 5. Let G1 and G2 be two graphs intersecting in a common induced subgraph and let
F be a subset of edges of G1 and G2. We say that F is simultaneously acyclic if F restricted to
each of the two graphs G1 and G2 forms an acyclic subgraph.



5.1 Reduction of 2-graph 01-SMST to 2-graph ∩-01-SMST

For technical reasons we first want to get rid of all edges of weight 1 that cross the boundary in
between the intersection and one of the exclusive parts.

Observation 7 Every 01-SMST instance can be transformed to an instance where all of the
edges of weight 1 have either both ends in the intersection or both ends in an exclusive part of one
graph. This transformation at most doubles the number of edges and vertices.

Proof. This can be achieved by a simple operation that shifts the edges into the exclusive parts.
We take each edge xy of weight 1 such that x is in the intersection and y in the exclusive part
of one of the two graphs. We subdivide xy into two edges xz and zy where the vertex z lies in
the exclusive part of the relevant graph. We set the weight of xz to 0 and the weight of zy to
1. Since the vertex z has degree two, the 0-weight edge xz is an element of each solution of the
new 01-SMST . It is now easy to see that we can construct the solution of the original 01-SMST
instance from any solution of the new instance by removing xz and substitution of zy with xy (if
it is part of the solution). ut

Another issue is that each of the two graphs may require a different number of edges of weight
1, while each edge from the intersection would increase the size of both solutions.

Observation 8 Every instance of 01-SMST with two graphs G1 and G2 can be transformed into
an instance where every minimum spanning tree of G1 and every minimum spanning tree of G2

contain the same number of edges of weight 1. This transformation at most doubles the number of
edges and vertices.

Proof. Let G denote the union of G1 and G2 and let Ḡ denote their intersection. From the proper-
ties of the SKA (lemma 1) we know that we can determine beforehand the components of G1 and
G2 after all the edges of weight 0 are processed and after all the edges of weight 1 are processed.
We also know that in order to compute the restriction of the solution to the edges of weight 1
we do not need to know the exact choice of edges of weight 0, they are in fact independent. By
considering the number of components of G1 and G2 just after processing all the edges of weight
0 and after processing all edges, we deduce how many edges of weight 1 must be added into the
minimum spanning tree of each graph, which is equal to the difference of the two values.

Suppose that the solution of 01-SMST must contain j1 edges of weight 1 from the graph G1

and j2 edges of weight 1 from the graph G2. If j1 = j2 then we do not need to modify the instance,
otherwise without loss of generality j1 > j2. We pick an arbitrary vertex v from the exclusive part
of G2 and extend G2 by j1 − j2 leaves attached to v. All the leaves are new vertices and lie in the
exclusive part of G2; and all of the new edges have weight 1. Every spanning tree of G2 must now
contain all of these edges, while every solution of the original instance can be extended by exactly
these edges. After this modification, j1 = j′2 where j′2 denotes the new number of weight-one edges
in the graph G2 after modification. Note that this construction also works for the case j2 = 0,
although this can be solved directly using SKA. ut

Lemma 4. The 01-SMST problem for k = 2 is polynomially reducible to ∩-01-SMST problem
for k = 2 of asymptotically at most quadratic size. Furthermore if the set of edges of weight 0
of the original 01-SMST instance is simultaneously acyclic, then the same is true for the new
∩-01-SMST instance.

Proof. Let us have an instance of 01-SMST and let G1, G2 denote the two graphs and Ḡ their
intersection. Using the previous observation we can assume without loss of generality that all of
the weight-1 edges have either both ends contained in Ḡ or both ends contained in the exclusive
part of one of the two graphs; and that there exists a positive integer j such that every solution
of the 01-SMST constrained to both G1 or G2 has exactly j edges of weight 1. This increases the
size of the problem by a small multiplicative constant.



We modify the problem so that all of the edges from the exclusive parts are removed and
equivalently modeled by gadgets that have edges of weight 1 only in Ḡ. To do this, we consider
all pairs e = (e1, e2), f = (f1, f2) of edges of weight 1 such that e is from the exclusive part of G1

and f is from the exclusive part of G2. We create two new vertices xef1 , x
ef
2 in Ḡ and add edges

e1x
ef
1 , e2x

ef
2 , f1x

ef
1 , f2x

ef
2 of weight 0 and an edge xef1 , x

ef
2 of weight 1. After processing all pairs,

we delete all the edges of weight 1 from the exclusive parts.
Let M be a solution of the modified instance of 01-SMST (which is in fact ∩-01-SMST ).

First we observe that whenever xef1 x
ef
2 ∈M for some removed edges e and f then xeg1 x

eg
2 /∈M for

any g 6= f as otherwise e1, x
ef
1 , x

ef
2 , e2, x

eg
2 , x

eg
1 , e1 forms a cycle in M [G1]. To get a solution of the

original instance, we remove all the extra edges of weight 0 and replace each edge xef1 x
ef
2 by edges

e and f . Let us denote the resulting set of edges M ′. Consider the graph G1 and the components
defined by M ′ restricted to G1. It is easy to see that the components are the same as in M with
the exception of the new vertices which are now isolated. Also, the total weight of M ′ restricted
to each graph (of the original instance) is the same as the total weight of M restricted to each
graph (of the modified instance). We conclude that M ′ is a minimum simultaneous spanning tree.

G1 G2

e f

Ḡ G2

fe

G1

e1

e2 e2

e1f1

f2f2

f1xef
1

xef
2

1 1

Ḡ

0

0

0

0

1

Fig. 1. Gadget replacing pairs of edges

On the other hand, let M̄ be a solution of the original instance. Since there is the same amount
of edges of weight 1 in M̄ restricted to G1 and G2, we can pair all of the edges from M̄ of weight
1 that are in the exclusive parts of G1 and G2. We can now replace each pair of edges e and f
by xef1 x

ef
2 . After adding all the new edges of weight 0, we get a solution of the modified instance.

Therefore the total cost of M̄ is at most a total cost of the given solution.
Supposing that the original edges of weight 0 form a simultaneously acyclic set, we observe that

the same is true after the reduction, as each new cycle contains an edge of weight 1. Furthermore
we added at most a constant number of edges and vertices for all of the pairs of original edges,
obtaining a problem of asymptotically at most quadratic size compared to the input problem. ut

5.2 Matroids

Definition 6. A matroid M is a pair (E, I) where E is a set of elements and I is a family of
independent sets (subsets of E) satisfying the following properties:

1. ∅ ∈ I
2. ∀X,Y s.t. X ∈ I and Y ⊂ X : Y ∈ I
3. ∀X,Y ∈ I s.t. |X| > |Y | : ∃x ∈ X \ Y s.t. Y ∪ {x} ∈ I

Definition 7. Let G be a graph with a set of edges E and I be a set of all acyclic subsets of E.
Then (E, I) is a graphic matroid of G.

Fact 9 For any graph G (possibly multigraph with loops), the graphic matroid of G is a matroid
and maximal independent sets of this matroid are exactly all possible spanning trees of G.

Definition 8. A matroid intersection problem of two matroids (E, I1) and (E, I2) on the same
set of elements E is the problem of finding a maximum subset of E s.t. it is independent in both
matroids.



Fact 10 ([9]) For a set E and two matroids (E, I1) and (E, I2) given as independence oracles, the
matroid intersection problem is solvable in polynomial time and polynomially many oracle queries.

Fact 11 ([10]) There are specialized algorithms for graphic matroid intersection problem.

Lemma 5. Let G be a graph with edges divided into two disjoint subsets F and Ē where F is
acyclic and Ē = E(G)\F . Let I be a set of all subsets X of Ē such that F ∪ X is an acyclic
subgraph of G. Then (Ē, I) is a graphic matroid.

Proof. Let H denote G with all edges from F contracted; we keep all the parallel edges and loops.
We observe that the graphic matroid of H is exactly (Ē, I). ut

5.3 Polynomiality

Theorem 12. SST ∈ P for any number of graphs.

Proof. To solve SST , it suffices to use Kruskal’s algorithm (or any other MST algorithm) to first
take a minimum spanning tree of the intersection, and then extend this partial solution to each
individual graph using only exclusive edges. Clearly each exclusive edge may only create a cycle
in its respective graph. On the other hand we are never forced to take an exclusive edge closing a
cycle (in fact, Kruskal’s algorithm refuses such edges by definition). ut

Lemma 6. Let I be an instance of ∩-01-SMST for two graphs such that the edges of weight
0 form a simultaneously acyclic set. Then I can be solved in polynomial time using a matroid
intersection algorithm.

