Skip to main content

Exact Computation of the Number of Accepting Paths of an NTM

  • Conference paper
  • First Online:
Algorithms and Discrete Applied Mathematics (CALDAM 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10743))

Included in the following conference series:

  • 793 Accesses

Abstract

We look at the problem of counting the exact number of accepting computation paths of a given nondeterministic Turing machine (NTM). We give a deterministic algorithm that runs in time \(\widetilde{O}(\sqrt{S})\), where S is the size (number of vertices) of the configuration graph of the NTM, and prove its correctness. Our result implies a deterministic simulation of probabilistic time classes like \(\mathsf {PP}\), \(\mathsf {BPP}\), and \(\mathsf {BQP}\) in the same running time. This is an improvement over the currently best known simulation by van Melkebeek and Santhanam [SIAM J. Comput., 35(1), 2006], which uses time \(\widetilde{O}(S^{1 - \delta })\). It also implies a faster deterministic simulation of the complexity classes \(\mathsf {\oplus P}\) and \(\mathsf {Mod_k P}\).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    There are other multiplicative factors in the running time of the simulation, but \(a^{kt/2}\) is the fastest growing factor.

  2. 2.

    We require \(\log (q a^{kt}t^k)\) time to even read a configuration.

  3. 3.

    In fact, for values of \(a \ge 4\), we can set \(\alpha _a = \sqrt{(27/20) \log a}\) and for \(a \in \{2, 3\}\), setting \(\alpha _a\) to be slightly greater than \(\sqrt{(27/20) \log a}\) works.

References

  1. Arora, S., Barak, B.: Computational Complexity: A Modern Approach, 1st edn. Cambridge University Press, New York (2009)

    Book  MATH  Google Scholar 

  2. Beigel, R., Gill, J., Hertramp, U.: Counting classes: thresholds, parity, mods, and fewness. In: Choffrut, C., Lengauer, T. (eds.) STACS 1990. LNCS, vol. 415, pp. 49–57. Springer, Heidelberg (1990). https://doi.org/10.1007/3-540-52282-4_31

  3. Dyer, M., Goldberg, L.A., Greenhill, C., Jerrum, M.: On the relative complexity of approximate counting problems. In: Jansen, K., Khuller, S. (eds.) APPROX 2000. LNCS, vol. 1913, pp. 108–119. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-44436-X_12

  4. Gill III, J.T.: Computational complexity of probabilistic Turing machines. In: Proceedings of the Sixth Annual ACM Symposium on Theory of Computing, STOC 1974, New York, pp. 91–95. ACM (1974)

    Google Scholar 

  5. Hennie, F.C., Stearns, R.E.: Two-tape simulation of multitape Turing machines. J. ACM 13(4), 533–546 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  6. Jerrum, M.: Counting, Sampling and Integrating: Algorithms and Complexity. Lectures in Mathematics. ETH Zürich. Birkhäuser, Basel (2003)

    Book  MATH  Google Scholar 

  7. Kalyanasundaram, S., Lipton, R.J., Regan, K.W., Shokrieh, F.: Improved simulation of nondeterministic Turing machines. Theor. Comput. Sci. 417, 66–73 (2012). Earlier version in Proceedings of the 35th International Symposium on Mathematical Foundations of Computer Science, 2010

    Article  MathSciNet  MATH  Google Scholar 

  8. Pippenger, N.: Probabilistic simulations (preliminary version). In: Proceedings of the Fourteenth Annual ACM Symposium on Theory of Computing, STOC 1982, New York, pp. 17–26. ACM (1982)

    Google Scholar 

  9. Papadimitriou, C.H.: Computational Complexity. Addison-Wesley Publishing Company, Reading (1994)

    MATH  Google Scholar 

  10. Schöning, U.: The power of counting. In: Selman, A.L. (ed.) Complexity Theory Retrospective: In Honor of Juris Hartmanison the Occasion of His Sixtieth Birthday, July 5, 1988, pp. 204–223. Springer, New York (1990)

    Chapter  Google Scholar 

  11. Simon, J.: On some central problems in computational complexity. Technical report, Cornell University, Ithaca (1975)

    Google Scholar 

  12. Toda, S.: On the computational power of \({\sf PP}\) and \({\oplus }{\sf P}\). In: Proceedings of the 30th Annual Symposium on Foundations of Computer Science, FOCS 1989, pp. 514–519. IEEE (1989)

    Google Scholar 

  13. Torán, J.: Counting the number of solutions. In: Rovan, B. (ed.) MFCS 1990. LNCS, vol. 452, pp. 121–134. Springer, Heidelberg (1990). https://doi.org/10.1007/BFb0029600

  14. van Melkebeek, D., Santhanam, R.: Holographic proofs and derandomization. SIAM J. Comput. 35(1), 59–90 (2005). Earlier version in Proceedings of the 18th Annual IEEEConference on Computational Complexity, 2003

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgement

We thank Richard Lipton for helpful discussions, and the referees for comments that improved the presentation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subrahmanyam Kalyanasundaram .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kalyanasundaram, S., Regan, K.W. (2018). Exact Computation of the Number of Accepting Paths of an NTM. In: Panda, B., Goswami, P. (eds) Algorithms and Discrete Applied Mathematics. CALDAM 2018. Lecture Notes in Computer Science(), vol 10743. Springer, Cham. https://doi.org/10.1007/978-3-319-74180-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-74180-2_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-74179-6

  • Online ISBN: 978-3-319-74180-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics