
This is a repository copy of Formalising Cosimulation Models.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/121804/

Version: Accepted Version

Proceedings Paper:
Zeyda, Frank, Ouy, Julian, Foster, Simon David orcid.org/0000-0002-9889-9514 et al. (1 
more author) (2017) Formalising Cosimulation Models. In: 1st Workshop on Formal Co-
Simulation of Cyber-Physical Systems (CoSim-CPS 2017). . 

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless 
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by 
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of 
the full text version. This is indicated by the licence information on the White Rose Research Online record 
for the item. 

Takedown 
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



Formalised Cosimulation Models

Frank Zeyda1, Julien Ouy2, Simon Foster1, and Ana Cavalcanti1

1 University of York, Department of Computer Science, York, YO10 5GH, UK
2 ClearSy, Parc de la Duranne, 320 Avenue Archimède Les Pléiades III — Bât A,

13857 Aix-en-Provence Cedex 3, France

frank.zeyda@york.ac.uk simon.foster@york.ac.uk ana.cavalcanti@york.ac.uk

Abstract. Cosimulation techniques are popular in the design and early
testing of cyber-physical systems. Such systems are typically composed
of heterogeneous components and specified using a variety of languages
and tools; this makes their formal analysis beyond simulation challeng-
ing. We here present work on formalised models and proofs about cosim-
ulations in our theorem prover Isabelle/UTP illustrated by an industrial
case study from the railways sector. Novel contributions are a mecha-
nised encoding of the FMI framework for cosimulation, simplification
and translation of (case-study) models into languages supported by our
proof system, and an encoding of an FMI instantiation.

1 Introduction

Cosimulation techniques are popular in the design of cyber-physical systems
(CPS) [10]. Such systems are typically specified using a variety of languages and
tools that adopt complementary modelling paradigms, such as physical mod-
els, control laws, and sequential, concurrent and real-time programming. The
industrial standard FMI (Functional Mock-up Interface) [6] addresses the chal-
lenge of coupling different simulators and simulations. It defines an API used to
implement master algorithms that mitigate issues of interoperability.

Our aim is to complement cosimulation with proof-based techniques. Simula-
tion is useful in helping engineers to understand modelling implications and spot
design issues, but cannot provide universal guarantees of correctness and safety.
This is due to the complexity of CPS in considering continuous behaviours as
well as real-world interactions, and the impracticality of running an exhaustive
number of simulations. It is besides often not clear how the evidence provided
by simulations is to be qualified, since simulations depend on parameters and
algorithms, and are software systems (with possible faults) in their own right.

Challenges in analysing heterogeneous CPS formally are multifarious. Firstly,
we have to consider the semantics of various modelling approaches and languages.
Secondly, we have to consolidate those semantic models to enable us to reason
about the system as a whole. And thirdly, realistic industrial systems are often
difficult to tackle by formal approaches due their complexity and level of detail.
A key challenge remains to find abstractions that make the system tractable for



formal analysis, and at the same time not forfeit fidelity, so that formal analysis
can justify and support claims about the real system under scrutiny.

In this paper, we outline our approach to address the above challenges using
an industrial application from railways. The example is a system developed by
ClearSy and involves control models of trains in 20-sim [22] and an implemen-
tation of the interlocking system in VDM-RT [18]. We first show how the initial
models of the industrial example can be simplified and expressed in notations
for which we have a precise semantics: these are Modelica for dynamic systems
modelling, and VDM-RT for concurrent real-time programming. We then present
work on encoding the models in our theorem prover Isabelle/UTP [9]. Part of
this is also a mechanised reactive and timed model of the FMI framework, which
we formulate in the Circus [2] process algebra for state-rich reactive systems.

Our contributions in this paper are summarised as follows. Firstly, we simplify
an industrial railways application and case study and reformulate it in notations
which we have embedded into our Isabelle/UTP theorem prover; secondly, we
encode the FMI framework for cosimulation in Isabelle/UTP; and thirdly, we
encode key parts of the railways model together with examples of proofs.

The rest of the paper is organised as follows. In Section 2, we review pre-
liminary material: Modelica and VDM-RT, and the Circus language. FMI and
its mechanisation are described in Section 3. Then, Section 4 discusses the rail-
ways case study and our simplified FMI model of it, and Section 5 details our
encoding in Isabelle/UTP, including obstacles and challenges we faced. Lastly,
in Section 6 we conclude and outline areas of future work.

