Skip to main content

Interval Superposition Arithmetic Inspired Communication for Distributed Model Predictive Control

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Logistics ((LNLO))

Abstract

In this paper, we combine an quantised communication approach for a distributed system consisting of holonomic robots with the set characterization to further reduce the communication load. To ensure collision avoidance among the robots, the trajectory is quantised and incorporated into a distributed model predictive control scheme. Combining this quantised approach with the set characterization to communicate only the lower and upper bound, the communication load is independent of the necessary horizon length while numerical results still show that target states are reached.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Grüne, L., Pannek, J.: Nonlinear Model Predictive Control: Theory and Algorithms. Communications and Control Engineering. Springer, London (2017). https://doi.org/10.1007/978-3-319-46024-6

  2. Grüne, L., Worthmann, K.: A distributed NMPC scheme without stabilizing terminal constraints. In: Distributed Decision Making and Control, pp. 261–287. Springer, London (2012). https://doi.org/10.1007/978-1-4471-2265-4_12

  3. Johnson, S.: The NLopt nonlinear-optimization package (2004). http://ab-initio.mit.edu/nlopt

  4. Khaliq, K.A., Qayyum, A., Pannek, J.: Performance analysis of proposed congestion avoiding protocol for IEEE 802.11s. Int. J. Adv. Comput. Sci. Appl. 8(2), 356–369 (2017). https://doi.org/10.14569/IJACSA.2017.080246

    Google Scholar 

  5. Lim, H., Kang, Y., Kim, J., Kim, C.: Formation control of leader following unmanned ground vehicles using nonlinear model predictive control. In: International Conference on Advanced Intelligent Mechatronics, pp. 945–950. Singapore, Singapor (2009). https://doi.org/10.1109/AIM.2009.5229887

  6. Mehrez, M.W., Sprodowski, T., Worthmann, K., Mann, G.K.I., Gosine, R.G., Sagawa, J.K., Pannek, J.: Occupancy grid based distributed model predictive control of mobile robots. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 4842–4847. IEEE, Vancouver (2017)

    Google Scholar 

  7. Powell, M.J.D.: Direct search algorithms for optimization calculations. Acta Numer. 7, 287–336 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  8. Sprodowski, T., Mehrez, M.W., Worthmann, K., Mann, G.K.I., Gosine, R.G., Sagawa, J.K., Pannek, J.: Differential Communication with Distributed Model Predictive Control of Mobile Robots based on an Occupancy Grid (2017, submitted)

    Google Scholar 

  9. Venkat, A., Rawlings, J., Wright, S.: Stability and optimality of distributed model predictive control. In: Proceedings of the 44th IEEE Conference on Decision and Control, pp. 6680–6685. IEEE, Seville (2005). https://doi.org/10.1109/CDC.2005.1583235

  10. Xi, Y.G., Li, D.W., Lin, S.: Model predictive control - status and challenges. Acta Autom. Sin. 39(3), 222–236 (2013). https://doi.org/10.1016/S1874-1029(13)60024-5

    Article  MathSciNet  Google Scholar 

  11. Zha, Y., Houska, B.: Interval Superposition Arithmetic, October 2016. http://arxiv.org/abs/1610.05862

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tobias Sprodowski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sprodowski, T., Zha, Y., Pannek, J. (2018). Interval Superposition Arithmetic Inspired Communication for Distributed Model Predictive Control. In: Freitag, M., Kotzab, H., Pannek, J. (eds) Dynamics in Logistics. LDIC 2018. Lecture Notes in Logistics. Springer, Cham. https://doi.org/10.1007/978-3-319-74225-0_44

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-74225-0_44

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-74224-3

  • Online ISBN: 978-3-319-74225-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics