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Abstract. From the early years of educational programming researchers considered 
procedural abstraction a key instrument of computational thinking and tried to 
understand the cognitive difficulties encountered through this concept. Defining 
procedures is promoted in renewed computing curricula in several countries. And 
yet, it is rarely acknowledged by more recent educational research. In this paper, we 
consider the fact that the delayed implementation of a mechanism for building 
procedures (known as definitions) within Scratch, a widely used programming 
environment for children, may have negatively impacted the focus within curricular 
content on this powerful idea. In our research, which is a part of a broader 
ScratchMaths (SM) research project, we set out to explore which factors play a role 
in upper primary pupils understanding and utilizing the concept of defining 
procedures as a common and inherent instrument of their programming. We present 
our observations from the project design schools and demonstrate how they guided 
the development of our SM pedagogic strategy for definitions. 

Keywords. primary computing education, procedure, abstraction, ScratchMaths 

1   Background 

Computer scientists have recognised the power of defining a procedure since the 
early days of computer programming in the late 1950s, technically defining its role as 
offering “a single point of reference for some small goal or task that the developer or 
programmer can trigger by invoking the procedure itself” [1]. Later, whilst studying 
the idea of a computational process in the 1980s, Abelson and Sussman [2] in their 
seminal writing identified three basic mechanisms of a programming language, 
including the means of abstraction by which compound elements can be named and 
manipulated as units1, i.e. “... the means that the [programming] language provides 
for combining simple ideas to form more complex ideas” [ibid]. 

In the early years of educational programming, within the context of Logo pro-
gramming Papert [3] proposed the metaphor of “teaching the Turtle a new word” to 
represent the process of programming a computer. In 1974 Perlman, inspired by 
Papert, tried to implement the concept of procedure in a tangible programming 
interface for preschool children in her Tortis Slot Machine, see [4,5,6]. Through this 
work she started considering the cognitive difficulties behind some aspects of 

                                                        
1  The other two mechanisms being primitive expressions and the means of combination 
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programming [5, p. 4] after observing children becoming overwhelmed when 
introduced to multiple new concepts through her system. 

For Papert, turtle geometry provided an excellent opportunity to practice “the art of 
splitting difficulties” [3, p. 64], for example through drawing a house by splitting it 
into two parts – a square and triangle. He proposed that a Logo procedure can become 
something named, manipulated and recognised; terming it “an object to think with”. 

Since the early 1980s the mechanism of defining new procedures (in different 
forms) has been implemented in many programming environments for novice pro-
grammers, including children2 and this is promoted through renewed computing 
curricula in several countries highlighting the power of abstraction and procedure. For 
example, Computing at School (CAS) in the UK [7] characterises procedure as a 
mechanism of abstraction, an instrument of generalisation, a pattern to be used to 
control complexity by sharing common features, and suggests “these abstractions may 
be deeply nested, layer upon layer” [ibid, p. 11]. CAS recommends that as well as 
using procedures pupils should become proficient in creating new abstractions of 
their own. 

1.1 Defining Procedures in Research Literature 

Within the Logo culture of 1980s and 1990s, researchers frequently examined the 
procedural thinking of the learners, but their studies often point to some inherent 
difficulties with the notion of procedure, see e.g. [8-10]. Pea et al. [10] observed that 
most of the pupils involved in their study in the early 1980s did not spontaneously ac-
cept programming practices such as “... structured planned approaches to procedure 
composition, use of conditional or recursive structures” [ibid p. 211]. 

Despite the legacy of being difficult and not naturally exploited by children as an 
everyday instrument in their programming, Logo educators and reserachers have al-
ways considered procedural abstraction to be one of the most ‘powerful ideas’ of 
computing education. However, this is rarely acknowledged by more recent educa-
tional research. 

Most of the research projects looking at the learning of computer science and 
computing concepts focus on variables, loops, conditions and control structures, 
message passing or concurrency, often not mentioning definitions at all. For example 
Meerbaum-Salant et al. [11] study how Scratch can be used to teach computer 
science, focusing on ‘standard’ key concepts, but not on defining new blocks. 
Similarly, Ouahbi et al. [12] study how novices learn basic programming concepts by 
creating games but do not include definitions of new blocks in their observations. 

Vaníček [13] identifies several potential risks in the emerging Scratch program-
ming practices of the student-teachers, including unnecessarily long scripts. However, 
defining new blocks is not considered among the instruments to cope with that risk. 

