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Abstract. The Algorithm Selection Problem seeks to select the most
suitable algorithm for a given problem. For solving it, the algorithm
selection systems have to face the so-called cold start. It concerns the
disadvantage that arises in those cases where the system involved in
the selection of the algorithm has not enough information to give an
appropriate recommendation. Bearing that in mind, the main goal of
this work is two-fold. On the one hand, a novel meta-learning-based
approach that allows selecting a suitable algorithm for solving a given
logistic problem is proposed. On the other hand, the proposed approach
is enabled to work within cold start situations where a tree-structured
hierarchy that enables to compare different metric dataset to identify a
particular problem or variation is presented.
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1 Introduction

The Algorithm Selection Problem (ASP) is introduced in [1] seeking to answer
the research question “Which algorithm is the best option to solve my problem?”
under those cases where the decision-maker or solver counts with more than one
algorithm for a given problem. The importance of tackling the ASP is provided
by: (i) No Free Lunch ([2], NFL) theorem, (ii) the big number of available
algorithms, and (iii) the need of trying to obtain the best possible solution, and
not only a correct one.

In the related literature, some systems have been proposed to solve the ASP.
The machine learning toolbox project [3], continued in Statlog [4] and METAL
[5], aims to select the best algorithm for a given dataset. Furthermore, in [5] a
helping system for aiding the selection of machine learning algorithms, accord-
ing to the dataset is proposed. They obtain meta-features that allow to compare
different datasets and, by means of that, obtain a reduced group of datasets
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similar to the one at hand. Those reduced groups are later used to give a rec-
ommendation. In [6], a multilayer perceptron network is used to select the best
optimization algorithm to solve the quadratic assignment problem. The above-
mentioned contributions and systems are focused on recommending or choosing
algorithms for a particular problem. That is why a meta-learning [7] based sys-
tem may be appropriate for those scenarios where a ranking of algorithms sorted
according to a provided criterion for any supported input problem is necessary.

In the context of algorithm selection systems, an usual appearing drawback
is the so-called cold start (see [8]). It defines the disadvantage that arises in those
cases where the system involved in the selection of the algorithm for providing
a solution has not enough information to give an appropriate recommendation
or selection. An extreme case of this problem happens when the system has no
previous information for comparing the input stream. Therefore, in this work,
we aim to propose, on the one hand, a meta-learning-based approach that allows
selecting suitable algorithms for solving given logistic problems, and on the other
hand, a tree-structured hierarchy that enables to address cold start situations.

The structure of this paper is as follows. Section 2 describes the meta-learning
based system and its main features. The proposed approach for solving the cold
start shortcoming appearing in algorithm selection is described in Sect. 3. The
results obtained by our proposed system are discussed in Sect. 4. Finally, Sect. 5
presents the conclusions together with future research lines.

2 Meta-Learning

The selection of the best algorithm for a given problem is studied by a sub-
field of Machine Learning known as meta-learning [7,9]. It aims to improve the
recommendation of algorithms for a given problem by applying machine learning
methods that take into account collected data from past problems with similar
features.

2.1 Meta-Learning-Based System

The algorithm selection problem (ASP) can be formally defined as follows: having
a problem instance x ∈ P , with given features f(x) ∈ F , the objective is to
perform a selection mapping S(f(x)) into the algorithms space A, with the
goal of selecting the algorithm α ∈ A that maximizes the performance mapping
y(α, x) ∈ Y such that y(α, x) ≥ y(a, x) ,∀a ∈ A.

