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Abstract. In general, in order to predict the impact of human behaviour
on the security of an organisation, one can either build a classifier from
actual traces observed within the organisation, or build a formal model,
integrating known existing behavioural elements. Whereas the former ap-
proach can be costly and time-consuming, and it can be complicated to
select the best classifier, it can be equally complicated to select the right
parameters for a concrete setting in the latter approach. In this paper, we
propose a methodical assessment of decision trees to predict the impact
of human behaviour on the security of an organisation, by learning them
from different sets of traces generated by a formal probabilistic model we
designed. We believe this approach can help a security practitioner un-
derstand which features to consider before observing real traces from an
organisation, and understand the relationship between the complexity of
the behaviour model and the accuracy of the decision tree. In particular,
we highlight the impact of the norm and messenger effects, which are
well-known influencers, and therefore the crucial importance to capture
observations made by the agents. We demonstrate this approach with
a case study around tailgating. A key result from this work shows that
probabilistic behaviour and influences reduce the effectiveness of decision
trees and, importantly, they impact a model differently with regards to
error rate, precision and recall.

1 Introduction

Employees of organisations are known to regularly circumvent or bypass security
procedures, leading to a relaxed security culture [2]. In order to identify the se-
curity culture of an organisation, a security practitioner could collect data from
different sources and build a classifier model to predict the security preference
of employees. For example, sources such as CCTV, interviews and physical logs
(smart card data) can be used to classify employees preferences. There are three
main challenges with this - 1) It is costly both in time and financially, as demon-
strated by Caufield and Parkin [4]. 2) It is error prone as we rely on humans to
interpret human behaviour. 3) Given the dataset, it is difficult to identify which
features are relevant to build a classifier model.

To address the three challenges, we propose an assessment of classifier models
known as decision trees to predict the impact behavioural elements have on



the security culture of an organisation. Firstly, we generate synthetic data from
parameterised models with behavioural elements. Secondly, we interpret the data
to assess features based on the dataset. Finally, using traditional data mining
techniques, we use cross validation to train and test each model independently.
One of our results shows different parameters for human behaviour impact the
accuracy of decision trees.

Our approach is inspired by online marketing techniques, where peoples be-
haviour is logged and suggestions are made based on purchases of others who
have similar behaviour trends [19]. In the context of security, building a classifier
model, an employee performing a security violation should be more substantial
to the models rules than the same employee moving between locations. Identify-
ing relevant features, indicates that human behaviour is required, in some form
at least. Influences, such as Social Proof from Cialdini, or the Messenger effect
from MINDSPACE can shift the culture of an organisation [7,9]. An employee in
the right location at the right time may be influenced by the behaviours of others.
If they observe the same action multiple times, or have an influential relationship
with the instigator of the behaviour, then they may align their behaviour with
this authoritative figure.

We analyse a tailgating case study simulating parameterised models, each
model generates a trace we use to assess the accuracy of decision trees. We believe
that a security practitioner can understand the relevant features and can begin
to understand the relationship between the complexity of human behaviour and
the accuracy of decision trees. As a security practitioner, acquiring knowledge
where vulnerabilities are present, allows for insights towards defence strategies
and interventions. For example, investing in turnstiles to reduce tailgating, or
limiting the capabilities of employees who are flagged as a vulnerability.

The main contributions of this work are 1) Parameterised models to simulate
and generate synthetic data with known behavioural elements. 2) The method-
ology for the assessment of decision trees constructed from a synthetic dataset.

The paper is split into the following Sections. In Section 2 we discuss the prob-
lem, provide an intuition for how we are approaching it and build on existing
literature. In Section 3 we introduce our Multi Agent System (MAS) alongside
a scenario focusing on tailgating. In Section 4 we discuss the MAS towards sim-
ulation with multiple parameters. In sections 5 and 6 we discuss our assessment
methodology and analyse the case study. Section 7 is the conclusion and future
work.

