Lecture Notes in Mathematics

Editors-in-Chief:
Jean-Michel Morel, Cachan
Bernard Teissier, Paris
Advisory Board:
Michel Brion, Grenoble
Camillo De Lellis, Zurich
Alessio Figalli, Zurich
Davar Khoshnevisan, Salt Lake City
Ioannis Kontoyiannis, Athens
Gábor Lugosi, Barcelona
Mark Podolskij, Aarhus
Sylvia Serfaty, New York
Anna Wienhard, Heidelberg

More information about this series at http://www.springer.com/series/304

Gunther Schmidt • Michael Winter

Relational Topology

Gunther Schmidt
Fakultät für Informatik
Universität der Bundeswehr München
Neubiberg, Germany

Michael Winter
Department of Computer Science
Brock University
St. Catharines, Ontario, Canada

ISSN 0075-8434
Lecture Notes in Mathematics
ISBN 978-3-319-74450-6
https://doi.org/10.1007/978-3-319-74451-3
Library of Congress Control Number: 2018942705
Mathematics Subject Classification (2010): 54-XX, 03E20, 54E05, 54E17, 97E60
© Springer International Publishing AG, part of Springer Nature 2018
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Printed on acid-free paper
This Springer imprint is published by the registered company Springer International Publishing AG part of Springer Nature.
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Preface

Over the years, the authors have encountered a multitude of topics that are ultimately related to general topology and the logics of spatial reasoning. On the other hand, they have long been working on and with relational methods in fields around computer science. Finally, programming was their daily lecturing task. They became increasingly unsatisfied with the many-but slightly diverging-approaches to the topics mentioned and decided to work on a unifying presentation.

Yet another stimulus was the idea to lift concepts to a relational level making them point-free as well as quantifier-free, thus liberating them from the style of firstorder predicate logic and approaching the clarity of algebraic reasoning. For this, a calculus had already been invented, since the 1970s, introducing heterogeneous relations (i.e., relations between possibly different sets). Also the important domain construction steps of forming the direct product, direct sum, or direct power had in the meantime been given birth to, characterizing them uniquely up to isomorphism.

Treating a topic algebraically means to work with algebraic rules that are lastly based on axioms. As we know from Euclid's axioms of geometry, an axiomatic theory may admit not just one model. As early as in the 1980s, the problem of sharp factorization or unsharpness has been raised. One may best characterize it with the statement that the concept of predicate logic is insufficient in treating relations satisfactorily since it restricts us to just one model, namely the Boolean matrix model. There exist others that seem more appropriate when-more generallyconsidering processes.

In recent years, this relational approach has been extended introducing the constructs of a Kronecker operator, together with a strict fork and strict join operator. Axiomatic characterizations have been developed; the tool kit of rules and formulae is beginning to stabilize, and the effectivity of computing with them increases steadily.

Given this context, it was highly welcome that several concepts of topology, such as neighborhoods, transition to the open kernel, contact relations, proximity, etc., qualify for being typical application fields to be integrated under one common relational roof. All the transitions between such concepts may be formulated by concise relation-algebraic terms or rules. Any proof necessary lends itself to being
executed algebraically, and in the near future possibly with machine assistance as earlier with RALF, if not via proof systems such as Isabelle/HOL and Coq.

First steps in this direction have already been made with the relational language TituRel. When one is about to solve topological problems computationally, one often has to be able to convert the given topology to a suitable or favorable form which means to apply some step of transition that needs to be justified. Such justifications are here given for nearly all conceivable version switches.

Quotient topologies, product topologies, as well as relative topologies on a subset are handled in this way. It turned out that in all three cases, one comes close to the sharpness effect, which makes the intended point- and quantifier-free proofs unexpectedly complicated. Only when looking at these situations in full detail, one will recognize why. The typical situation is that an algebraic reasoning is allowed only via some additionally available relation seemingly peripheral to the problem proper and not even mentioned in its statement. We consider this as a deeper insight obtained during our work on the topic.