In order to start the algorithm selection process by means of a meta-learning-
based system (MLS), firstly is necessary to train the system. This is conducted
by running the set of available algorithms A = {a1, ..., am} on a set of training
instances Pt = {x1, ..., xn}. Each algorithm a ∈ A is executed a certain num-
ber of iterations on each training instance in order to obtain the data related
to Y = {y(a1, x1), ..., (am, xn)}. In this work, y(α, x) corresponds to the objec-
tive function value obtained by running the algorithm α on the instance x.
On the other hand, each instance x ∈ Pt is analyzed to extract the features
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F = {f(x1), ..., f(xn)}. Once the system is trained, a table whose rows corre-
spond to each possible combination instance-algorithm is generated. This table
associates to each row the features extracted from each instance f(x) as well as
the algorithm employed aj . Moreover, each row contains the metrics obtained
by y(a, x) upon the execution of the experiment as, for example, the objective
value. A machine learning algorithm whose input is the above-mentioned table
is then applied. Its output provides a knowledge base used for providing the
ranking of preferred algorithms based on the input instance. Once the system
is prepared, when a new instance x′ is provided, it firstly extracts its features
f(x′) in order to start the algorithm selection process. The features that define
the instance are subsequently included within a vector to be compared with the
collected data using a machine learning algorithm. Based on that, a ranking τx′

of recommended algorithms for the instance x′ is provided.
The performance space Y is used to determine the preference of selecting

an algorithm a instead of another for a particular instance x. This preference is
expressed through a ranking of algorithms τx for each instance x ∈ Pt, where each
algorithm gets a position according to their performance. This knowledge base is
built offline from the set of training instances allowing to make recommendations
with the premise that if two instances have similar features, the algorithms
should exhibit a similar performance in both.

2.2 Problem and Algorithm Space

In this subsection, the problem and algorithm space are defined. The set P of
problem instances is composed by 3 problems: (i) Travelling Salesman Problem
(TSP, [10]), (ii) Capacitated Vehicle Routing Problem (CVRP, [11]), and (iii)
Capacitated Vehicle Routing Problem with Time Windows (CVRPTW, [12]).
Moreover, the algorithm space A used in the computational experiment is com-
posed of 6 algorithms:

– Greedy Heuristic (GH): GH selects an unused vehicle v. Then, assign feasible
nodes to vehicle v while its capacity is not exceeded. This process is repeated
until a feasible solution has been created.

– Greedy Randomized Heuristic (GRH): GH but using a restricted list of can-
didates.

– Local Search (LS): swap environment, exhaustive sampling, and GRH.
– Greedy Randomized Adaptative Search Procedure ([13], GRASP): construc-

tive phase = GRH, and improvement phase = LS.
– Simulated Annealing ([14], SA): GRH, initial temperature = 5, final temper-

ature = 0.01, cooling rate = 0.01, and 100 iterations.
– Large Neighbourhood Search ([15], LNS): GRH, random destruction, degree

of destruction = 0.1, and 10000 iterations.

2.3 KNN Supervised Classification

When the set of features F is available, it is possible to compare the features
of the instances with each other to determine the most appropriate ranking,
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thus the use of a supervised classification algorithm such as k-nearest neighbors
algorithm (KNN, [16]) is proposed. Because it works with rankings instead of
labels, it is necessary to use a ranking aggregation methods in order to make a
suitable prediction. In this work, the Borda’s method [17] is used, where a score
is assigned to each candidate in function of the position in which it appears in
the ranking of each voter and is ordered by the total score obtained.

During the training phase, the system obtains the rankings for each problem
instance. This ranking is categorized as ideal because it has all the information to
properly build it. In the validation phase, it is necessary to determine the degree
of success of the recommendations made. After the recommendation has been
conducted, the ideal ranking is determined and compared to the recommended
one in order to measure the degree of success of the system. This degree of
success is measured by the distance between the rankings, for which we use the
Spearman’s rank correlation coefficient, where τj(i) is the position occupied by
the candidate i in the ranking τj . It measures the correlation of the rankings
and its value ranges between −1 and 1. The closer to 1 the higher the similarity
between the rankings, while a value of −1 indicates that the rankings are inverse.