2 Problem Formulation

A security practitioner observes employee behaviour in an organisation and ac-
cumulates information about security incidents. Using this data, they wish to
learn the security preference of employees. One possible solution to this is to use
machine learning.

The data generated from observing employees forms a trace, where an entry
in a trace describes who did what and when. It is similar to an intrusion de-



tection system, where the logs of what happened are the entries, a collection of
logs/entries forms a trace. The problem is, given a trace of interactions, can we
use machine learning techniques to correctly identify the security preferences of
agents? Let us consider a simple example, where an agents security preference

Table 1: A collection of entries forming a number of violations and preventions
for four agents. Each agent is accompanied with a known security preference.

Agent Violations Preventions Security Preference

Alice 4 1 Usable

Bob 2 3 Secure

Charlie 1 0 Usable

Dan 2 5 Secure

can be usable or secure. A usable agent is more likely not to follow a policy,
whereas a secure agent is. Table 1 lists four agents, the number of violations and
preventions for a policy and their security preference. Given this data, the Deci-
sion Tree in Figure 1 can be formed. It is deterministic and will resolve to a value
of usable or secure dependent on the entry being evaluated. In this case, an en-
try is the log of violations and preventions for an agent. The resolution/decision
returned is the security preference.

Preventions
≤ 1.5

Usable
Violations

≤ 3

Secure Usable

True

False

True

False

Fig. 1: Learned Decision Tree from the data in Table 1. A diamond is a decision
point, an oval is a decision.

This is a small sample, however, an accurate tree has been learned with 100%
accuracy for the training data. A decision tree offers predictive power and, given
an agent with some information, we wish to predict their security preference.
This is complex, as the decision tree from Figure 1 can be easily fooled. For
example, an agent with 10 preventions and 5 violations will return as usable,
even though they have acted securely for the most part.

Establishing which features to consider could provide meaningful results for
observing the security culture of employees in an organisation. Unfortunately,



the problem is of greater complexity than what we identify here, as human
behaviour is complex in itself and leads us to the problem, can we use machine
learning to learn from complex behaviour.

2.1 Security Culture Uncertainty

Within an organisation, a security culture exists for how individuals and groups
respond to security incidents. Depending on the type of security incident and
those involved, it could become a security violation or it could be prevented.
We hope that individuals trained to perform tasks are security aware, but we
regularly find that they circumvent organisational security policies [3].

Consider working with a company for a short period of time in order to iden-
tify the security preference of employees. We could ask them, where responses
from interviews have led to popular theories such as the compliance budget [2].
Of course, respondents could lie, answer honestly but not behave consistently,
or even fail to acknowledge that their behaviour is insecure.

Even if survey respondents answer honestly, it does not mean that this holds
for the future. A secure employee interacting with a usable (non-secure) employee
may be influenced towards usable behaviours, creating an insecure culture. Of
course, this is bi-directional where secure behaviour can inform more secure
behaviour.

From a security officers perspective, they only have so many tools to establish
the security culture. For example, they could interview employees, then manu-
ally observe them via CCTV recordings to establish if their security preference
matches their behaviour [4]. This is of course, costly and time consuming, where
we would need to manually record the exact behaviour of each employee.

To add further complexity to the uncertainty of a security culture, some one
who is secure may make a judgement of error causing a security incident. For
example, Zhu et. al. showed they could get more information from people simply
by providing them with information up front, exploiting a concept known as
reciprocity [20]. They were able to influence people to sacrifice more information
than they would usually part with.

The security culture of a company can be changed, for example, via training
employees [15]. This behaviour change is one that impacts how people respond
to security incidents, for example a recently trained employee may have more
awareness for spear phishing emails, and is less likely to click suspicious links.

3 Multi Agent System

Behaviour surrounding security policies is dependent on different factors. We
see three main elements which impact this security culture physical locations,
observations and behaviour change. In this section, we introduce a scenario and
provide formal notation to express these three elements as a Multi Agent System.



