
HAL Id: hal-01762855
https://inria.hal.science/hal-01762855

Submitted on 10 Apr 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Defining Procedures in Early Computing Education
Ivan Kalas, Laura Benton

To cite this version:
Ivan Kalas, Laura Benton. Defining Procedures in Early Computing Education. 11th IFIP World
Conference on Computers in Education (WCCE), Jul 2017, Dublin, Ireland. pp.567-578, �10.1007/978-
3-319-74310-3_57�. �hal-01762855�

https://inria.hal.science/hal-01762855
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

553

Defining Procedures in Early Computing Education

Ivan Kalas1,2, Laura Benton2

1
 Department of Informatics Education, Comenius University, Bratislava, Slovakia

2 UCL Knowledge Lab, UCL Institute of Education, London, UK
kalas@fmph.uniba.sk, l.benton@ucl.ac.uk

Abstract. From the early years of educational programming researchers considered
procedural abstraction a key instrument of computational thinking and tried to
understand the cognitive difficulties encountered through this concept. Defining
procedures is promoted in renewed computing curricula in several countries. And
yet, it is rarely acknowledged by more recent educational research. In this paper, we
consider the fact that the delayed implementation of a mechanism for building
procedures (known as definitions) within Scratch, a widely used programming
environment for children, may have negatively impacted the focus within curricular
content on this powerful idea. In our research, which is a part of a broader
ScratchMaths (SM) research project, we set out to explore which factors play a role
in upper primary pupils understanding and utilizing the concept of defining
procedures as a common and inherent instrument of their programming. We present
our observations from the project design schools and demonstrate how they guided
the development of our SM pedagogic strategy for definitions.

Keywords. primary computing education, procedure, abstraction, ScratchMaths

1 Background

Computer scientists have recognised the power of defining a procedure since the
early days of computer programming in the late 1950s, technically defining its role as
offering “a single point of reference for some small goal or task that the developer or
programmer can trigger by invoking the procedure itself” [1]. Later, whilst studying
the idea of a computational process in the 1980s, Abelson and Sussman [2] in their
seminal writing identified three basic mechanisms of a programming language,
including the means of abstraction by which compound elements can be named and
manipulated as units1, i.e. “... the means that the [programming] language provides
for combining simple ideas to form more complex ideas” [ibid].

In the early years of educational programming, within the context of Logo pro-
gramming Papert [3] proposed the metaphor of “teaching the Turtle a new word” to
represent the process of programming a computer. In 1974 Perlman, inspired by
Papert, tried to implement the concept of procedure in a tangible programming
interface for preschool children in her Tortis Slot Machine, see [4,5,6]. Through this
work she started considering the cognitive difficulties behind some aspects of

1 The other two mechanisms being primitive expressions and the means of combination

mailto:kalas@fmph.uniba.sk
mailto:l.benton@ucl.ac.uk

554

programming [5, p. 4] after observing children becoming overwhelmed when
introduced to multiple new concepts through her system.

For Papert, turtle geometry provided an excellent opportunity to practice “the art of
splitting difficulties” [3, p. 64], for example through drawing a house by splitting it
into two parts – a square and triangle. He proposed that a Logo procedure can become
something named, manipulated and recognised; terming it “an object to think with”.

Since the early 1980s the mechanism of defining new procedures (in different
forms) has been implemented in many programming environments for novice pro-
grammers, including children2 and this is promoted through renewed computing
curricula in several countries highlighting the power of abstraction and procedure. For
example, Computing at School (CAS) in the UK [7] characterises procedure as a
mechanism of abstraction, an instrument of generalisation, a pattern to be used to
control complexity by sharing common features, and suggests “these abstractions may
be deeply nested, layer upon layer” [ibid, p. 11]. CAS recommends that as well as
using procedures pupils should become proficient in creating new abstractions of
their own.

1.1 Defining Procedures in Research Literature

Within the Logo culture of 1980s and 1990s, researchers frequently examined the
procedural thinking of the learners, but their studies often point to some inherent
difficulties with the notion of procedure, see e.g. [8-10]. Pea et al. [10] observed that
most of the pupils involved in their study in the early 1980s did not spontaneously ac-
cept programming practices such as “... structured planned approaches to procedure
composition, use of conditional or recursive structures” [ibid p. 211].

Despite the legacy of being difficult and not naturally exploited by children as an
everyday instrument in their programming, Logo educators and reserachers have al-
ways considered procedural abstraction to be one of the most ‘powerful ideas’ of
computing education. However, this is rarely acknowledged by more recent educa-
tional research.

Most of the research projects looking at the learning of computer science and
computing concepts focus on variables, loops, conditions and control structures,
message passing or concurrency, often not mentioning definitions at all. For example
Meerbaum-Salant et al. [11] study how Scratch can be used to teach computer
science, focusing on ‘standard’ key concepts, but not on defining new blocks.
Similarly, Ouahbi et al. [12] study how novices learn basic programming concepts by
creating games but do not include definitions of new blocks in their observations.

Vaníček [13] identifies several potential risks in the emerging Scratch program-
ming practices of the student-teachers, including unnecessarily long scripts. However,
defining new blocks is not considered among the instruments to cope with that risk.

Futschek and Moschitz [14] explore a transition from a playful programming envi-
ronment with tangible objects to a virtual Scratch environment and identify five basic
computational concepts which should be present in learning scenarios with the aim to
develop early algorithmic thinking, abstraction being one of them. They suggest that
learners should experience a transition from perceiving a basic virtual command as an

2 Such as Karel the Robot (1981), Solo (1983), Boxer (1986), Roamer (1989), Show and Tell (1990),

Turingal (1991) among others, see e.g. [4]

555

abstraction of a basic tangible action to perceiving a command as an abstraction of a
compound (constructed) action.

1.2 Defining Procedures in Scratch

The Scratch programming environment has become an icon of the recent widespread
interest of schools around the world in computing education for every pupil. It is a
visual programming environment that allows users “to learn programming while
working on personally meaningful projects such as animated stories and games” [15].

Brennan and Resnick [16] explain that in Scratch abstraction is employed at
multiple levels “from the initial work of conceptualizing the problem to translating
the concept into individual sprites and stacks of code”. However, the previous version
of Scratch (1.4) had no means to employ abstraction by defining new procedures. In
2010 Maloney et al. [15] wrote:

“Early versions of Scratch had a mechanism for creating procedures. In early field
tests, however, many users were confused by procedures since they seemed very
similar to broadcasts – both involved associating a name with a collection of com-
mands. In the interest of simplicity and minimalism, procedures were removed from
the language before Scratch was officially released...”