Futschek and Moschitz [14] explore a transition from a playful programming envi-
ronment with tangible objects to a virtual Scratch environment and identify five basic 
computational concepts which should be present in learning scenarios with the aim to 
develop early algorithmic thinking, abstraction being one of them. They suggest that 
learners should experience a transition from perceiving a basic virtual command as an 

                                                        
2  Such as Karel the Robot (1981), Solo (1983), Boxer (1986), Roamer (1989), Show and Tell (1990), 

Turingal (1991) among others, see e.g. [4] 
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abstraction of a basic tangible action to perceiving a command as an abstraction of a 
compound (constructed) action. 

1.2 Defining Procedures in Scratch 

The Scratch programming environment has become an icon of the recent widespread 
interest of schools around the world in computing education for every pupil. It is a 
visual programming environment that allows users “to learn programming while 
working on personally meaningful projects such as animated stories and games” [15]. 

Brennan and Resnick [16] explain that in Scratch abstraction is employed at 
multiple levels “from the initial work of conceptualizing the problem to translating 
the concept into individual sprites and stacks of code”. However, the previous version 
of Scratch (1.4) had no means to employ abstraction by defining new procedures. In 
2010 Maloney et al. [15] wrote:  

“Early versions of Scratch had a mechanism for creating procedures. In early field 
tests, however, many users were confused by procedures since they seemed very 
similar to broadcasts – both involved associating a name with a collection of com-
mands. In the interest of simplicity and minimalism, procedures were removed from 
the language before Scratch was officially released...” 

3  
More recently in Scratch 2.0 (released in 2013) the functionality for defining 

procedures was implemented as the Make a Block operation (see Fig. 1). 

Fig. 1. In Scratch the define hat block is attached to a script, thus defining a new block 

2   Procedural Abstraction within ScratchMaths 

The research reported within this paper is a part of a broader project, ScratchMaths 
(SM), which aims to explore connections between developing computational and 
mathematical thinking in the upper primary age pupils4 in England [17,18]. In the 
project we have iteratively designed detailed curriculum materials for computing 
lessons in years 5 and 6, which are currently being trialled in 50+ primary schools 
across the country. The intervention consists of six modules (three per year), with 
each module consisting of a series of activities organised within investigations (with 
accompanying classroom resources). The first three modules focused more on 
introducing key computing concepts (sequencing, repetition, algorithm, debugging, 
abstraction, initialisation, randomness, conditions, expressions, broadcasting), with 

                                                        
3  Later on we probe this observation through our own experience with the SM schools 
4  i.e. aged 9-11 years 
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links to mathematics made implicitly and the remaining three modules explicitly 
focused on particularly challenging mathematical concepts (place value, ratio and 
proportion, coordinates and geometry). Each year of the intervention included a two-
day professional development program for class teachers, which was intended to 
introduce the ‘big ideas’ of the SM curriculum as well as the pedagogical approach to 
delivering the intervention. Through the research conducted as part of this project, we 
seek to better understand the construct of procedural abstraction in early computing 
education. 

In their new framework for studying computational thinking, Brennan and Resnick 
[7] identify three key dimensions: computational concepts (like sequences, loops, 
events etc.), computational practices (like testing, debugging, reusing, remixing etc.) 
and computational perspectives (about the world around us). In our research we 
extend their first dimension into computational constructs, which comprise 
computational concepts (like procedural abstraction in this case) and computational 
procedures associated with the practice of the learners to exploit the concept. 

2.1 SM Pedagogic Strategy for Definitions 

Through the design of the SM intervention we recognise five implicit stages in 
developing the construct of procedural abstraction: 

1) Perceiving a script5 as an object to work and think with: One of the key SM de-
sign principles is systematically building the distinction between: 
• direct manipulation, e.g. dragging a sprite (a programmable object) by the mouse 

or switching its costume (its appearence) by clicking on a different costume in the 
list. 

• direct drive, clicking an isolated block (command) in the scripting area, thus 
getting an immediate and unambiguous basic reaction, e.g. clicking move -50 steps 
block would make a sprite move backwards 50 steps. 