2 Preliminaries

We proceed by reviewing preliminary material.

2.1 Modelica and VDM-RT

Modelica [19] is a language for continuous systems modelling. It is applicable to
a large spectrum of domains, including physical, electrical, and control systems.
Various tools exist that provide simulation support for Modelica.

Modelica allows control models to be expressed either in explicit equational
form or as control laws. Continuous behaviours are described by virtue of Differ-
ential Algebraic Equations (DAE) [21]. We may also define discontinuous state
changes when some condition (guard) becomes true.

An example of a Modelica control law relevant to our railways example is
given in Fig. 1. The control law models the deceleration of a moving body — in
our case the braking of a train. The model consists of two integrators, Velocity
and Position that calculate the velocity and travelled distance of the body. We
introduce a control switch to set its acceleration to a fixed value of −1.4ms−2

when the velocity is greater than zero, and otherwise to 0ms−2.
We can simulate this model to confirm that the body stops after v2

init/(2a)
metres, where vinit is a particular initial speed of the body and a the deceleration.



Fig. 1. Modelica control law of a decelerating moving object.

However, simulation cannot prove that this is indeed the case in every scenario.
A safety concern is that a train must always be able to stop in time to not
overrun a red signal or ill-set point. We discuss a more realistic train model in
Section 4 that enables us to examine such proofs in the context of a cosimulation
with two trains moving independently on a given track layout.

Control laws such as the one in Fig. 1 are interpreted as equational systems
in Modelica and flattened into a single large system of simultaneous equations,
some of which correspond to connecting wires of the control diagram, and others
to the specification of subcomponents. Modelica also provides limited support for
algorithms formulated in sequential statements. Yet, their semantics does not
account for execution time, concurrency, and effects on data sharing. Support
for those features is provided by VDM-RT, which we briefly discuss next.

VDM-RT [18] is a real-time extension of the VDM language [17], which sup-
ports sequential program development from model-based specifications. It has
a precise semantics that enables correctness proofs. Verification of implementa-
tions is supported by tools such as Overture [5]. Beyond VDM, VDM-RT has
features to model execution time and concurrency. It also adds system entities
that correspond to clocks, CPUs, threads and communication buses.

Our technique to reason about Modelica and VDM-RT specifications is based
on a unifying semantic framework, the Unifying Theories of Programming (UTP)
of Hoare and He [13]. We have mechanised the UTP inside the Isabelle/HOL
theorem prover [9], and within that mechanisation also encoded the semantics of
various languages for CPS modelling and design, including Modelica [8], Simulink
and VDM-RT [7]. A third language is used as a front-end to the UTP to tie our
models together: the process algebra Circus [2]. We summarise it next.

2.2 The Circus language

Circus is a process algebra similar to CSP [12], but with additional support for
defining data operations and state. Circus inherits from CSP, for instance, se-
quential and parallel composition, input and output communications on a chan-



Name Syntax Description

Sequence A ; B Execute A and B in sequence.

Parallelism A J cs K B
Execute A and B in parallel, synchronising
on the channels in the channel set cs.

External Choice A @ B
The environment decides whether A or B is
executed; communication resolves the choice.

Input Prefix c?x −→ A(x ) Input a value x on a typed channel c.

Output Prefix c!e −→ A Output a value e on a typed channel c.

Guarded Action g N A Proceed with A only if g is true.

Assignment x := e Assignment to a state component x .

Stop stop Stop and refuse any further communication.

Table 1. Overview of relevant Circus operators on actions.

channel setT : TIME ; updateSS : TIME ; step : TIME × NZTIME ; end ;

process Timer =̂ ct , hc, tN : TIME • begin

state State =̂ [currentTime, stepSize : TIME ]

Step =̂





(setT?t : t < tN −→ currentTime := t) @

(updateSS?ss −→ stepSize := ss) @

(step!currentTime!stepSize −→

currentTime := currentTime + stepSize) @

(currentTime = tN N end −→ stop)




; Step

• currentTime, stepSize := ct , hc ; Step

end

Fig. 2. Timer process of the Circus FMI specification.

nel, external choice, interrupt, and recursion. A summary of operators relevant
to our models in this paper is included in Table 1.