Proof. For each of the two graphs Gi for i ∈ {1, 2} we define Fi as the set containing all edges of
weight 0 and Ē the set of all edges of weight 1. Let Ii be a set of all subsets X of Ē such that
X ∪ Fi is acyclic in Gi and let Mi denote the pair (Ē, Ii). According to Lemma 5 each Mi is a
matroid. Furthermore, both of the matroids are defined on the same ground set Ē.

Let F = F1 ∪ F2 be all the edges of weight 0. By lemma 2, F can be extended to a solution
of the ∩-01-SMST by a suitable subset of Ē. We can now use a (graphic) matroid intersection
algorithm to find a set X which is a maximum subset of Ē independent in both matroids M1 and
M2. Therefore X is the maximum subset of Ē that extends F so that X ∪ F is simultaneously
acyclic. If X ∪ F restricted to G1 and G2 spans all components, we output X ∪ F , otherwise we
answer ”no”. This is the same as to compare the size of X ∪ F to the size it should have.

Clearly if there exists a solution of the given ∩-01-SMST instance, then according to Lemma 2
there exists a solution Y extending the set F . The set of edges Y \F is an independent set in both
matroids M1 and M2 and therefore X exists and is of size |Y \F |. This means that X ∪ F is a
simultaneous spanning tree and the algorithm answers correctly. On the other hand, if no solution
exists, then the set X ∪ F restricted to either G1 or G2 is acyclic but does not connect all the
vertices connected in the original graph. We recognize this case and answer ”no” correctly. ut

Lemma 7. ∩-01-SMST ∈ P for two graphs.

Proof. Let I be an instance of the ∩-01-SMST problem. We show that we can solve I using a
(graphic) matroid intersection algorithm.

First suppose that the edges of weight 0 are not simultaneously acyclic. We simply restrict I
to edges of weight 0, which gives us an instance of SST . We can solve this instance in polynomial
time according to Theorem 12. If we obtain answer ”no”, then according to Lemma 2 there is no
solution and we also answer ”no”.

Suppose we get a solution X. Then, by Lemma 2, we may delete all the edges of weight 0
except the edges from X and further assume that the edges of weight 0 are simultaneously acyclic.
We use Lemma 6 to solve this reduced instance in polynomial time. ut

Theorem 13. SMST ∈ P for two graphs.



Proof. Let us have an instance of the SMST problem. According to Lemma 3, every instance of
SMST can be solved by solving at most O(m) 01-SMST problems, where m denotes the number
of edges on input.

Any 01-SMST can be polynomially reduced to ∩-01-SMST as shown in Lemma 4; and ac-
cording to Lemma 7, each ∩-01-SMST instance can be solved in polynomial time. ut

5.4 Complexity

Let us have an instance of SMST and let n denote the number of vertices, m the number of edges
and w the number of weights in the given instance. We proceed according to Theorem 13.

The SMST problem is first decomposed into (w − 1) 01-SMST subproblems. We observe
that each edge in these subproblems is either already fixed as a part of the solution of SMST or
appears for the first time. The first kind of edges can be bound as at most O(n) per 01-SMST
subproblem, as they must form a simultaneously acyclic set. The second kind can be bound as at
most O(m) over all of the 01-SMST subproblems.

Each of the 01-SMST subproblems is reduced to a ∩-01-SMST problem of asymptotically at
most quadratic size (by Lemma 4). Using the simultaneous acyclicity of edges of weight 0 we can
use the approach of Lemma 6 in all but the first subproblem, and use the Lemma 7 to solve the
first subproblem. Therefore we solve at most w (graphic) matroid intersection problems during
the whole process and one instance of SST problem. The final complexity depends on the choice
of algorithms used to solve the matroid intersection problems and the SST .

Furthermore, if w asymptotically approaches m, then some weight values have few representa-
tives and more direct methods from Observation 2 and Observation 3 using SKA may be applied
to reduce the complexity.
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