3
More recently in Scratch 2.0 (released in 2013) the functionality for defining

procedures was implemented as the Make a Block operation (see Fig. 1).

Fig. 1. In Scratch the define hat block is attached to a script, thus defining a new block

2 Procedural Abstraction within ScratchMaths

The research reported within this paper is a part of a broader project, ScratchMaths
(SM), which aims to explore connections between developing computational and
mathematical thinking in the upper primary age pupils4 in England [17,18]. In the
project we have iteratively designed detailed curriculum materials for computing
lessons in years 5 and 6, which are currently being trialled in 50+ primary schools
across the country. The intervention consists of six modules (three per year), with
each module consisting of a series of activities organised within investigations (with
accompanying classroom resources). The first three modules focused more on
introducing key computing concepts (sequencing, repetition, algorithm, debugging,
abstraction, initialisation, randomness, conditions, expressions, broadcasting), with

3 Later on we probe this observation through our own experience with the SM schools
4 i.e. aged 9-11 years

556

links to mathematics made implicitly and the remaining three modules explicitly
focused on particularly challenging mathematical concepts (place value, ratio and
proportion, coordinates and geometry). Each year of the intervention included a two-
day professional development program for class teachers, which was intended to
introduce the ‘big ideas’ of the SM curriculum as well as the pedagogical approach to
delivering the intervention. Through the research conducted as part of this project, we
seek to better understand the construct of procedural abstraction in early computing
education.

In their new framework for studying computational thinking, Brennan and Resnick
[7] identify three key dimensions: computational concepts (like sequences, loops,
events etc.), computational practices (like testing, debugging, reusing, remixing etc.)
and computational perspectives (about the world around us). In our research we
extend their first dimension into computational constructs, which comprise
computational concepts (like procedural abstraction in this case) and computational
procedures associated with the practice of the learners to exploit the concept.

2.1 SM Pedagogic Strategy for Definitions

Through the design of the SM intervention we recognise five implicit stages in
developing the construct of procedural abstraction:

1) Perceiving a script5 as an object to work and think with: One of the key SM de-
sign principles is systematically building the distinction between:
• direct manipulation, e.g. dragging a sprite (a programmable object) by the mouse

or switching its costume (its appearence) by clicking on a different costume in the
list.

• direct drive, clicking an isolated block (command) in the scripting area, thus
getting an immediate and unambiguous basic reaction, e.g. clicking move -50 steps
block would make a sprite move backwards 50 steps.

• computational drive, building and using a script as a representation of the com-
pound future behaviour of a sprite e.g. by clicking it in the scripting area. Typically
it is only later that a script (a behaviour) is turned into a complete reaction to a
certain event through the addition of a hat block6, e.g. when this sprite clicked or
when green flag clicked.
By adopting this distinction pupils start perceiving scripts (with no hat blocks, see

the lower left script in Fig. 2) as patterns of actions7, representations of partial or
complete behaviours, as objects to build, explore, modify, and use (i.e. as objects to
think with) and possibly abstract later. In our intervention we incorporate activities
developing this approach as a preliminary phase for developing procedural
abstraction.

2) Giving a name to a script. When a useful script has been built it can be given a
name (Fig. 2 – right). Within our SM pedagogical framework [17] we encourage

5 In Scratch a stack of blocks snapped together, a piece of program
6 The topmost block to start a script, e.g. when this sprite clicked hat block
7 In the context of SM Module 1, patterns of actions are procedural representations of the corresponding

visual patterns

557

pupils to follow the procedure: (i) build a script, debug and use it, (ii) give it a name,
i.e. attach a new define hat block to the script, (iii) keep the define script (the
definition), and (iv) use the new block as a shortcut instead, as a name of that pattern
of action – using the defined block in isolation (in the direct drive mode), then within
a script (in the computational drive).

In SM Module 1 pupils define more new blocks for creating different visual pat-
terns and combine them in short scripts to draw complex circular patterns. While
doing that, in line with our pedagogical framework we suggest class discussion points
to explain and exchange ideas such as: How did you teach a sprite a new command?
Why did you make new blocks? How did it help your programming, thinking, and
problem solving? What name did you give your new block and why?

Fig. 2. Naming a useful script – i.e. certain pattern of action

3) Working with new blocks (own and provided): Pupils repeat the same process of
making new blocks as useful shortcuts for previously built and used scripts in several
contexts, to draw different compositions, e.g. a tower, a house, a swarm of colour dots
etc. Gradually, they also start using their own new blocks to build more compound
definitions (called nested definitions).

Pupils also use new blocks created by the SM designers and available within
specific ‘starter’ projects using within the modules, e.g. set random pen size (see Fig.
3), within their own scripts.

Fig. 3. Defining, using and modifying new blocks in different contexts

4) Customising and duplicating definitions. In the SM intervention there are
contexts (situations) which require pupils to modify the behaviour of the pre-defined
new blocks. They discover the “hidden” definitions8, explore the input values to their
pick random ... to ... operator blocks and modify them so that the defined blocks suit
their design plan.

8 Their definitions are so far “hidden” from view on the far right of the scripting area

558

In another context, when working with multiple sprites, pupils also discover that
each definition belongs to only one particular sprite9 and that they need to copy or
reconstruct it for use with other sprites.

5) Generalising definitions by indirect parameter. Pupils use the ask/answer pair
of blocks, first using answer as an input to simple scripts, later they also in the defini-
tions of their own blocks as their indirect parameter, (Fig. 4 – left). Once they need to
refer to several previous answers, variables are introduced and subsequently used in
scripts and definitions (Fig. 4 – right).

Fig. 4. Definitions generalised by using answer and variables as indirect parameters

3 Method

In developing the SM intervention, we followed a design research process to iterative-
ly design the curriculum content and learning progression [17]. This involved drafting
learning activities and subsequently trialling them with classes of pupils in one of four
‘design’ schools (primary schools in London). One to three SM researchers observed
the lessons, took detailed notes as well as collected pupils’ Scratch projects. The
researchers then discussed together the observations and outcomes of each lesson,
which informed the following redesign of the learning activity.

Within this paper, we focus on two specific research questions, which we explored
through our design process:

RQ1: Which factors play a role in (upper primary) pupils’ understanding and
choosing to utilize within their own programs the construct of procedural
abstraction?