Furthermore, a study of several approaches to spatial reasoning on discreteness, proximity, nearness, apartness, betweenness, and Aumann contacts is presented, which are frequently performed by logicians. These concepts are heavily interrelated which we exhibit expressing one by means of the respective other concept. This would have hardly been possible when not with the relational shorthand expressions. We prove that these transitions are correct. In case of apartness, we had the opportunity to identify properties which to demand seems counterproductive.

Another point to be explained is that we do not make an overly detailed use of categories. Category theory has proved to be extremely versatile in studying concepts. Here, however, we also aim at computation and/or computational proofs. It is absolutely clear that in this context category theory is hardly used in its deeper sense. We go ahead and strip off overly detailed category theory, mentioning it just to the extent that typing is clarified.

Finally, some ideas about how to work relationally on simplicial complexes are demonstrated at least in examples. This differs from the approach taken for the algebraic transitions between related topics. Here, it seems possible to work practically using the computer. We could, of course, only give a very slight idea of how this might work.

This booklet rests on decades of work with colleagues and students, to whom we owe our sincere thanks. Without all the discussions, it would not have emerged. Special thanks are due to all those working and contributing to the by now wellestablished "intercontinental" RAMiCS conference series (Relational and Algebraic Methods in Computer Science). Also the European COST action 274 TARSKI (Theory and Applications of Relational Structures as Knowledge Instruments) from 2001 to 2005 with its meetings all over Europe and sometimes also in Canada gave many background ideas.

Direct input and repeated discussions and contributions have always been provided by Rudolf Berghammer and Wolfram Kahl—after earlier common work on such topics.

The authors are grateful to the publisher for having included this booklet in his program. They thank in particular for the agreeable cooperation with Ute McCrory.

Their deeply felt thanks go in particular to the anonymous reviewers. The sheer number of their suggestions made us feel that they were really interested in getting the authors to improve the text.

The second author gratefully acknowledges support from the Natural Sciences and Engineering Research Council of Canada.

Neubiberg, Germany
Gunther Schmidt
St. Catharines, ON, Canada
Michael Winter
April 27, 2018

Symbols

Sets

Union and intersection are denoted as $M \cup N$ and $M \cap N$-in the same way as later for relations. The complement is \bar{M}, provided the ground set is tacitly given. For a one-element set, we provide \mathbb{l} as standard notation. The Cartesian product of sets is $M \times N$.

Logic

For metalanguage consequence, equivalence, and definition, " \Longrightarrow ", " \Longleftrightarrow ", and $": \Longleftrightarrow "$ are used. Definitional equality is denoted as " $:=$ ". The set of Boolean truth values is $\mathbb{B}=\{\mathbf{0}, \mathbf{1}\}$. In the context of propositional logic, " \wedge ", " \vee " are used for "and" and "or," together with " \rightarrow " for "if ... then" and " \leftrightarrow " for "precisely when." In the context of predicate logic, " \exists " and " \forall " denote the existential quantifier and the universal quantifier.

Relations

$R: X \longrightarrow Y$	Relation with source and target	7
\mathbb{I}	One-element set	10
$\mathcal{P}(X)$	Powerset of X	14
$\mathbf{2}^{X}$	Powerset of X, variant	14
$R \cup S$	Union	7
$R \cap S$	Intersection	7