To define a process state (state paragraph), a Circus process declares a record
whose fields define a data model. Data operations can either be written as Z op-
eration schemas [23] or constructs from Morgan’s refinement calculus [20], such
as specification statements, assignment, conditionals and iteration. A notable
trade-off in Circus is that the language enforces non-interference of parallel com-
putations; this endows it with a rich set of laws that can be used to verify Circus

implementations against abstract (non-executable) Circus models.

An example of a Circus process Timer is included in Fig. 2. It is part of the
FMI model that we discuss in more detail in the next section. The process defines
a state record State that introduces two variables currentTime and stepSize of
type TIME (which model simulation time). It also includes a local action Step.

The main action after the ‘•’ at the bottom prescribes the behaviour of the
process. In our example, it first initialises the state variables and then proceeds
by calling Step. For initialisation, we refer to the variables ct and hc, which



are parameters of Timer . Step is an external choice (operator @) that offers
communication on the channels setT , updateSS , step and end . These channels
are declared (with their types) by the channel construct right above the process.

The channel events here are used by simulation (master) algorithms to model
the progression of time during cosimulation steps. The environment can change
currentTime and stepSize through communication on the channels setT and
updateSS , respectively. When a step event occurs, modelling a cosimulation step,
both these values are communicated and currentTime is increased by stepSize.
Lastly, an end event may occur only if currentTime = tN , where tN is a process
parameter specifying the simulation end time. The stop action that follows
effectively refuses any further interaction. Otherwise, the Step action behaves
recursively, repeating the previously described communication behaviour.

3 FMI and its Mechanisation

The conceptual view of an FMI cosimulation entails a master algorithm (MA)
to orchestrate the cosimulation, and several Functional Mock-up Units (FMUs)
that wrap tool and vendor-specific simulation components. The FMI standard [1]
not only specifies the API by which MAs must communicate with the FMUs, but
also how control and exchange of data must be realised. Typically, the master
algorithm reads outputs from all FMUs and then forwards them to the FMUs
that require them as inputs. After this, the MA notifies the FMUs to concurrently
compute the next simulation step. Some master algorithms assume a fixed step
size while others enquire the largest step size that the FMUs are cumulatively
willing to accept. MAs sometimes also perform roll-backs of already performed
simulation steps, and suitably deal with errors raised during cosimulation. We
hence have a design space of possible implementations of master algorithms.

Our model of FMI formalises a cosimulation (including the MA and FMUs)
as a collection of Circus processes. There exist processes that specify the inter-
action of master algorithms with FMUs, as well as processes that describe the
behaviour of particular master algorithms. For illustration, the top-level abstract
architecture of master algorithms is depicted in Fig. 3. Each box corresponds to
a Circus process and the thick red lines between them highlight internal and ex-
ternal communications. The basic (non-composite) processes of the Circus model
are Timer , Interaction, FMUStatesManager , ErrorManager , ErrorMonitor and
FatalErrorMonitor . Their surrounding boxes are parallel compositions.

The Timer process has already been discussed in Section 2.2: its purpose is
to ensure that simulation time increases in accordance with the current time and
step size. More complex is the Interactions process, which determines the order
in which FMI functions that initialise FMUs, read their outputs (fmi2Get), set
their inputs (fmi2Set), and invoke the next simulation step (fmi2DoStep) must
be called. Function calls are modelled by communication events on special chan-
nels prefixed with fmi2. Restrictions on the permissible order of FMI function
calls, as defined in the FMI standard [1], are thus captured by the observable

event traces in our process model. For instance, the Interaction process includes



ErrorHandler

ErrorMonitor FatalErrorMonitor

a
ErrorManager

FMUStatesManager
fmi2GetFMUState

fmi2SetFMUState

Timer
a

endSimulation Interaction
fmi2.∗

TimedInteraction

error

fmi2∗

endsimulation

step, end, SetT

updateSS

endsimulation

endsimulation

fmi2∗, endsimulation

Fig. 3. Overview of the abstract Circus model for master algorithms.

local actions TakeOutputs and DistributeInputs that correspond to phases of
the control cycle of a master algorithm, whereas FMUStatesManages prescribes
the use of functions fmi2GetFMUState and fmi2SetFMUState to obtain and set
FMU states during roll-back. An in-depth discussion of the Circus model can be
found in [3]; in the remainder of the section, we report on its mechanisation.