RQ2: Which computational procedures need to be mastered to support pupils’ un-
derstanding and exploiting procedural abstraction (i.e. defining and using new blocks
in Scratch)?

3.1 Analysis

During the prototyping phase of the design research process each iteration of the
curriculum content was trialled in three to five classes of the design schools, (between
January 2015 and July 2016) with one or two researchers observing the lessons and
collecting the Scratch projects. All activities were trialled in at least one school, with
any activities that required modifications then retrialled in the same class (where
substantial changes had been made) or a different class/school (where more minor
refinements had been made). Further refinements were also made as a result of

9 Or to the stage, for completeness

559

feedback received during the professional development sessions conducted with class
teachers prior to trialling the final intervention within a wider group of schools.
During this phase we focused on the systematic and coherent integration of
procedural abstraction in all six modules of the intervention.

In this paper, we focus on analysing collected observations and projects from the
perspective of the construct of procedural abstraction. Firstly we conducted a content
analysis on the Scratch projects collected in several design schools during one
Module 2 activity (partway through the year 5 curriculum), requiring pupils to define
and use a block to draw a square, to identify the common initial issues or
misconceptions the pupils encounter when learning about definitions (Research
Lesson 1).

Secondly we conducted a content analysis on the Scratch projects collected during
a 90 minute lesson in one design school which took place at the very end of the design
research phase (after the trial of the year 6 content) to assess the pupils’ understanding
of the key constructs of the SM intervention (Research Lesson 2). This analysis was
intended to identify the choices made by pupils with regard to the use of definitions
within an open task following the SM intervention.

3.2 Initial Issues and Misconceptions

We identified three key issues in pupils’ initial building and use of definitions during
Research Lesson 1. Below we describe these issues and describe how they are
addressed within our SM pedagogic strategy for definitions, which were subsequently
promoted by researchers in classrooms later in the design research process. For
example when defining a new block for drawing a square of the side length of 40,
pupils:

i. did not attach the define square hat block to the script – new block square itself
would then have “no behaviour” as it had no define script, i.e no definition. We
advocate that teachers should encourage pupils to firstly build a script (stage 1)
and then give it a name by creating a new block and attaching the hat block (stage
2).

ii. attached the define square hat block to the define script, however later started
“stealing” the blocks from their define script, as if once having been defined,
Scratch would simply “remember the definition” We suggest that teachers should
encourage pupils to get into the routine of moving the define script to the right of
the scripts area out of the way once they are happy with it and then not touching it
(unless they intentionally decide to modify it).

iii. attached the define square hat block to the define script, however continued
building another repeat 4 move 40 turn right 90 degrees script whenever they
needed to draw a square, instead of using the new square block as a name of that
pattern of action. We propose that teachers should encourage pupils to use their
new blocks in isolation (stage 2) and then to use within different scripts (stage 3).

3.3 Use of Definitions after SM Intervention

During Research Lesson 2 the teacher first demonstrated the final behaviour in the
full screen mode – so that pupils could not see the scripts of the model solution. When
the (Beetle) sprite was clicked it asked how many houses it should draw and then

560

drew a row of randomly sized and coloured houses. This could be repeated several
times thus creating a hamlet, see Fig. 5.

Fig. 5. Picturesque hamlet, the final assignment in a design school

The class then as a group (in front of the interactive whiteboard) discussed the ac-
tivity, steps and possible strategies, dealing with questions such as: How many houses
did the Beetle draw in one row and why? Do they all have the same side length? How
are they positioned? How would the Beetle draw a house and a row of houses? Does
the Beetle choose a side length, how does it remember that value while drawing a
house? How will the Beetle learn how many houses to draw? Pupils were not
prompted to define their own new blocks.

A starter Scratch project was provided, with the Beetle sprite, a simple setup script
(to clear the stage etc.), the side length variable already created, a pre-defined block
set random pen size colour shade and two isolated blocks in the scripting area: set
side length to 0 and the side length reporter block.

Initial discussion took 15 minutes. Pupils were then divided into mixed ability
pairs or threes by the teacher. Teams worked on their projects independently for 70
minutes with a short break, the teacher providing only limited guidance. There were
23 pupils in the class, and we collected 9 projects (which represented the work of 21
pupils), hereafter referred to as P1 to P9.

Our content analysis of the nesting structure of definitions within the projects was
then conducted focusing on:
a) the definitions of new blocks and whether a new block is being used (nested) inside

another definition – i.e. whether pupils achieved stage 3 of the SM pedagogic
strategy for definitions.

b) whether the indirect parameters are properly implemented in the definitions – the
answer block and the side length variable – that is, whether pupils achieved stage
5 of our strategy.
Fig. 6 presents the projects’ nesting structure in the following way: the topmost

triangular block represents the overall behaviour (solution), usually the when this
sprite clicked script. Each circle represents a definition, the positioning corresponds
to nesting, i.e using a new block inside another definition. For example, in P1 a block
for drawing a house was defined, then used in the definition of a block to draw a row
of houses, which is then used in the overall behaviour of the sprite. Sometimes the
house block itself was defined by using another new block in it, usually a square (in
P5) or a square and a triangle (in P6).

561

Fig. 6. Nesting analysis of the definitions in the projects

A circle or a triangle in Fig. 6 is filled, semi-filled or empty, depending on whether
the definition correctly, partially or incorrectly10 works with the indirect parameter i.e.
answer or side length, the most advanced (stage 5) definition type in the SM
curriculum.

4 Discussion

Despite some initial issues/misconceptions of definitions, our findings show that
paying close attention to repeatedly exploring and explaining the practice of building
a script, giving it a name, keeping the definition and using new block as a shortcut
helped to reduce observed misconceptions and encouraged pupils to choose for
themselves to utilise the power of definitions within their own scripts. Our pedagogic
approach allowed pupils to automatize this computational procedure in different
contexts, before creating a situation when pupils needed to get back to the define
script and modify it.

Although back in 2010 Maloney et al. [15] reported certain confusion of
definitions and broadcasts, we have not observed this within our research. It may be
due to two factors: In the SM pedagogic framework [17] we strive to encourage
pupils to work with (incomplete) scripts as (partial) representations of action or
behaviours. A hat block is usually added only later, as an instrument to clarify how
this behaviour will be activated. From the first module pupils add the define hat block
to some scripts to give them name. Much later, in the third module (in year 5) they
start using some scripts as reactions to receiving a message.