II	Empty relation	provided the	7
π	Universal relation	ground sets	7
II	Identity	are tacitly given	7
R^{\top}	Transposed relation, converse		7
$R: S$	Product, composition		7
R^{*}	Reflexive-transitive closure of R		173
H_{B}	Hasse relation of ordering B		10
$S \backslash R$	Right residual		9
S / R,	Left residual		9
$\operatorname{syq}(R, S)$	Symmetric quotient		10
$(R \ominus S)$	Strict fork operator		26
$(R \ominus S)$	Strict join operator		26
$(R \otimes S)$	Kronecker product		26
$\mathrm{gre}_{E}(R)$	Greatest upper bounds functional		11
$\operatorname{greR}_{E}(R)$	Greatest upper bounds functional-row-wise		11
$\mathrm{ubd}_{R}(S)$	Upper bound cone functional		10
$\operatorname{lbd}_{R}(S)$	Lower bound cone functional		10
$1 \mathrm{ub} E_{E}(t), \mathrm{glb} \mathrm{b}_{E}(t)$	Least upper, greatest lower bounds		11
\bigwedge_{1}	Lower cone of an element	with regard to	45
\bigwedge_{2}	Lower cone of 2 elements	some tacitly given	45
\wedge	Lower cone of a set of elements	relation R	45
V_{1}	Upper cone of an element	with regard to	47
V_{2}	Upper cone of 2 elements	some tacitly given	47
V	Upper cone of a set of elements	relation R	47
\mathfrak{J}	Lifted join		48
\mathfrak{J}_{2}	Lifted binary join		48
\mathfrak{M}	Lifted meet		48
\mathfrak{M}_{2}	Lifted binary meet		48
ϑ_{R}	Existential image of relation R		17
$\vartheta_{R^{\top}}$	Inverse image of relation R		17
ε	Membership		14
σ	Singleton injection		15
E	Arbitrary ordering		10
Ω	Powerset ordering		15
\mathcal{N}	Powerset negation		15
\mathcal{U}	Neighborhood topology		72
\mathcal{K}	Open kernel-mapping topology		74
\mathcal{O}_{D}	Open diagonal topology		80
\mathcal{O}_{V}	Open set topology		79

$\varepsilon_{\mathcal{O}} \quad$ Membership-in-open-sets topology 81
$\mathcal{H} \quad$ Closed hull-mapping topology 89
\mathcal{C}_{D} Closed sets diagonal topology 89
$\varepsilon_{\mathcal{C}}$ Membership-in-closed-sets topology 89
B^{\Uparrow} Positively oriented boundary operator 164
$B^{\downarrow} \quad$ Negatively oriented boundary operator 164
\mathfrak{B} Joint boundary relation 166
$S_{\downarrow \uparrow} \quad$ Orientation flip relation 165
Γ Orientation adjacency relation 164
\mathfrak{P} Commutativity flip 37
\mathfrak{T} Associativity shuffling 38
\mathfrak{D} Distributivity shuffling 41
\mathfrak{K} Kronecker-fork shuffle 43

Contents

1 Introduction 1
1.1 Lifting to Relational Style 1
1.2 Equational vs. Implicational Style 3
1.3 Chapter Organization 4
1.4 Final Remarks 6
2 Prerequisites 7
2.1 Preliminaries 7
2.2 Power Operations 14
3 Products of Relations 25
3.1 Products of Sets and Relations 25
3.2 Sharp Factorizations 31
3.3 Binary Mappings in General 37
4 Meet and Join as Relations 45
4.1 Cone Mappings 45
4.2 Binary and Arbitrary Meets and Joins 48
4.3 Join and Meet in a Powerset 54
4.4 Boolean Algebra Using Lifted Operations 65
5 Applying Relations in Topology 67
5.1 General Properties of Kernel Forming 68
5.2 Topology Via Neighborhoods and Kernel Forming 72
5.3 Qualifying a Topology Via Its Open Sets 77
5.4 Interior and Closure 90
5.5 Separation 91
5.6 Continuity 93
6 Construction of Topologies 99
6.1 Quotient Topology 99
6.2 Relative Topology 102
6.3 Product Topology 104
7 Closures and Their Aumann Contacts 113
7.1 Aumann Contact Related to Topology 113
7.2 Overview of Relationships 121
8 Proximity and Nearness 125
8.1 Proximity 125
8.2 Another Proximity Concept 129
8.3 Nearness 135
8.4 Apartness and Connection Algebra 138
9 Frames 145
9.1 From a Topology to a Frame 145
9.2 From a Frame to a Topology 150
10 Simplicial Complexes 155
10.1 Simplices 155
10.2 Orientation 156
10.3 Simplicial Complexes 162
10.4 Orientability of a Simplicial Complex 167
Concluding Remarks 183
References 185
Index 189