In essence, we translate Circus notations into corresponding operators in our
embedding of Circus in Isabelle/UTP. To give an example, a mechanised version
of the Timer process from Fig. 2 is presented in Fig. 4. We note, however, that
this (and other) mechanised processes do not have a State definition since the
process state is implicit in the variables used within actions.

One challenge that we faced was the encoding of mixed prefixes of inputs and
outputs on the same channel. These, we translate into a single input communica-
tion. This solution requires us to supply an input variable for each output (out1
and out2 in Fig. 4). That input is, however, preconditioned to only accept a
particular value, thereby emulating the behaviour of an output. Another chal-
lenge is the encoding of recursive actions, such as Step in Fig. 4. In general, our
tool rewrites local actions into a chain of HOL let statements, and fixed-point
predicates are used to encode single-recursive actions. Parameters are dealt with
via hidden stack variables, which allows for an elegant treatment of scopes.

To give another example, the mechanised encoding of the TakeOuputs action
of the Interaction process in Fig. 3 is recaptured below.

It reads the outputs of all FMUs (first iterated sequence ;;) and stores them
in a the state component rinp of the process, so that they can subsequently be



Fig. 4. Mechanised Timer process in Isabelle/UTP.

forwarded to the FMUs requiring them, prior to initiating the next simulation
step. The HOL type of rinp is a list of pairs whose first component is an FMU
port, and whose second component is a permissible FMI value.

We note that pdg is a global constant that determines the port-dependency
relationships between the input and output ports of FMUs. Our mechanised
model introduces it via an Isabelle constant definition, alongside other global
constants to determine the identifiers of FMUs, their parameters, initial values,
and so on. Isabelle constants are uninterpreted, so that concrete FMI instanti-
ations can define suitable value for these constants. An example of this is given
later on in Section 5, where we consider our railways case study.

The complete mechanised FMI model can be found in [24]. Our contribution
is that (a) we embedded the syntax and semantics of Circus into Isabelle/UTP
on top of its UTP CSP model, and (b) achieved a direct correspondence between
Circus notations and Isabelle constructs of the mechanisation.

4 The Railways Case Study

Our case study considers an existing tramway station. Its railway layout is pre-
sented in the diagram of Fig. 5. Trains enter the interlocking at the points Q2,
Q3 and V1, and then issue a telecommand to request a route. Telecommand
stations are denoted by the green dots, and possible routes through the railway
network are Q2→V2, Q3→V2, V1→Q1, V1→Q2 and V1→Q3.

Access to the interlocking is controlled by the signals S28, S48 and S11. They
are initially set to red causing trains arriving on the tracks CDV Q2, CDV Q3
and CDV 11 to stop and wait. When a telecommand is issued by a train, the
control logic of the interlocking allocates a free route, if available, and then gives
the respective train a green light to go ahead. No other train is allowed to proceed
meanwhile. This guarantees that no collision can occur, namely due to multiple
trains passing through the same track segment. The control logic also caters for
the setting of track points (SW1-5) so that trains move on the allotted paths.

The inputs of the interlocking controller are the CDV and telecommand
boolean vectors. The CDV is a bit vector whose elements register the presence



Fig. 5. Railway interlocking layout of the case study

CDV[13]	and	TC[4]	for	both	trains

Train1

Train2

signals[3]

switches[5]

switches

Full	Train

telecommand

track-segment
signals

switches

Full	Train

telecommand

track-segment
signals

CDV[11]

track-segments

telecommands

CDV/TC	Merger

TC[4]

collision!

derailment!

Interlocking

Fig. 6. FMI cosimulation (left) and train control equations (right).

of a train on a particular track segment. Telecommand requests are likewise
encoded by bit vectors where each bit corresponds to a particular route request.
Outputs (actuators) of the interlocking are signals and track point switches that
control the paths of trains when they proceed through the interlocking.