Through our nesting analysis of the pupils’ final assignment, see Fig. 6, we looked
at whether making new blocks has been adopted by the learners as an instrument to
cope with complexity. We noted that every team made at least one new block and 5 of
9 teams made two or more new blocks (up to five). Two teams nested their definition
in two levels, 2 teams even in three levels. We also noted that 8 teams correctly or
partially correctly worked with the indirect parameter(s) in their scripts thus achieving
stage 5 of the SM pedagogic strategy for definitions.

Through our content analysis we also identified that definitions of new procedures
play different roles in it:
• Aggregating basic commands into one: when several basic commands are simply

attached together, with new command often carrying the names of its ‘atoms’, e.g.
set random pen size colour shade or dot stamp jump.

10 Including not using it at all

562

• Extending the language: (in the sense of Abelson and Sussman [2]) when a new
command gives a name to a compound reaction or behaviour, thus building a
higher layer of the means of expression – abstracting from the detail, e.g. house or
teleport.

• Transforming the language: when a basic command is ‘replaced’ by a new one to
be used instead, e.g. replacing move 20 steps by a new block move one tile.

• ‘Patching’ the language: when new block ‘completes’ the same layer of the means
of expression as offered by other basic blocks – extending the language in a
‘horizontal way’. This may lead to more consistent code, see Fig. 7 which
illustrates the definition of such block – previous costume.

Fig. 7. Patching the language. While next costume is a standard block, ‘symmetrical’ previous
costume block can be defined to highlight the analogy.

5 Conclusion

Although several designers updated their Scratch 1.4 materials to illustrate defini-
tions, rarely is this construct integrated and systematically exploited as a truly power-
ful idea. In the SM intervention, the thread of developing procedural abstraction
winds through all six modules, through five implicit stages. In our reserach we
acknowledge the importance of the role that definitions play in developing early
computational thinking, facilitating [19] decomposition (by creating a structure,
breaking down a problem), abstraction (by hiding detail), and generalisation (by
highlighting certain patterns of action and encouraging to use them later in different
contexts). Our experiences in the context of the SM intervention validate the
importance of exploiting a tool with affordances that support pupils in building
definitions, but also the importance of employing a pedagogic strategy that
systematically develops all computational processes associated with the practice of
the learners to exploit this concept.

Acknowledgments. The authors would like to thank the other SM project team
members Richard Noss, Celia Hoyles, Piers Saunders, Johanna Carvajal and Dave
Pratt, the Education Endowment Foundation for funding this work, and also all the
teachers and pupils from our design schools for their invaluable contributions to the
design and development of the SM intervention.

References

1. Technopedia: What does Procedure mean. Accessible online www.technopedia.com
2. Abelson, H., Sussman, G.J. with Sussman, J. (1985). Structure and Interpretation of Com-

puter Progams. The MIT Press, 657 p.

http://www.technopedia.com/

563

3. Papert, S. (1980). Mindstorms. Children, Computers, and Powerful Ideas. Basic Books,
New York, 230 p.

4. Kelleher, C., Pausch, R. (2005). Lowering the barriers to programming: A taxonomy of
programming environments and languages for novice programmers. ACM Computing
Survey (CSUR), Vol 37 Issue 2, 2005, pp. 83-137.

5. Morgado, L., Cruz, M., Kahn, K. (2006). Radia Perlman – A pioneer of young children
cpmputer programming. Current Developments in Technology-Assisted Education. For-
matex, pp.1903-1908.

6. Perlman, R. (1976). Using Computer Technology To Provide A Creative Learning
Environment For Preschool Children. AI Memo 360, MIT, 32 p.

7. Computing at School Working Group (2012) Computer Science: A curriculum for
schools. www.computingatschool.org.uk/data/uploads/ComputingCurric.pdf.

8. Hillel, J. (1992). The Notion of Variable in the Context of Turtle Graphics. In: Hoyles, C.,
and Noss, R. (Eds.): Learning Mathematics and Logo. The MIT Press, pp. 11-36.

9. Leron, U. (1983). Some problems in children’s logo learning. In Proc. of the 7th Inter-
national Conference for the psychology of Mathematics Education, Israel, pp. 346-351.

10. Pea, R.D. et al. (1985). Logo and the Development of Thinking Skills. In M. Chen and W.
Paisley (Eds.) Children and Microcomputers: Research on the Newest Medium. Sage, pp.
193-212.

11. Meerbaum-Salant, O., Armoni, M., Ben-Ari, M. M. (2013). Learning computer science
cocepts with Scratch. Computer Science Education, Vol 23 (3), pp. 239-264.

12. Ouahbi, I. et al. (2015). Learning Basic Programming Concepts By Creating Games With
Scratch Programming Environment. Procedia – Social and Behavioral Sciences 2015.

13. Vaníček, J. (2015). Programming in Scratch using inquirey-based approach. In A.
Brodnik, J. Vahrenhold (Eds.) Informatics in Schools. Curricula, Competences, and
Competitions. Springer LNCS 9378. pp. 82-93.

14. Futschek, G., Moschitz, (2011). Learning algorithmic thinking with tangible objects eases
transition to computer programming. In Kalas, I., Mittermeir, R.T. (Eds.) Informatics in
Schools. Contribution to 21st Century Education. Springer LNCS 7013. pp. 155-164.

15. Maloney. J., Resnick, M., Rusk, N. Silverman, B., and Eastmond, E. (2010). The Scratch
Programming Language and Environment. ACM Transactions on Computing Education,
Vol. 10, No. 4, Article 16, 15 p.

16. Brennan, K., Resnick, M. (2012). New frameworks for studying and assessing the develop-
ment of cimputational thinking. In Proc. of the 2012 Annual Meeting of the American
Educational Research Association, Vancouver, Canada.

17. Benton, L., Hoyles, C., Kalas, I., and Noss, R. (2017). Bridging Primary Programming
and Mathematics: Some Findings of Design Research in England. Digital Experience in
Mathematics Education. Springer, doi: 10.1007/s40751-017-0028-x, pp. 1-24.

18. Benton, L., Hoyles, C., Kalas, I., and Noss, R. (2016). Building mathematical knowledge
with programming: insights from the ScratchMaths project. In: Constructionism 2016,
Bangkok, pp. 25-32.