• computational drive, building and using a script as a representation of the com-
pound future behaviour of a sprite e.g. by clicking it in the scripting area. Typically 
it is only later that a script (a behaviour) is turned into a complete reaction to a 
certain event through the addition of a hat block6, e.g. when this sprite clicked or 
when green flag clicked. 
By adopting this distinction pupils start perceiving scripts (with no hat blocks, see 

the lower left script in Fig. 2) as patterns of actions7, representations of partial or 
complete behaviours, as objects to build, explore, modify, and use (i.e. as objects to 
think with) and possibly abstract later. In our intervention we incorporate activities 
developing this approach as a preliminary phase for developing procedural 
abstraction. 

2) Giving a name to a script. When a useful script has been built it can be given a 
name (Fig. 2 – right). Within our SM pedagogical framework [17] we encourage 

                                                        
5  In Scratch a stack of blocks snapped together, a piece of program 
6  The topmost block to start a script, e.g. when this sprite clicked hat block 
7  In the context of SM Module 1, patterns of actions are procedural representations of the corresponding 

visual patterns 
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pupils to follow the procedure: (i) build a script, debug and use it, (ii) give it a name, 
i.e. attach a new define hat block to the script, (iii) keep the define script (the 
definition), and (iv) use the new block as a shortcut instead, as a name of that pattern 
of action – using the defined block in isolation (in the direct drive mode), then within 
a script (in the computational drive). 

In SM Module 1 pupils define more new blocks for creating different visual pat-
terns and combine them in short scripts to draw complex circular patterns. While 
doing that, in line with our pedagogical framework we suggest class discussion points 
to explain and exchange ideas such as: How did you teach a sprite a new command? 
Why did you make new blocks? How did it help your programming, thinking, and 
problem solving? What name did you give your new block and why? 

Fig. 2. Naming a useful script – i.e. certain pattern of action 

3) Working with new blocks (own and provided): Pupils repeat the same process of 
making new blocks as useful shortcuts for previously built and used scripts in several 
contexts, to draw different compositions, e.g. a tower, a house, a swarm of colour dots 
etc. Gradually, they also start using their own new blocks to build more compound 
definitions (called nested definitions). 

Pupils also use new blocks created by the SM designers and available within 
specific ‘starter’ projects using within the modules, e.g. set random pen size (see Fig. 
3), within their own scripts. 

Fig. 3. Defining, using and modifying new blocks in different contexts 

4) Customising and duplicating definitions. In the SM intervention there are 
contexts (situations) which require pupils to modify the behaviour of the pre-defined 
new blocks. They discover the “hidden” definitions8, explore the input values to their 
pick random ... to ... operator blocks and modify them so that the defined blocks suit 
their design plan. 

                                                        
8  Their definitions are so far “hidden” from view on the far right of the scripting area 



558 
 

In another context, when working with multiple sprites, pupils also discover that 
each definition belongs to only one particular sprite9 and that they need to copy or 
reconstruct it for use with other sprites. 

5) Generalising definitions by indirect parameter. Pupils use the ask/answer pair 
of blocks, first using answer as an input to simple scripts, later they also in the defini-
tions of their own blocks as their indirect parameter, (Fig. 4 – left). Once they need to 
refer to several previous answers, variables are introduced and subsequently used in 
scripts and definitions (Fig. 4 – right). 

Fig. 4. Definitions generalised by using answer and variables as indirect parameters 

3   Method 

In developing the SM intervention, we followed a design research process to iterative-
ly design the curriculum content and learning progression [17]. This involved drafting 
learning activities and subsequently trialling them with classes of pupils in one of four 
‘design’ schools (primary schools in London). One to three SM researchers observed 
the lessons, took detailed notes as well as collected pupils’ Scratch projects. The 
researchers then discussed together the observations and outcomes of each lesson, 
which informed the following redesign of the learning activity. 

Within this paper, we focus on two specific research questions, which we explored 
through our design process: 

RQ1: Which factors play a role in (upper primary) pupils’ understanding and 
choosing to utilize within their own programs the construct of procedural 
abstraction? 

RQ2: Which computational procedures need to be mastered to support pupils’ un-
derstanding and exploiting procedural abstraction (i.e. defining and using new blocks 
in Scratch)? 