A high-level view of the system as a cosimulation is given in the left diagram
of Fig. 6. There are four FMU components. Two of them, Train1 and Train2,
simulate the physical behaviour of the trains, which includes the actions of the
train driver in adjusting the speed of the trains. A third FMU (Interlocking)
encapsulates the physical plant and the software that controls it. Lastly, we
require an additional FMU CDV/TC Merger to merge the CDV and telecommand
outputs of both trains into single boolean vectors. A supplementary function of
CDV/TC Merger is to calculate monitoring signals for collision and derailment.

The initial models for this case study define the train physics and their control
behaviour by bond diagrams in 20-sim, and the interlocking in VDM-RT. To
make those models tractable for formal analysis, we have simplified and encoded
them in Modelica (for which we have a mechanised semantics). We hence consider
traction and braking actions but do not model train mass and gravity, and
neither smooth acceleration and braking curves (jerk). This simplification is
justified because the influence of the more precise model does not alter the
fundamental system behaviour and is negligible in analytical terms.

The kinematics and speed control of both trains is encoded by the equations
in the right-hand diagram of Fig. 6. The first equation block captures motion:



Fig. 7. Modelica function (body) for calculating the train set-point speed.

acceleration is the derivative (der(_) operator) of velocity, and velocity the
derivative of position. While an accurate physics model of the train would be
expressed in terms of traction and braking forces, the assumption of constant
train mass and Newton’s law entitles us to consider acceleration alone.

The second equation block realises a simplified control algorithm: train ac-
celeration is set to either zero, normal_acceleration or normal_deceleration,
depending on whether the current speed is equal, below or above the set-point
speed of the train, set by the driver. The latter two are suitable constants of the
model. A special case is added by the when statement that simultaneously sets
the train speed to the set-point speed and acceleration to zero if we are close to
the set-point speed. This is to avoid chattering during simulation and can also be
thought of as ‘engaging the brakes’ when the train approaches zero speed while
decelerating. We note that this equational characterisation is partly equivalent
to the control law in Fig. 1, with the added feature of considering not merely
braking but also up-regulation of the train speed. For formal analysis, the ex-
plicit version in Fig. 6 is more suitable as it is formulated in terms of derivatives
rather than integrals, making the conversion into an ODE or DAE easier.

The behaviour of the driver is captured by the following equation:

The computation is carried out by the function CalculateSpeed which expects
the current track segment (current track), signal values (signals), and max-
imum permissible speed (max speed) as arguments. It then sets the set-point
speed (setpoint speed) to max speed if there is either a green or no signal on
the current track; otherwise, it sets it to zero (see Fig. 7).

Encapsulation of algorithmic behaviours into Modelica functions, where
possible, is a deliberate refactoring. Our encoding profits from this as those
functions can be naturally encoded as HOL functions into the proof system. This
kind of engineering has a modularising ripple-on effect on subsequent proofs.

A last aspect of the train model considers equations for the discontinuous
variable changes that occur when the train reaches the end of a track and enters



the next track. The Modelica equations for this are given below.

The NextTrack() function calculates the next track segment when the train’s
relative position on the current track, given by the position_on_track variable,
reaches the track_length. The function requires the current track, state of track
points (switches), and travel direction as inputs, and its output is equated with
the newly entered track segment after the discontinuity. Simultaneously, it also
resets position_on_track back to zero.

In addition to the above, we also need an equation that generates telecom-
mand signals when the train is on a track equipped with a telecommand station,
but we omit its straightforward definition here.

As already mentioned, the VDM-RT interlocking has also been simplified
from the production code in hardware. To capture its essential behaviour, we
introduce a variable Relay to record the state for relay switches that, in real
hardware, record the locking of a particular route for a train that requests it.
Below is an extract of the sequential program logic that performs the locking.

For the locking to occur, a telecommand must have been issued that actually
requests the respective route; this is achieved by the condition on the bit vector
TC that cumulatively records the telecommands issued by all three telecommand
stations. The constraints on Relay ensure that locked routes are non-intersecting,
so that trains can pass without crossing each other’s paths. Lastly, we have
additional constraints on the CDV signal that ensure that the track segments of
the route to be locked are not still occupied by a previous train.

While our software implementation retains the core logic of the hardware
realisation, it does not consider time delays incurred by the latency of relay and
point actuators. We hence assume that both process signals quickly enough to
disregard such delays. For relays, delays are in fact not an issue since all they
cause is a (very small) delay in trains obtaining permission to proceed.