19. Guttag, J. V. (2013). Introduction to Computation and Programming Using Python. The
MIT Press, 298 p.

	Tomorrow’s Learning: Involving Everyone
	Learning with and about technologies and computing
	Edited by:
	Arthur Tatnall and Mary Webb
	WCCE-2017 Committees
	WCCE-2017 International Program Committee
	Organising Committee
	Table of Contents
	Preface

	Futures of technology for learning and education
	Innovative practices with learning technologies
	Computer Science Education and its Future Focus and Development
	The Dublin Declaration
	Futures of Technology for Learning and Education

	1. Introduction
	2. Framework for analysis
	3. Liberating the learner
	4. Discussion
	5. Developments since 1995
	6. Tomorrow’s learning: ‘involving everyone’
	7. Discussion
	8. Conclusion
	References
	1 Introduction
	2 The Vision within the New Zealand Education System
	3 Challenges to Achieving the Vision
	4 Discussion and Conclusion
	References
	1. Introduction
	2. Methodology
	References
	1 Introduction
	2 Literature Review
	3 Study Design, Method/Methodology
	4 Findings and Discussion
	5 Conclusion
	References
	1. Introduction and Research Background
	2. Objectives of the study
	3. Methodology
	3.1 Context of the Experimental School and Sample
	3.2 The Research Instrument
	3.3 Data analysis

	4. Results
	4.1 Descriptive measures for pupils’ views and factorial structure of the questionnaire
	4.2 Impact of pupils’ individual characteristics (gender, age, frequency of internet use) on the “internet attitudes” factors

	5. Discussion and Conclusions
	References
	1. Introduction
	2. Background
	1.1 Aims of the project
	1.2 Games in education

	2. Research and results
	2.1 Development process
	2.2 Results of collaboration

	3. Discussion
	4. Conclusion
	References
	1. Introduction
	2. Methodology
	3. Nature of studies under review
	4. Impact of online game-based learning /gamification on dispositions
	5 Impact of online game-based learning/gamification on cognitive abilities
	6 Impact of online game-based learning/gamification on behaviours
	7 Conclusion
	References
	1. Introduction
	2. Essence of Alternate Reality Gaming
	3. AR Gaming in Higher Education: A discussion on pros and cons
	3.1. The strengths
	3.2. The weaknesses

	4. The Verdict
	References
	1. Introduction
	2. Literature
	3. Methodology
	4. Results
	5. Discussion
	6. Conclusion
	References
	1 National context and challenges
	2 Main innovative characteristics of the e-Fran program
	3 Results from the selection process
	4 The e-Fran program follow-up
	5 Conclusion and future work
	References
	1. Introduction
	2. Literature Review
	2.1 Peer Observation, Peer Learning and Professional Learning Communities
	2.2 Mobile Technologies Enabling Computer Supported Collaborative Learning (CSCL)

	3. Context & Study Design
	4. Results and Discussion
	4.1 PST Perceptions of Mobile Technology Supported peer observation Process
	4.2 PST Focusses of peer feedback

	5. Conclusions and Implications
	References
	1 Introduction
	2 Method
	2.1 Participants and procedure
	2.2 Instruments

	3 Results
	4 Discussion
	References
	1. Introduction: The Domain of VET and Mobile Learning
	2. Methods: Interviews and Qualitative Content Analysis
	3. Results: Expertise of Trainers
	3.1 Tasks and activities
	3.2 Communication and task assignment in the apprenticeship
	3.3 Learning materials
	3.4 Expectations of trainers towards mobile learning

	4. Conclusion and Outlook: Mobile Learning in VET
	4.1 Summary and resulting requirements
	4.2 An approach for a mobile application to support learning tasks in VET and mechanical engineering
	Acknowledgements

	References
	1. Introduction
	2. Current state of research
	2.1 The use of new technologies at school
	2.2 Students and their Computer Literacy
	2.3 The relationship between the use of new technologies and CIL

	3. Research questions
	4. Methodology
	4.1 Sample
	4.2 Instruments and Methods
	Composition of Longitudinal Section. In order to model the longitudinal section, all students who only participated at one time of measurement were excluded from the analyses. The original 119 participants were hence reduced to 105 students that const...
	Tablet use. The use of tablets was assessed in a subject-specific approach for all school subjects. In the following, the frequency of tablet use is reported for the main subjects of German, Mathematics and English. The five-tier response format range...
	Computer Literacy. For the purpose of assessing the students‘ computer literacy, the National Educational Panel Study’s (NEPS) computer literacy test for Grade 9 was used [34]. Due to the fact that a few tasks of the Grade 9 NEPS test were no longer u...

	5. Findings
	5.1 Tablet use
	5.2 Computer Literacy
	5.3 Relationship between computer use and computer literacy – students achievement
	5.4 Relationship between computer use and computer literacy – teacher’s perspective

	6. Discussion and outlook
	References
	1. Introduction
	2. Research Methodology
	2.1 Research Design
	2.2 Sample and Sampling Procedures
	2.3 Research Instruments
	2.4 Data Collection and Analysis

	3. Results
	3.1 Learner Demographic and Characteristics Information
	3.2 Students Experiences on the Remote Collaborative Course Environment
	3.3 Tools and Methods Used for Remote Collaboration
	3.4 Challenges Encountered in Remote Collaboration
	3.5 Students’ Perceptions’ on Remote Collaboration for Learning ICT4D Course

	4. Discussion
	5. Conclusion and Future Work
	References
	1. Introduction
	2. Literature Review
	2.1 Array of collaborative software features
	2.2 Google Applications for Work
	2.3 Cloud Computing in Higher Education

	3. Research Design
	3.1 Method
	3.2 Data Analysis

	4. Results
	4.1 Real time collaboration
	4.2 Video Conferencing
	4.3 Technology experience and future plans
	4.4 Apps challenges
	4.5 Conversational analysis
	4.6 Discussion topic: Introducing Connectivism
	4.7 Minutes of a meeting coordinated at Facilitator’s office through Skype video conferencing

	5. Conclusion and future work
	References
	1. Introduction
	1.1 Background and context: Teacher Professional Learning Framework
	1.2 Impact of the Professional Learning Framework
	1.3 Problems of Scalability

	2. Scaling the Model of Professional Learning: MOOC related literature
	2.1 Why a MOOC?
	2.2 Can we recreate deep learning conversations live online?