ρ(τ1, τ2) = 1 − 6
∑|A|

i=1(τ1(i) − τ2(i))2

|A| · (|A|2 − 1)
(1)

3 Cold Start

The cold start commonly arises when tackling real-world problems because it is
very difficult to train the system to solve the ASP for any optimization problem
and its variants. This problem worsens in real environments where each problem
has its own peculiarities and features. To address this issue, we propose a tree-
structured hierarchy approach which enables to work within cold start situations,
where although the system does not have previous information of an introduced
logistic problem, it may count with information from a similar problem or from
a generalization of it. It allows, thus, to compare different metric dataset to
identify a particular problem or variation.

In Fig. 1, the tree-structured hierarchy is depicted for the considered routing
problems (i.e. TSP, VRP, CVRP, and CVRPTW). Each node corresponds to a
set of features for a given problem or variation. Besides, each problem is defined
by its features and those of its parents. The leaf nodes correspond to more specific
problems, and as it rises in the hierarchy, the problems become more abstract
or general. This means a loss of information about the specific given problem,
but it allows to start the algorithm selection process based on generalizations
of this problem. That is, if there are no data on the input problem, instead of
not recommending a ranking, the MLS ascends in the hierarchy until it detects a
problem for which it has enough information. Then, the features of that problem
are extracted and the recommendation is made.

For example, suppose that the MLS is trained with TSP instances. Then, the
MLS receives a VRP problem in order to start the algorithm selection process.
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Routing Problem
Number of vehicles
Number of customers
Matrix distance (*) TSP

Number of vehicles = 1
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Number of vehicles ≥ 1
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Fig. 1. Tree hierarchy of features for Rounting Problems. The features marked with an
asterisk correspond to the statistics: minimum, average, maximum, standard deviation,
and median

At this stage, the MLS is not able to provide a recommendation, since the TSP
features do not match those extracted for the VRP. To solve it, MLS ascends
in the hierarchy until detecting a problem for which it is available, (i.e. Routing
Problem) and makes the recommendation based on its features.

4 Computational Results

In this experiment, we proceed to evaluate our solution approach to solve the cold
start problem appearing when we proceed to start the algorithm selection process
using input instance problems of the CVRPTW, but varying the problem with
which the system is trained: (i) 37 TSP instances [18], (ii) 37 CVRP instances
[19], and (iii) 56 CVRPTW instances [20].

In Tables 1 and 2 the Spearman’s rank correlation coefficient ρ for three
trained MLSs is depicted. The column ‘Instance’ show the CVRPTW instance
identifier, while columns CVRPTW, CVRP, and TSP reflect the ρ value when
MLS is trained with each problem. Thus, in columns CVRPTW there is no cold
start problem. In this regard, the computational results report that the system
can accurately predict rankings of metaheuristics, although the system has not
been trained with instances of the same problem as the input instance. This
information is summarized in Fig. 2, where three sets of columns are depicted.
Each set of columns corresponds to a trained MLS for a single problem. For
example, the 2nd set of columns is a trained MLS with CVRP instances. On the
y-axis, the Spearman’s rank correlation coefficient ρ is represented.

In the first set of columns, there is no cold start problem, since the system
has been trained with CVRPTW instances. Therefore, this is our reference set.
Note that the system is able to build the ideal ranking according to the previous
data collected for similar problems, but it is not always possible although the
system has been trained for the same problem. On the average case, ρ equals
0.91 which indicates a high correlation between the recommended and the ideal
ranking. Finally, in the worst case, a relatively high correlation greater than zero
(no correlation) is obtained, ρ equals 0.6.

In the second and third set, the system has been trained with CVRP and TSP
instances, respectively. These two sets provide similar results, so they are set out
together. Firstly, note that it is possible to obtain the ideal ranking even though
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Table 1. Spearman’s rank correlation coefficient ρ for three trained MLS and instances
for CVRPTW with 25 and 50 customers.