5 Encoding in Isabelle/UTP

We consider two aspects of the encoding here: the mechanised FMI system model
(Section 5.1) and the continuous train FMUs (Section 5.2). All our Isabelle
theories are available at: https://github.com/isabelle-utp/utp-main.



5.1 FMI System Model

The FMI system model introduces concrete definitions for uninterpreted con-
stants of the abstract FMI model described in Section 3. These constants deter-
mine the names of the FMUs, their input and output ports, initial values and
parameters, and graphs that capture internal and external port dependencies.
The latter two are relevant to establish the absence of algebraic loops within the
cosimulation architecture. Instantiation of the model for a particular cosimula-
tion is realised by an axiomatization in Isabelle/UTP, as shown below.

Here, we introduce the constants train1, train2, merger and interlocking

of a given (abstract) type FMU2COMP, together with axiomatic constraints that
ensure that (a) the constants are distinct, and (b) there exist no other values in
the type FMU2COMP.

An extract of the port dependency graph of our system is sketched below:

External dependencies correspond to connection arrows in Fig. 6, and internal
dependencies arise from direct signal feed-through within FMUs. Above, we can
see that a direct internal dependency exists between the inputs and outputs of
the merger block. There is, however, no such dependency between inputs and
outputs of the train FMUs due to integrator behaviours (Fig. 1). For this reason,
our feedback system does not contain an algebraic loop. We have proved this by
using Isabelle’s code evaluation framework and tactics; it amounts to showing
that the pdg is acyclic. The proof of this can be found in the report [24], too.

5.2 Continuous Train Model

Continuous and hybrid behaviour is given a semantics in terms of the hybrid re-
lational calculus (HRC) [11]. We have mechanised this calculus in Isabelle/UTP
using the Multivariate Analysis and HOL-ODE theory libraries [15].

The hybrid relational calculus extends the UTP with continuous variables,
which are encoded using timed traces . A timed trace, as illustrated in Fig. 8, is
a partial function tt : R≥0 7→Σ, such that dom(tt) = [0, ℓ), for some ℓ : R≥0, and
tt is piecewise continuous. Type Σ is a topological space that defines the entire



x(t)

t
0 lt

0
t
1

Fig. 8. Piecewise continuous function modelling a timed trace.

continuous state type, accommodating all continuous variables. Typically, Σ is
associated with a vector space of type R

n .

A continuous variable is decorated with an underscore x to distinguish it from
a discrete variable. Like timed traces, continuous variables are functions on time.
A key feature of the hybrid relational calculus is the ability to perform discrete
assignments to continuous variables. This is achieved by pairing each continuous
variable x with an assignable discrete copy variable x , such that x = x (0) holds
for the before state, and x ′ = limt→ℓ x (t) holds for the after state, for any ℓ > 0.

Hybrid relations are constructed using common programming operators, such
as assignment and sequential composition, plus various operators to specify con-
tinuous evolutions. For instance, we adopt the interval operator ⌈P⌉ from the
Duration Calculus [4] in order to specify constraints on the continuous variables
during evolution, such that P must be satisfied at every instant.

With the above, we define evolution operator x ← f (x0, t) =̂ ⌈x = f (x0, t)⌉.
It specifies that continuous variable x evolves according to the function f , whose
parameters are the initial values x0 and time t , for any evolution duration ℓ. We
also have x ←n f (x0, t), which presumes a definite duration ℓ = n. Lastly, we
define the pre-emption operator P untilh b that permits evolutions according to
P until the condition b becomes true; it thus imposes constraints on the possible
durations ℓ after which control passes to the next hybrid computation.

The Multivariate Analysis package [15] of Isabelle provides a precise encoding
of real numbers as Cauchy sequences and several operators from the integral and
differential calculus. We use that package and our interval operator to encode
ordinary differential equations (ODEs) in the hybrid relational calculus. Namely,
〈 ẋ = f (t , x ) 〉 specifies that the derivative of x (t) is given by f (t , x (t)) — a
function of the current time and continuous state. Using Immler’s HOL-ODE
package [16] we can certify symbolic solutions to initial value problems, and thus
reduce 〈 ẋ = f (t , x ) 〉 to a function evolution x ← g(x0, t) where g is the solution
to ẋ (t) = f (t , x (t)) with initial condition x0.