	3. Design & Development of the 21CLD MOOC
	3.1 Designing opportunities for online deep learning conversations

	4. Conclusion
	References
	1 Introduction
	2 Didactical models and concepts
	2.1 Classical didactical models
	2.2 Set of didactical terms
	2.3 Templates and patterns
	2.4 Integration of a competency model

	3 Ontology
	3.1 Representation of didactical term sets
	3.2 Graphical user interface (GUI)
	3.3 Summary, current status

	4 Outlook
	References
	1. Introduction
	2. Structure of the Proposed Model
	2.1 Framework for Digitally Mature Schools

	3. Methodology
	3.1 Instrument for Measurement of Digital Maturity of Schools
	3.2 Initial Self-evaluation of Schools
	3.3 Initial External Evaluation of Schools

	4. Results
	5. Discussion
	6. Conclusion
	References
	1. Introduction
	2. The Secure Exam Environment (SEE)
	2.1 How do we secure the SEE?
	2.2 How do we ensure the SEE is reliable?
	2.3 How do we maximize the availability of the SEE?
	2.4 How do we protect the privacy of examinees?
	2.5 How do we support flexibility for examinees?

	3. Technical Obstacles and Challenges
	4. Organizational Obstacles and Challenges
	4.1 Organizational challenges before an exam
	4.2 Organizational challenges in the lecture hall
	4.3 Support after an eExam

	5. Experiences with eExams at the AAU and Further Developments
	5.1 (Dis-)Advantages for students
	5.2 (Dis-)Advantages for lecturers
	5.3 Further developments

	6. Conclusion
	References
	1. Introduction
	2. Old, Elderly, or Senior?
	3. Physical activity using motion detection devices
	4. Economic and demography
	5. Problem and objectives
	6. Methodology
	7. Expected outcomes
	Acknowledgments

	References
	Innovative Practices with Learning Technologies

	1 Introduction
	2 Background
	3 Method and Design
	4 Findings
	5 Discussion
	5.1 Task progression
	5.2 Sourcing Images
	5.3 Documentation
	5.4 Managing Digital Storytelling in the Classroom
	5.5 Digital storytelling and literacy

	6 Conclusion
	References
	1. Introduction
	2. Rospino: Design Features
	2.1 Research and Development

	3. Present Research
	3.1 Gender Differences: Beliefs, Expectations and Perceptions
	3.2 Self-efficacy and Gender
	3.3 Perceived Engagement and Gender
	3.4 Video Behavioural Observation

	4. Robotics in Primary Education
	5. Methods
	5.1 Participants
	5.2 Conditions
	5.3 Measures

	6. Research Results
	6.1 Results Regarding Changes in Self-efficacy
	6.2 Results Regarding Perceived Engagement
	6.3 Analysis of Results of Video and Programs

	7. Discussion and Limitations of the Research
	References
	1. Introduction
	2. Background and Literature Review
	3. Design Considerations and Decisions
	4. Evaluation of the Decision Support Tool
	5. Discussion
	6. Conclusion
	References
	1. Introduction
	2. Methods
	3. Results
	3.1 AR in Clinical Skills Education
	3.2 Clinical Augmented Reality Objects in Physical Examination (CAROPE)

	4. Discussion
	5. Conclusion
	References
	1. Introduction
	2. Preferences for accepting a haptic learning resource
	2.1 How the study was performed
	2.2 Different elements considered: gender, prior experiences, and acceptance
	Gender differences were reported in the fields of education including medical related disciplines [18, 19], but hardly found in anatomy learning. In the area of this study, gender differences were insignificant with respect to questions regarding acce...

	2.3 Preferred learning style
	2.4 Course enrolled and preference of haptics
	2.5 Previous 3D experience

	3. Conclusion and Future Direction
	Acknowledgments. We thank the University of Tasmania for a Teaching Development Grant which enabled us to explore this new technology in class. Thanks also go to the teaching team and the students involved in the user tests.

	References
	1. Introduction
	2. Related work
	2.1 Conversational intelligent tutoring systems
	2.2 Interpreting the non-verbal behavior of learners
	2.3 Comprehension classification by automata

	3. Hendrix 2.0
	4. Study: automatic classification of e-learner comprehension during on-screen conversational interactions
	4.1 Participants
	4.2 Method
	4.3 Results and discussion

	5. Conclusions
	6. Future work
	References
	1. Introduction
	2. The Value of Professional Education in Project Management
	3. PRINCE2 Project Management Methodology
	4. Research Study – Longitudinal Case Study
	5. Implications
	6. Conclusion
	References
	1. Introduction
	2. Research design
	3. Teacher-driven learning analytics
	4. Learning analytics in 1:1 environments
	5. Discussion
	6. Conclusion
	References
	1. Introduction
	2. Background
	2.1 Mobile Learning
	2.2 A pedagogical framework for m-learning: iPAC
	2.3 Feature Based Sentiment Analysis

	3. Study Design
	4. Results
	5. Discussion
	6. Conclusion and Future Directions
	References
	1. Introduction
	2. Methodology and Analysis
	2.1 The research interviews
	2.2 Analysis

	3. Findings
	3.1 Emerging Storylines
	Storyline # 1 Reading chemical subscripts
	Storyline # 2 I know … H2O
	Storyline # 3 This is … fun/interesting/easy

	4. Conclusions
	References
	1. Introduction
	2. Methodology
	3. Research setting and empirical data
	4. Analysis of the Data
	Video conferences: lurking, listening and leaving
	Video presentations: snooping and sneaking
	Online discussions in Adobe Connect and/or Moodle: The few
	Evaluation of the session: Lack of engagement

	5. Discussion and conclusion on the research question
	References
	1. Introduction
	2. Literature Review
	3. Methodology
	4. Findings and Discussion
	5. Conclusion
	References
	1. Introduction
	2. Background
	3. The Present Study
	3.1 Interventions (SRSD and SRSD+ICT intervention)
	SRSD model
	SRSD+ICT model

	4. Methodology
	4.1 Participants
	4.2 Writing measures and procedures

	5. Results and discussion
	6. Conclusions and Implications
	References
	1. Introduction
	2. Current study
	2.1 Context
	2.2 Procedure
	2.3 Validating the current study

	3. Data analysis
	4. Results and Discussion
	4.1 Findings
	4.2 Explaining the framework
	4.3 What are the enablers and inhibitors?