Scenario: Agents arrive at the back of a workplace reception and there are two
possibilities. Firstly, if nobody is at the front of the reception, the agent must
progress to the front of the reception. Secondly, if the newly arrived agent is
usable, they will attempt to tailgate. A perfectly secure agent will never attempt
to tailgate. If an agent is being tailgated, they can either permit or deny the
action, where a permit would allow both agents in to the main building, a deny
would force the tailgater to the front of the reception. A perfectly usable agent
will always permit tailgating, a secure agent will deny tailgating. The scenario
runs for a working week of five days.

3.1 Location Based Agents

Some security policies rely upon physical locations. For example, tailgating relies
locations connected by some entry system such as door, corridor and so on.
Furthermore, employees express unique behaviours for moving between multiple
locations. In recent work, it has been shown that malicious insider behaviour
can be detected by using historical data from a building access control system
[6]. The data allows for suitable models to be learned surrounding movement
behaviour. For our work, these physical movement models provide validation
techniques. Using such techniques, Hidden Markov Models can predict with up
to 92% accuracy, the next movement of someone given some historical data [12].

Decisions to enforce or circumvent security policies are individual to each
employee. Typically, attitudes towards policies can be impacted by personality,
past experiences and a productivity trade-off, to name a few [1]. We call these
attitudes a context, where an employees context informs their decision.

Formally, in a Multi Agent System, the entities are known as agents. From
here on, we refer to employees or people as agents. In general, we assume the
existence of a set A of agent identifiers.

Definition 1 (Location Based Agents) Given a set of agents A, a set of
locations L, and a set of contexts C, we define the set of location based agents
as LBA = A× C × L.

Definition 2 (Location based actions) Given an agent a and two locations
l and l′, a location based action is defined as m(a, l, l′), indicating that a moved
from l to l′. A location based action does not modify the context of the agent.

In general, there could be many different ways to capture the concrete set
of location based actions in a system, for instance by going through the actual
logs of a smart card system. For the sake of simplicity, we consider here a set of
links Link ⊆ L× L where (l1, l2) indicates a physical link between the location
l1 and l2. Intuitively speaking, any agent can move from a location to another
as long as there is a link between them. We characterise this with the following
rule:

(l, l′) ∈ Link

(a, c, l)
m(a,l,l′)−−−−−→ (a, c, l′) (1)



The action 1 is defined as an inference rule at the atomic level expressing
that one agent moves from one location to another, provided the two locations
are connected. In general, we write (a1, c1, l1) | . . . (an, cn, ln) for a set of location
based agents. Given a set of agents LA ⊆ LBA, we can extend the rule above
as follow

(a, c, l)
m(a,l,l′)−−−−−→ (a, c, l′)

(a, c, l) | LA m(a,l,l′)−−−−−→ (a, c, l′) | LA (2)

The tailgating scenario is a policy breach for an organisation. Whilst it is not
the case that an agent is just usable or just secure, for now, we use these polar
opposites to express our model.

We introduce two actions, tgp(a1, a2, l, l
′) and tgd(a1, a2, l, l

′), indicating that
a1 and a2 tailgated, and that a2 denied a tailgate from a1, respectively. Intu-
itively speaking, a usable agent is permitted as they tailgate a usable agent.
Secondly, a usable agent is denied as they tailgate a secure agent. Formally:

(a1, c1, l)
m(a1,l,l

′)−−−−−−→ (a1, c1, l
′) (a2, c2, l)

m(a2,l,l
′)−−−−−−→ (a2, c2, l

′) c1 = c2 = usable

(a1, c1, l), (a2, c2, l) | LA
tgp(a1,a2,l,l

′)−−−−−−−−→ (a1, c1, l
′), (a2, c2, l

′) | LA
(3)

(a2, c2, l)
m(a2,l,l

′)−−−−−−→ (a2, c2, l
′) c1 = usable c2 = secure

(a1, c1, l), (a2, c2, l) | LA
tgd(a1,a2,l,l

′)−−−−−−−−→ (a1, c1, l), (a2, c2, l
′) | LA (4)

The rules introduced so far explain how agents with a context move between
locations. They can either just move, or they can tailgate and be either permitted
or denied. A permit moves them into the tailgated location, the denied leaves
an agent in the same location before the action occurred.