25 customers 50 customers

Instance MLSCV RPTW MLSCV RP MLSTSP Instance MLSCV RPTW MLSCV RP MLSTSP

C101 0.94 0.60 0.66 C103 0.89 0.94 0.94

C105 1.00 0.66 0.77 C107 0.94 0.77 0.77

C109 0.77 0.66 0.26 C202 0.77 0.26 0.22

C204 0.66 0.83 0.83 C206 0.94 0.77 0.77

C208 0.77 0.37 0.37 R102 0.94 0.94 0.89

R104 0.83 0.60 0.37 R106 0.94 0.83 0.77

R108 0.94 0.83 0.66 R110 1.00 0.77 0.66

R112 0.94 0.77 0.60 R202 1.00 0.66 0.66

R204 0.94 0.94 0.94 R206 0.83 0.89 0.89

R208 0.94 0.94 0.94 R210 1.00 0.89 0.89

RC101 0.69 0.89 0.31 RC103 0.94 0.89 0.49

RC106 1.00 0.54 0.66 RC107 1.00 0.60 0.49

RC202 0.77 1.00 0.83 RC204 0.60 0.49 0.60

RC206 0.66 0.54 0.49 RC208 0.94 0.66 0.49

Average 0.85 0.73 0.62 Average 0.90 0.74 0.68

Table 2. Spearman’s rank correlation coefficient ρ for three trained MLS and instances
for CVRPTW with 100 and 200 customers.

100 customers 200 customers

Instance MLSCV RPTW MLSCV RP MLSTSP Instance MLSCV RPTW MLSCV RP MLSTSP

C103 0.94 0.94 0.94 C1 210 0.89 0.54 0.66

C107 0.94 0.60 0.66 C1 2 6 0.94 0.60 0.77

C202 0.94 0.89 0.89 C1 2 8 0.89 0.60 0.77

C206 0.94 0.77 0.77 C2 2 2 0.94 0.71 0.89

R102 0.94 0.89 0.77 C2 2 6 0.89 0.60 0.66

R106 0.94 0.83 0.77 R1 210 1.00 0.60 0.66

R110 0.94 0.83 0.77 R1 2 5 1.00 0.60 0.66

R202 0.89 0.89 0.89 R1 2 9 1.00 0.60 0.66

R206 0.89 0.66 0.66 R2 2 3 1.00 0.77 0.94

R210 0.94 0.77 0.77 R2 2 7 0.94 0.83 0.83

RC103 0.94 0.83 0.94 RC1 2 1 0.94 0.60 0.66

RC107 0.94 0.60 0.77 RC1 2 5 1.00 0.54 0.60

RC204 0.89 1.00 1.00 RC1 2 9 1.00 0.54 0.60

RC208 0.94 0.77 0.77 RC2 2 3 1.00 0.83 0.83

Average 0.93 0.80 0.81 Average 0.96 0.64 0.72

the system has not been explicitly trained to solve such problems, see Maximum
columns. In addition, on the average case a high correlation is obtained, 0.73
and 0.71 when the system has been trained with CVRP and TSP instances,
respectively, compared to the 0.91 obtained in the first set. This indicates a
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Fig. 2. Spearman’s rank correlation coefficient ρ for three trained MLS.

strong relationship between the performance of the algorithms for problems of
the same family where, as can be observed, there is a considerable decrease in
the ρ value. Note how the values of the average and worst case decrease as the
training problem differs from the input problem.

5 Conclusions

A novel way to select, from a pool of algorithms, a suitable algorithm for solving
a given logistic problem has been proposed. Moreover, a new way for addressing
the cold start is provided. It allows training the system with general problems
and making recommendations for specific problems. We have investigated meta-
features for TSP, CVRP, CVRPTW to be applied to the meta-learning process.
Finally, we have shown that meta-learning models can accurately predict rank-
ings of metaheuristics.

Additional future work includes extensively studying our approach on other
well-known combinatorial problems such as those coming from the family of
knapsack problems.
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Québec): The VRP with Time Windows. Groupe d’études et de recherche en anal-
yse des décisions, Montréal (2000)
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