	5. Conclusions
	References
	1. Introduction
	2. Qualities of Learning
	3. The Virtual Learning Course
	4. Data Collection Methods
	5. Results
	6. Discussion
	7. Conclusion
	References
	1. Introduction
	2. Perspectives
	2.1 Tools
	2.2 Processes

	3. The Program
	4. The Study
	4.1 Data Sources and Evidence

	5. Results
	5.1 Teacher: Ms. A
	5.2 Teacher 2: Ms. B
	5.3 Cross Case Analysis

	6. Significance and Implications
	References
	1. Introduction
	2. Context
	3. Methodology
	3.1 Participants

	4. Results and Discussion
	4.1 Is there evidence of improved confidence with ICT (TK)?
	4.2 Is there evidence of increased understanding of the pedagogical implications of using ICT (PK)?
	4.3 Is there evidence of increased understanding of the ICT requirements for teachers (CK)?
	4.4 Is there evidence of an increased likelihood of PSTs using digital technology in the future?
	4.5 Other findings

	5. Limitations and Challenges
	6. Conclusion
	References
	1. Introduction
	2. The DIY Concept
	3. Implementation of DIY into Education
	4. A Model of DIYLab Activity
	4.1 Key features of DIYLab activities

	5. Specification of a Research Field
	5.1 Research Methodology
	5.2 Characteristics of student teachers participated in DIYLab activities

	6. Analysis of Some DIYLab Activities Performed by Student Teachers
	6.1 Ways in which the DIYLab activities met the defined requirements
	(1) Collaborative learning
	(2) Inquiry-based teaching and learning
	(3) Trans-disciplinary knowledge
	(4) Autonomous / Self-regulated learning
	(5) Digital literacy improvement / Digital competence
	(6) Connection to study programmes / curriculum

	6.2 Examples of DIYLab activities carried out by Bc degree student teachers
	6.3 Examples of DIY activities carried out by MA degree student teachers
	6.4 Examples of DIY activities carried out by pupils and completed in lessons managed by ICT student teachers on school practice

	7. Conclusions
	References
	1. Background
	2. Introduction to the study
	3. Development of the hapTEL Virtual Simulator
	4. Evolvement of the Teaching and Learning Setting and Workshop Activities
	5. Discussion and conclusions
	References
	1 Introduction
	2 Related Works
	2.1 Motivation and Short-term Goal
	2.2 Backward Design and Backward Learning
	2.3 Concept Map and Ontology

	3 EduGraph
	4 EduGraph Ontology
	4.1 Relationship Type
	4.2 Upper Ontology of EduGraph Ontology

	5 Tentative Evaluation through Actual Applications
	5.1 Application to “Introduction to Information Technology” in 2015
	5.2 Other Applications and Discussion
	6 Summary and Future Works
	References
	1 Introduction
	2 Literature
	3 Method and Approach
	4 Findings
	5 Discussion
	6 Conclusion
	References
	Computer Science Education and its Future Focus and Development

	1. Introduction
	2. Key challenges and issues
	3. Rationales for Computer Science in the curriculum
	4. The position of Computer Science in the curriculum
	5. Structuring the curriculum
	6. Pedagogical and Assessment challenges
	7. Discussion and conclusions
	References
	1 Introduction
	2 Looking Beyond National Borders
	3 A Very Short History of Digital Education in Austria
	4 Some Findings from a Nationwide Empirical Research
	5 Towards a National Curriculum
	6 Concluding Remarks
	References
	3.1 Industrial Collaborative Research Projects
	3.2 Internal Projects

	1. Introduction and Motivation
	2. Phenomena of the Digital World: Ubiquitous Computing and Internet of Things
	3. Analyzing Social Demands
	3.1 Research Goals and Data Gathering
	3.2 Data Analysis
	3.3 Results and Interpretation

	4. Conclusion
	References
	1. Introduction
	2. Early Computing in Australia
	3. The Beginnings of Computer Science and IS Curricula
	4. Methodology
	5. IS Curricula at Footscray Institute in the 1970s and 1980s
	6. IS Curricula at Western Institute in the late 1980s
	7. Information Systems Curricula at VU from the 1990s – 2000
	8. IS Curriculum at VU from 2000 – the Present
	8.1 The Rise and Fall of Electronic Commerce
	8.2 Enterprise Resource Planning (ERP)
	8.3 Consolidation of Offerings, ‘Fly By Nighters’ and a New Area

	9. Conclusion: What of the Future?
	References
	1. Introduction
	2. Related Research
	3. Research Question and Data Collection
	3.1 Data Validity

	4. Results and Analysis
	4.1 Participants
	4.2 Programming Experience
	4.3 Programming Languages
	4.4 Helpfulness of Experience
	4.5 Origins of Experience

	5. Discussion
	References
	1. Introduction
	2. Structuring Computing Interest
	3. Investigating Interest in Computing
	3.1 Structure of the Questionnaire
	3.2 Data Collection and Evaluation

	4. Results of a First Pilot Study
	4.1 Descriptive Statistics
	4.2 Selected Differences between Groups of Persons

	5. Conclusion and Outlook
	References
	1 Introduction
	2 Overview of the Summer Camp
	2.1 Game Strategies for ChainReaction (blue)
	2.2 Invited Speakers (red)
	2.3 Robotics Session (green)
	2.4 Presentations (yellow)

	3 Survey Results
	3.1 Pre-Survey: Prior Computing Experiences (Social Encouragement/Self Perception)
	3.2 Pre- and Post-Survey: Attitude towards Computing (Self-Perception/Career Perception)
	3.3. Post-Survey: Camp Experience (Academic Exposure/Career Perception)

	4 Conclusion
	References
	1. Introduction
	2. Method
	3. Results and Discussion
	Gender
	Diversity
	Special Educational Needs
	Attainment
	Economic disadvantage

	4. Conclusions
	References
	1. Introduction
	2. Relevant Literatures
	3. Methodologies
	4. Findings
	4.1 The possibility of educational support on computing and informatics
	4.2 Limitations of educational support on computing and informatics

	5. Discussion and conclusion
	References
	1. Media Education and Computer Science
	2. Task Design
	3. Fostering computational thinking
	3.1 Abstraction
	3.2 Algorithms
	3.3 Decomposition
	3.4 Generalisation

	4. Evaluation
	5. Conclusion
	References
	1. Introduction and motivation
	2. Background and related work
	3. Research questions
	3.1 Definitions of constructs

	4. Research method
	4.1 The measurement instrument
	4.2 Planning and implementation

	5. First results
	6. Conclusion
	References
	1. Introduction and Motivation
	1.1 Kelly’s Personal Construct Psychology
	1.2 Related Work and Our Goals