We describe below part of the Modelica train model from Section 4 in the
hybrid relational calculus. We focus on the situation when the train is stop-



ping due to an approaching red signal. The other behaviours can be encoded
in a similar way. We formalise this situation using shorter variable names acc,
vel and pos for acceleration, current-speed and position-on-track. We note that
normal-deceleration below is negative and determines the rate at which the train
reduces its speed as a result of braking forces being applied.

BrakingTrain =̂




acc := normal-deceleration ;

vel := max-speed ;

pos := 0 ;
〈


˙acc
˙vel

˙pos


 =




0

˙acc
˙vel




〉
untilh (vel ≤ 0) ;

acc := 0




We first assign initial values to the continuous variables, and this effectively cre-
ates initial conditions for the ODE. We then evolve the continuous variables,
according to the ODE, until the velocity reaches 0. After this, we set the accel-
eration to 0, so that the train halts and does not start moving backwards.

The above hybrid relation encodes the kinetic and control equations in the
right diagram of Fig. 6, albeit only considering deceleration. For the complete
train model, we require an additional variable for the set-point speed and equa-
tions for calculating it from the signal vector. Those, however, are not differential
equations and can likewise use the interval operator previously described.

We have encoded the example in Isabelle/UTP and mechanised a proof (see
Fig. 9) that the train stops before the track ends, that is, ⌈pos < 44⌉ holds, where
44m is the track length of CDV Q2 in Fig. 5. For the sake of brevity, we elide
details of the proof, other than the first four steps. The proof proceeds as follows.

1. Solve the ODE symbolically to obtain a function evolution statement. This
requires us to show Lipschitz continuity of the ODE so that, via the Picard
Lindelöf theorem, there is precisely one such solution;

2. Use the assigned values to obtain the set of initial conditions;
3. Calculate the precise time at which the velocity reaches zero; here, that is

approximately after 2.97 seconds;
4. Prove that the position at every earlier instant is less than 44 metres.

The final step requires that we solve a polynomial inequality

(104/25) ∗ t − (7/10) ∗ t2 < 44

which includes the solution for the position derivative. In Isabelle, this can be
done using the lesser-known approximate tactic [14], which safely employs a
floating-point approximation to prove the conjecture with respect to the reals.

Our analysis has proceeded directly at the level of the Modelica train model,
and our next aim shall be to transfer this result to the FMI cosimulation model
of the entire system. For this, the train models are wrapped into Circus processes
corresponding to the train FMUs in the left diagram of Fig. 6. This is on-going
work; our initial results provide evidence that our semantic theories and reason-
ing framework is up to the challenge of proving properties in this context.



Fig. 9. The braking train scenario encoded in Isabelle/UTP.

6 Conclusion

We have reported on some initial results in formalising and mechanising FMI
cosimulations in our theorem prover Isabelle/UTP.

The relevance of our project is to enable proofs about cosimulated systems, as
well as the cosimulation itself. Such proofs may, for instance, entail behavioural
correctness and safety properties, such as trains never collide. We also envisage
proofs that validate the suitability of simulations to observe faults or — vice
versa — provide tangible evidence for their absence. While the details of how
this can be done touches upon open research problems, the models and their
encoding described here are a first important step into this direction.

A collateral contribution is to provide an encoding of the Circus language, as
this was required to mechanise the semantics of the FMI framework. While our
proof system currently offers support for CSP, the Circus language poses further
challenges related to the representation of Circus processes and actions, dynamic
channel declarations, and specialised Circus operators.

Future work will address the completion of our models and investigate proof
strategies and laws to reason about the cosimulation as a whole. In addition, we
aim to elicit and verify properties of master algorithms that hold independently
of the simulators and structure of the simulated model as an FMI system.

References

1. Modelica Association. Functional Mock-up Interface for Model Exchange and Co-
Simulation. Technical Report Document Version 2.0, Linköping University (Swe-
den), July 2014. Available from http://fmi-standard.org/downloads/.

2. A. Cavalcanti, A. Sampaio, and J. Woodcock. A Refinement Strategy for Circus.
Formal Aspects of Computing, 15(2):146–181, November 2003.

3. A. Cavalcanti, J. Woodcock, and N. Amalio. Behavioural Models for FMI Co-
simulations. In Theoretical Aspects of Computing — ICTAC 2016, volume 9965 of
LNCS, pages 255–273. Springer, October 2016.