3.1 Analysis 

During the prototyping phase of the design research process each iteration of the 
curriculum content was trialled in three to five classes of the design schools, (between 
January 2015 and July 2016) with one or two researchers observing the lessons and 
collecting the Scratch projects. All activities were trialled in at least one school, with 
any activities that required modifications then retrialled in the same class (where 
substantial changes had been made) or a different class/school (where more minor 
refinements had been made). Further refinements were also made as a result of 

                                                        
9  Or to the stage, for completeness 
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feedback received during the professional development sessions conducted with class 
teachers prior to trialling the final intervention within a wider group of schools. 
During this phase we focused on the systematic and coherent integration of 
procedural abstraction in all six modules of the intervention. 

In this paper, we focus on analysing collected observations and projects from the 
perspective of the construct of procedural abstraction. Firstly we conducted a content 
analysis on the Scratch projects collected in several design schools during one 
Module 2 activity (partway through the year 5 curriculum), requiring pupils to define 
and use a block to draw a square, to identify the common initial issues or 
misconceptions the pupils encounter when learning about definitions (Research 
Lesson 1). 

Secondly we conducted a content analysis on the Scratch projects collected during 
a 90 minute lesson in one design school which took place at the very end of the design 
research phase (after the trial of the year 6 content) to assess the pupils’ understanding 
of the key constructs of the SM intervention (Research Lesson 2). This analysis was 
intended to identify the choices made by pupils with regard to the use of definitions 
within an open task following the SM intervention. 

3.2 Initial Issues and Misconceptions 

We identified three key issues in pupils’ initial building and use of definitions during 
Research Lesson 1. Below we describe these issues and describe how they are 
addressed within our SM pedagogic strategy for definitions, which were subsequently 
promoted by researchers in classrooms later in the design research process. For 
example when defining a new block for drawing a square of the side length of 40, 
pupils: 

i. did not attach the define square hat block to the script – new block square itself 
would then have “no behaviour” as it had no define script, i.e no definition. We 
advocate that teachers should encourage pupils to firstly build a script (stage 1) 
and then give it a name by creating a new block and attaching the hat block (stage 
2). 

ii. attached the define square hat block to the define script, however later started 
“stealing” the blocks from their define script, as if once having been defined, 
Scratch would simply “remember the definition” We suggest that teachers should 
encourage pupils to get into the routine of moving the define script to the right of 
the scripts area out of the way once they are happy with it and then not touching it 
(unless they intentionally decide to modify it). 

iii. attached the define square hat block to the define script, however continued 
building another repeat 4 move 40 turn right 90 degrees script whenever they 
needed to draw a square, instead of using the new square block as a name of that 
pattern of action. We propose that teachers should encourage pupils to use their 
new blocks in isolation (stage 2) and then to use within different scripts (stage 3). 

3.3 Use of Definitions after SM Intervention 

During Research Lesson 2 the teacher first demonstrated the final behaviour in the 
full screen mode – so that pupils could not see the scripts of the model solution. When 
the (Beetle) sprite was clicked it asked how many houses it should draw and then 
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drew a row of randomly sized and coloured houses. This could be repeated several 
times thus creating a hamlet, see Fig. 5. 

Fig. 5. Picturesque hamlet, the final assignment in a design school 

The class then as a group (in front of the interactive whiteboard) discussed the ac-
tivity, steps and possible strategies, dealing with questions such as: How many houses 
did the Beetle draw in one row and why? Do they all have the same side length? How 
are they positioned? How would the Beetle draw a house and a row of houses? Does 
the Beetle choose a side length, how does it remember that value while drawing a 
house? How will the Beetle learn how many houses to draw? Pupils were not 
prompted to define their own new blocks. 

A starter Scratch project was provided, with the Beetle sprite, a simple setup script 
(to clear the stage etc.), the side length variable already created, a pre-defined block 
set random pen size colour shade and two isolated blocks in the scripting area: set 
side length to 0 and the side length reporter block. 

Initial discussion took 15 minutes. Pupils were then divided into mixed ability 
pairs or threes by the teacher. Teams worked on their projects independently for 70 
minutes with a short break, the teacher providing only limited guidance. There were 
23 pupils in the class, and we collected 9 projects (which represented the work of 21 
pupils), hereafter referred to as P1 to P9. 