	2. Methodology
	2.1 Origins of the Repertory Grid Technique
	2.2 Modifications of the Technique
	2.3 Analysis and Interpretation of Repertory Grids and the Importance of Explanations during Repertory Grid Interviews
	2.4 Developing the Repertory Grid Interviews for this Particular CSE Study

	3. Results
	3.1 Execution of this Investigation
	3.2 Evaluating the Repertory Grid Interviews
	3.3 A Comparison of the Perceptions of the Internet We Won in this Study and the Results of Other Works

	4. Discussion
	4.1 Advantages of Using the Repertory Grid Method Instead of Other Instruments

	5. Conclusion
	References
	1. Introduction
	2. Data Management from a CS Perspective
	3. Related Work
	4. Teachers’ Content Knowledge and Attitudes
	4.1 Aims
	4.2 Survey Method and Implementation
	4.3 Results and Interpretation

	5. Students’ Knowledge and Experience
	5.1 Aims
	5.2 Survey Method and Implementation
	5.3 Results and Interpretation

	6. Conclusion
	References
	1 Background
	1.1 Defining Procedures in Research Literature
	1.2 Defining Procedures in Scratch

	2 Procedural Abstraction within ScratchMaths
	2.1 SM Pedagogic Strategy for Definitions

	3 Method
	3.1 Analysis
	3.2 Initial Issues and Misconceptions
	3.3 Use of Definitions after SM Intervention

	4 Discussion
	5 Conclusion
	References
	1. Introduction
	2. Literature review
	3. Background information about the project
	4. Method
	4.1 Sample
	4.2 Sources of data

	5. Data and results
	5.1 Curiosity
	5.2 Challenge
	5.3 Collaboration, communication, creativity and critical thinking
	5.4 Computational thinking
	5.5 Coding/programming

	6. Discussion and conclusion
	References
	1. Introduction
	2. Method
	2.1 Programming Workshop
	2.2 Programming Environment: Pyonkee
	2.3 Analytical Sample
	2.4 Analytical Method
	2.5 Focused Situation.
	2.6 Levels
	2.7 Phases

	3. Results
	3.1 Summary
	3.2 Detailed Analysis
	Scene 1: X struggled by herself (Phases 1–6).
	Scene 2: X and Y shared the problem (Phases 7–12).
	Scene 3: X and Y compromised (Phases 13–20).
	Scene 4: Clarified the Goal (Phase 21–27).

	4. Discussion
	5. Conclusion and Future Directions
	References
	1. Introduction
	2. Related research
	3. Computational Analysis and Design Engineered Thinking (CADET) Framework
	4. Operationalisation of Framework to Process
	4.1 Best Practice in Teaching Software Development
	4.2 Best Practice in Software Development Processes

	5. Computational Analysis and Design Engineered Thinking (CADET) Software Development Process
	1. Understand the problem - Using the support tool, learners will be invited to articulate their understanding of either a problem that they have provided or a problem that is provided to them as part of the learning process stage. This articulation o...
	2. Break into tasks - This stage employs decomposition to convert the high-level summary and specification from stage 1 into an intermediate set of constituent tasks and to further refine those tasks into more basic tasks if required. In order to make...

	6. Discussion
	References
	1. Introduction
	2. Background
	2.1 A preliminary case: Swengi - A new interface for a mobile version of a daily newspaper
	2.2 Students
	2.3 Curriculum reform and agile study modules

	3. Research and methods
	4. Results
	4.1 Findings
	4.2 Results of collaboration

	5. Conclusion
	References
	1. Introduction
	2. Related Work
	3. Information Dashboard
	4. Research Method
	4.1 Research questions
	4.2 Education environment descriptions
	4.3 Use of the dashboard and analyzed discourse
	4.4 Coding method

	5. Results
	5.1 Short descriptions of each case
	Case 1: Effects of reordering assignments
	Case 2: Compile error correction time and its improvement
	Case 3: Working time and maximum lines of codes
	Case 4: Characteristics of the assignment and improvement of instruction
	Case 5: Working time outside of classroom
	Case 6: Correlation between several coding metrics
	Case 7: BlockEditor usage of the 2016 year's course

	5.2 Results of qualitative analysis

	6. Discussion
	References
	1 Introduction
	2 Background and Related Work
	3 Methodology
	3.1 Design
	3.2 Item construction
	3.3 Participants

	4 Results
	4.1 Lookup Count
	4.2 Lookup Time
	4.3 Working Memory

	5 Discussion
	6 Conclusion
	References
	1 Introduction
	1.1 Related work
	1.2 Research Questions

	2 Project Structure
	2.1 Research Design
	2.2 Research Instruments

	4 First results
	5 Conclusion
	References
	1. Introduction
	2. Discussion of Organizational Models of Computing Education
	2.1 Integration into Existing Subjects
	2.2 A Separate (Mandatory) Subject for Computing Education
	2.3 School working groups/projects
	2.4 Out-of-school activities

	3. Conclusions
	References
	1 Introduction
	2 Educational Perspectives on the Digital Networked World
	3 Conclusions
	References
	1. Introduction
	2. Communities of practice
	3. NAPOJ Project
	3.1 Goal
	3.2 Framework
	3.3 Some evaluation and results
	3.4 Questionnaires and observations

	4. Conclusion
	References
	1. Introduction
	2. Theoretical Background
	2.1 Computational Thinking/FITness
	2.2 Half-baked microworlds
	2.3 Program Impact Theory

	3. Methods and Implementation
	4. Outlook and Summary
	References
	1 Introduction
	2 Analysis of the initial position
	3 Preliminary considerations and framework conditions
	3.1 Personnel framework
	Course leader
	Students
	Technical support

	3.2 Situative framework conditions
	Computer room
	Technical conditions

	3.3 Didactic notes on the implementation
	Motivation
	Group composition
	Timeframe

	4 Implementation of the project
	4.1 Concept
	4.2 Teaching and individual support

	5 First conclusion
	References
	The Dublin Declaration

	Introduction
	IFIP TC3 Dublin Declaration
	Tomorrow’s Learning: Involving Everyone

	Background
	The Current and the Future
	Computer Science Education
	Our recommendations are:

	Developing Countries
	Our recommendations are:

	Inclusiveness and Student Engagement
	Our recommendations are:

	Teacher Education and Continuing Professional Development
	Our recommendations are:

	Game-Based Learning and Gamification
	Our recommendations are:

	e-Evaluation
	Our recommendations are:

	In Conclusion

