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Preface

Over the years, the authors have encountered a multitude of topics that are ultimately
related to general topology and the logics of spatial reasoning. On the other hand,
they have long been working on and with relational methods in fields around
computer science. Finally, programming was their daily lecturing task. They became
increasingly unsatisfied with the many—but slightly diverging—approaches to the
topics mentioned and decided to work on a unifying presentation.

Yet another stimulus was the idea to lift concepts to a relational level making
them point-free as well as quantifier-free, thus liberating them from the style of first-
order predicate logic and approaching the clarity of algebraic reasoning. For this,
a calculus had already been invented, since the 1970s, introducing heterogeneous
relations (i.e., relations between possibly different sets). Also the important domain
construction steps of forming the direct product, direct sum, or direct power had in
the meantime been given birth to, characterizing them uniquely up to isomorphism.

Treating a topic algebraically means to work with algebraic rules that are lastly
based on axioms. As we know from Euclid’s axioms of geometry, an axiomatic
theory may admit not just one model. As early as in the 1980s, the problem of sharp
factorization or unsharpness has been raised. One may best characterize it with
the statement that the concept of predicate logic is insufficient in treating relations
satisfactorily since it restricts us to just one model, namely the Boolean matrix
model. There exist others that seem more appropriate when—more generally—
considering processes.

In recent years, this relational approach has been extended introducing the
constructs of a Kronecker operator, together with a strict fork and strict join operator.
Axiomatic characterizations have been developed; the tool kit of rules and formulae
is beginning to stabilize, and the effectivity of computing with them increases
steadily.

Given this context, it was highly welcome that several concepts of topology,
such as neighborhoods, transition to the open kernel, contact relations, proximity,
etc., qualify for being typical application fields to be integrated under one common
relational roof. All the transitions between such concepts may be formulated by
concise relation-algebraic terms or rules. Any proof necessary lends itself to being
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vi Preface

executed algebraically, and in the near future possibly with machine assistance as
earlier with RALF, if not via proof systems such as Isabelle/HOL and Coq.

First steps in this direction have already been made with the relational language
TITUREL. When one is about to solve topological problems computationally, one
often has to be able to convert the given topology to a suitable or favorable form
which means to apply some step of transition that needs to be justified. Such
justifications are here given for nearly all conceivable version switches.

Quotient topologies, product topologies, as well as relative topologies on a subset
are handled in this way. It turned out that in all three cases, one comes close to
the sharpness effect, which makes the intended point- and quantifier-free proofs
unexpectedly complicated. Only when looking at these situations in full detail, one
will recognize why. The typical situation is that an algebraic reasoning is allowed
only via some additionally available relation seemingly peripheral to the problem
proper and not even mentioned in its statement. We consider this as a deeper insight
obtained during our work on the topic.

Furthermore, a study of several approaches to spatial reasoning on discreteness,
proximity, nearness, apartness, betweenness, and Aumann contacts is presented,
which are frequently performed by logicians. These concepts are heavily interrelated
which we exhibit expressing one by means of the respective other concept. This
would have hardly been possible when not with the relational shorthand expressions.
We prove that these transitions are correct. In case of apartness, we had the
opportunity to identify properties which to demand seems counterproductive.

Another point to be explained is that we do not make an overly detailed use
of categories. Category theory has proved to be extremely versatile in studying
concepts. Here, however, we also aim at computation and/or computational proofs.
It is absolutely clear that in this context category theory is hardly used in its deeper
sense. We go ahead and strip off overly detailed category theory, mentioning it just
to the extent that typing is clarified.

Finally, some ideas about how to work relationally on simplicial complexes
are demonstrated at least in examples. This differs from the approach taken for
the algebraic transitions between related topics. Here, it seems possible to work
practically using the computer. We could, of course, only give a very slight idea of
how this might work.

This booklet rests on decades of work with colleagues and students, to whom
we owe our sincere thanks. Without all the discussions, it would not have emerged.
Special thanks are due to all those working and contributing to the by now well-
established “intercontinental” RAMiCS conference series (Relational and Algebraic
Methods in Computer Science). Also the European COST action 274 TARSKI
(Theory and Applications of Relational Structures as Knowledge Instruments) from
2001 to 2005 with its meetings all over Europe and sometimes also in Canada gave
many background ideas.

Direct input and repeated discussions and contributions have always been
provided by Rudolf Berghammer and Wolfram Kahl—after earlier common work
on such topics.
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Symbols

Sets

Union and intersection are denoted as M [ N and M \ N—in the same way as later
for relations. The complement is M, provided the ground set is tacitly given. For a
one-element set, we provide 1l as standard notation. The Cartesian product of sets is
M � N.

Logic

For metalanguage consequence, equivalence, and definition, “H)”, “””, and
“:”” are used. Definitional equality is denoted as “WD”. The set of Boolean truth
values is B D f 0 ; 1 g. In the context of propositional logic, “^” , “_” are used for
“and” and “or,” together with “!” for “if . . . then” and “$” for “precisely when.”
In the context of predicate logic, “9” and “8” denote the existential quantifier and
the universal quantifier.

Relations

R W X �! Y Relation with source and target 7
1l One-element set 10
P.X/ Powerset of X 14
2X Powerset of X, variant 14
R [ S Union 7
R \ S Intersection 7
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x Symbols

Empty relation provided the 7
Universal relation ground sets 7
Identity are tacitly given 7

RT Transposed relation, converse 7
R ;S Product, composition 7
R� Reflexive-transitive closure of R 173
HB Hasse relation of ordering B 10
SnR Right residual 9
S=R, Left residual 9
syq .R; S/ Symmetric quotient 10
.R�< S/ Strict fork operator 26
.R�> S/ Strict join operator 26
.R�� S/ Kronecker product 26
greE.R/ Greatest upper bounds functional 11
greRE.R/ Greatest upper bounds

functional—row-wise
11

ubdR.S/ Upper bound cone functional 10
lbdR.S/ Lower bound cone functional 10
lubE.t/; glbE.t/ Least upper, greatest lower

bounds
11

V
1 Lower cone of an element with regard to 45

V
2 Lower cone of 2 elements some tacitly given 45

V
Lower cone of a set of elements relation R 45

W
1 Upper cone of an element with regard to 47

W
2 Upper cone of 2 elements some tacitly given 47

W
Upper cone of a set of elements relation R 47

J Lifted join 48
J2 Lifted binary join 48
M Lifted meet 48
M2 Lifted binary meet 48
#R Existential image of relation R 17
#RT Inverse image of relation R 17
" Membership 14
� Singleton injection 15
E Arbitrary ordering 10
˝ Powerset ordering 15
N Powerset negation 15
U Neighborhood topology 72
K Open kernel-mapping topology 74
OD Open diagonal topology 80
OV Open set topology 79



Symbols xi

"O Membership-in-open-sets topology 81
H Closed hull-mapping topology 89
CD Closed sets diagonal topology 89
"C Membership-in-closed-sets topology 89
B* Positively oriented boundary operator 164
B#" Negatively oriented boundary operator 164
B Joint boundary relation 166
S#" Orientation flip relation 165
� Orientation adjacency relation 164
P Commutativity flip 37
T Associativity shuffling 38
D Distributivity shuffling 41
K Kronecker-fork shuffle 43
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