Our content analysis of the nesting structure of definitions within the projects was 
then conducted focusing on: 
a) the definitions of new blocks and whether a new block is being used (nested) inside 

another definition – i.e. whether pupils achieved stage 3 of the SM pedagogic 
strategy for definitions. 

b) whether the indirect parameters are properly implemented in the definitions – the 
answer block and the side length variable – that is, whether pupils achieved stage 
5 of our strategy. 
Fig. 6 presents the projects’ nesting structure in the following way: the topmost 

triangular block represents the overall behaviour (solution), usually the when this 
sprite clicked script. Each circle represents a definition, the positioning corresponds 
to nesting, i.e using a new block inside another definition. For example, in P1 a block 
for drawing a house was defined, then used in the definition of a block to draw a row 
of houses, which is then used in the overall behaviour of the sprite. Sometimes the 
house block itself was defined by using another new block in it, usually a square (in 
P5) or a square and a triangle (in P6). 



561 
 

 

Fig. 6. Nesting analysis of the definitions in the projects 

A circle or a triangle in Fig. 6 is filled, semi-filled or empty, depending on whether 
the definition correctly, partially or incorrectly10 works with the indirect parameter i.e. 
answer or side length, the most advanced (stage 5) definition type in the SM 
curriculum. 

4   Discussion 

Despite some initial issues/misconceptions of definitions, our findings show that 
paying close attention to repeatedly exploring and explaining the practice of building 
a script, giving it a name, keeping the definition and using new block as a shortcut 
helped to reduce observed misconceptions and encouraged pupils to choose for 
themselves to utilise the power of definitions within their own scripts. Our pedagogic 
approach allowed pupils to automatize this computational procedure in different 
contexts, before creating a situation when pupils needed to get back to the define 
script and modify it. 

Although back in 2010 Maloney et al. [15] reported certain confusion of 
definitions and broadcasts, we have not observed this within our research. It may be 
due to two factors: In the SM pedagogic framework [17] we strive to encourage 
pupils to work with (incomplete) scripts as (partial) representations of action or 
behaviours. A hat block is usually added only later, as an instrument to clarify how 
this behaviour will be activated. From the first module pupils add the define hat block 
to some scripts to give them name. Much later, in the third module (in year 5) they 
start using some scripts as reactions to receiving a message. 

Through our nesting analysis of the pupils’ final assignment, see Fig. 6, we looked 
at whether making new blocks has been adopted by the learners as an instrument to 
cope with complexity. We noted that every team made at least one new block and 5 of 
9 teams made two or more new blocks (up to five). Two teams nested their definition 
in two levels, 2 teams even in three levels. We also noted that 8 teams correctly or 
partially correctly worked with the indirect parameter(s) in their scripts thus achieving 
stage 5 of the SM pedagogic strategy for definitions. 

Through our content analysis we also identified that definitions of new procedures 
play different roles in it: 
• Aggregating basic commands into one: when several basic commands are simply 

attached together, with new command often carrying the names of its ‘atoms’, e.g. 
set random pen size colour shade or dot stamp jump. 

                                                        
10  Including not using it at all 
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• Extending the language: (in the sense of Abelson and Sussman [2]) when a new 
command gives a name to a compound reaction or behaviour, thus building a 
higher layer of the means of expression – abstracting from the detail, e.g. house or 
teleport. 

• Transforming the language: when a basic command is ‘replaced’ by a new one to 
be used instead, e.g. replacing move 20 steps by a new block move one tile. 

• ‘Patching’ the language: when new block ‘completes’ the same layer of the means 
of expression as offered by other basic blocks – extending the language in a 
‘horizontal way’. This may lead to more consistent code, see Fig. 7 which 
illustrates the definition of such block – previous costume. 

 

Fig. 7. Patching the language. While next costume is a standard block, ‘symmetrical’ previous 
costume block can be defined to highlight the analogy. 

5   Conclusion 

Although several designers updated their Scratch 1.4 materials to illustrate defini-
tions, rarely is this construct integrated and systematically exploited as a truly power-
ful idea. In the SM intervention, the thread of developing procedural abstraction 
winds through all six modules, through five implicit stages. In our reserach we 
acknowledge the importance of the role that definitions play in developing early 
computational thinking, facilitating [19] decomposition (by creating a structure, 
breaking down a problem), abstraction (by hiding detail), and generalisation (by 
highlighting certain patterns of action and encouraging to use them later in different 
contexts). Our experiences in the context of the SM intervention validate the 
importance of exploiting a tool with affordances that support pupils in building 
definitions, but also the importance of employing a pedagogic strategy that 
systematically develops all computational processes associated with the practice of 
the learners to exploit this concept. 
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