3.2 Observing Agents

In an organisation, when an action happens, people may notice. In our example,
this translates to agents observing security policies being enforced or exploited.
Much like in the workplace, if someone is challenged for tailgating, people within
close proximity will notice. One report recorded that users security sensitivity
for other peoples security behaviour was prominent in a working environment
[8]. We know that people have security awareness in the workplace, particularly
when policies are regularly followed.

We began with Location Based Agents, where the interactions of agents are
restricted by physical locations and the security preference of each agent. We
extend this notion and introduce Observing Agents:

Definition 3 (Observing Agents) We define OA ⊆ A×C×L×P(Θ) as the
set of observing agents where A is the set of agents, C is the set of contexts, L is
the set of Locations and Θ ⊆ A×Actθ. We introduce a set of observable Actions
Actθ, where any act ∈ Actθ can be observed by an agent.



Let us consider that Actθ = {permit, deny}, which refer to the permitting or
denying of tailgating. An Observing Agent during the course of their interactions,
may accumulate observations of other agents permitting or denying tailgating.
As it is currently defined, an agent can only observe and store one observation
for each agent. At the atomic level, an inference rule for an observation would
take the form:

(a, c, l, Θa)
obs(θ)−−−−→ (a, c, l, Θ′

a ∪ θ) (5)

Intuitively, an agent a1 with the action obs(a2, permit) would indicate that
they have observed a2 permitting tailgating.

For an agent observing a particular act, such as tailgating, we must consider
all agents in the observable area. We provide the following definition to make
use of earlier rules:

loc : OA→ LA

loc(a, c, l, θa) = (a, c, l)

Therefore, the observable actions for tailgating are as follows:

(a1, c1, l, Θa1)
obs(permit)−−−−−−−→ (a, c, l, Θa1 ∪ permit)

∀(a′, c′, l, Θ′
a) ∈ OA⇒ (a′, c′, l, Θ′

a)
obs(permit)−−−−−−−→ (a′, c′, l, Θ′

a ∪ permit)

(a1, c1, l), (a2, c2, l)|loc(OA)
tgp(a1,a2,l,l

′)−−−−−−−−→
(a1, c1, l

′), (a2, c2, l
′)|loc(OA)

(a1, c1, l, θa1), (a2, c2, l, θa2)|OA p(a1,a2,l,l
′,permit)−−−−−−−−−−−−→

(a1, c1, l
′, θa1), (a2, c2, l

′, θa2)|OA′ (6)

(a1, c1, l, Θa1)
obs(deny)−−−−−−→ (a, c, l, Θa1 ∪ deny)

∀(a′, c′, l, Θ′
a) ∈ OA⇒ (a′, c′, l, Θ′

a)
obs(deny)−−−−−−→ (a′, c′, l, Θ′

a ∪ deny)

(a1, c1, l), (a2, c2, l)|loc(OA)
tgd(a1,a2,l,l

′)−−−−−−−−→
(a1, c1, l), (a2, c2, l

′)|loc(OA)

(a1, c1, l, θa1), (a2, c2, l, θa2)|OA d(a1,a2,l,l
′,deny)−−−−−−−−−−−→

(a1, c1, l, θa1), (a2, c2, l
′, θa2)|OA′ (7)

3.3 Behaviour Change Agents

The concept of behaviour change as a body of research contains many different
models. Not all of the models are fit for our purpose. Howver, the COM-B
model splits behaviour change into three elements; Capabilities, Opportunities
and Motivation [13]. In this paper, we focus on the aspect of Motivation, which
can be changed by influencing effects. Such effects as Messenger and Social
Norms are of interest to us [10]. The former relates to those people/agents we



perceive to be in a position of authority, the latter is all about those people
around us in our immediate vicinity [7].