4. Z. Chaochen, T. Hoare, and A. P. Ravn. A calculus of durations. Information

Processing Letters, 40(5):269–276, December 1991.
5. P. G. Larsen et al. Tutorial for Overture/VDM-RT. Technical Report TR-005,

September 2015. http://overturetool.org/documentation/tutorials.html.
6. T. Blochwitz et al. The Functional Mockup Interface for Tool independent Ex-

change of Simulation Models. In Proc. of the 8th Int. Modelica Conference, 2011.
7. S. Foster, A. Cavalcanti, S. Canham, K. Pierce, and J. Woodcock. Final Semantics

of VDM-RT. Deliverable 2.2b, INTO-CPS Project, H2020 Grant 644047, December
2016. http://projects.au.dk/fileadmin/D2.2b_Final_VDM-RT_Semantics.pdf.

8. S. Foster, B. Thiele, A. Cavalcanti, and J. Woodcock. Towards a UTP Semantics
for Modelica. In Proceedings of UTP 2016, Revised Selected Papers, volume 10134
of LNCS, pages 44–64. Springer, June 2017.

9. S. Foster, F. Zeyda, and J. Woodcock. Isabelle/UTP: A Mechanised Theory En-
gineering Framework. In Proceedings of UTP 2014, volume 8963 of LNCS, pages
21–41. Springer, May 2014.

10. C. Gomes, C. Thule, D. Broman, P. G. Larsen, and H. Vangheluwe. Co-simulation:
State of the art. ArXiv e-prints, arXiv:1702.00686, February 2017.

11. J. He and L. Qin. A Hybrid Relational Modelling Language. In Concurrency,

Security, and Puzzles: Essays Dedicated to Andrew William Roscoe on the Occasion

of His 60th Birthday, volume 10160 of LNCS, pages 124–143. Springer, 2016.
12. T. Hoare. Communicating Sequential Processes. Prentice-Hall, April 1985.
13. T. Hoare and J. He. Unifying Theories of Programming. Prentice-Hall, April 1998.
14. J. Hölzl. Proving Inequalities over Reals with Computation in Isabelle/HOL. In

Proceedings of ACM SIGSAM PLMMS 2009, pages 38–45, August 2009.
15. J. Hölzl, F. Immler, and B. Huffman. Type Classes and Filters for Mathematical

Analysis in Isabelle/HOL. In Proceedings of ITP 2013, volume 7998 of LNCS,
pages 279–294. Springer, July 2013.

16. F. Immler and J. Hölzl. Numerical Analysis of Ordinary Differential Equations in
Isabelle/HOL. In Proceedings of ITP 2012, volume 7406 of LNCS, pages 377–392.
Springer, August 2012.

17. C. B. Jones. Systematic Software Development using VDM. Prentice-Hall, 1990.
18. K. Lausdahl, M. Verhoef, P. G. Larsen, and S. Wolff. Overview of VDM-RT

Constructs and Semantic Issues. In Proceedings of the 8th Overture Workshop,
volume 1224 CS-TR, pages 57–67, September 2010.

19. Modelica Association. Modelica R© – A Unified Object-Oriented Language for Sys-

tems Modeling, Language Specification, Version 3.4, April 2017. Available from
https://www.modelica.org/documents/.

20. C. Morgan. Programming from Specifications. Prentice-Hall, January 1996.
21. L. Petzold. Differential/Algebraic Equations are not ODEs. SIAM Journal on

Scientific and Statistical Computing, 3(3):367–384, 1982.
22. J. v. Amerongen, C. Kleijn, and C. Gamble. Continuous-Time Modelling in 20-sim.

In Collaborative Design for Embedded Systems: Co-modelling and Co-simulation,
pages 27–59. Springer, Berlin, Heidelberg, March 2014.

23. J. Woodcock and J. Davies. Using Z: Specification, Refinement, and Proof.
Prentice-Hall, April 1996.

24. F. Zeyda, S. Foster, and A. Cavalcanti. Mechanisation of the FMI. Technical
report, University of York, UK, June 2017. Available from https://github.com/

isabelle-utp/utp-main/blob/master/fmi/fmi_report.pdf.


	Formalised Cosimulation Models