In our MAS, a behaviour change would be a change of context. A secure
agent can become usable and vice versa. The following rule captures behaviour
change for security preferences:

c 6= c′

(a, c, l, Θa)
bchange(c′)−−−−−−−→ (a, c′, l, {}) (8)

Whilst we don’t validate the notion of behaviour change in this work, we do
hope to establish meaningful results at a later point. For example, observing and
interviewing users in a social experiment where a security preference is present
is one possible stream to substantiate the synthetic inference rules defined.

To the best of our knowledge, for the influencing effects Messenger and So-
cial Norms there does not exist a strategy to quantify formally these effects.
Unsurprisingly, an effect is unique to each agent. As the purpose of this work
is to assess the effectiveness of decision trees, we introduce the following rules
which capture effects as identical for all agents:

Definition 4 (Influencing Agents) The set IA ⊆ A×A captures Influencing
Agents, where any (a, a′) ∈ IA indicates that a′ can influence a and a 6= a′.

The influencing agents is for the purpose of defining inference rules for the
Messenger effect. The following rules capture this:

(a, c, l, Θa)
bchange(usable)−−−−−−−−−−→ (a, c′, l, Θa) (∃(a′, permit) ∈ Θa ∧ (a, a′) ∈ IA)

(a, c, l, Θa)|IA messP(usable)−−−−−−−−−→ (a, c′, l, Θa)|IA (9)

(a, c, l, Θa)
bchange(secure)−−−−−−−−−−→ (a, c′, l, Θa) (∃(a′, deny) ∈ Θa ∧ (a, a′) ∈ IA)

(a, c, l, Θa)|IA messD(secure)−−−−−−−−−→ (a, c′, l, Θa)|IA (10)

For Social Norms, we care about the number of agents that have been ob-
served for a particular action. Given a set of observations, we can establish how
many agents have been observed performing a particular action. The importance
of this work is not the formal definitions of influences, but rather the accuracy
of decisions trees when these effects are in place. As such, we don’t provide the
notation for the Social Norms effect.

4 Multi Agent System - Simulation

For clarification, we acknowledge that at times, certain rules within the system
can be executed synchronously. For example, it is possible that a behaviour
change rule and an observing rule can occur synchronously. For now, we consider
that a behaviour change rule takes priority. In the case of two similar rules
conflicting with each other, we let the simulation tool use a random number
generator to address this. We hope to improve this in later work.



4.1 Model Parameters

For the simulation, we reflect behaviours and attributes that we know exist.
We understand that, whilst we will not have a model that truly reflects human
behaviour, we at least can parameterise concepts that we know exist from the
literature. Our parameters are as follows:

– p1: Expected Arrival Rate - Agents arrive stochastically to the workplace
reception, the arrival rate follows a normal distribution, agents can arrive at
any point within some bounds. For example, if a start time for work is 9AM,
we might expect some agents to turn up early, just before, just after, late or
precisely on time.

– p2: Probabilistic Decision - Assumptions have been made towards individuals
as being homo economicus, where we make decisions based on personal gain
or internal heuristics for guiding behaviour which look to maximise some
reward [11]. Additionally, each day, experience is slightly different and for
an agent, this could be the difference between a secure agent acting usable
and vice versa, which is what we capture with our probabilistic decision, the
ability for agents to act against their security preference [16].

– p3: Social Norms Influence - Social proof, where individuals assume the ac-
tions of those they have observed in order to reflect the interpreted cultural
norms is apparent in many societies [14].

– p4: Messenger Influence - Authority, is influencing by social/professional sta-
tus, those we perceive to be in a position of power or responsibility can
influence our behaviours [9,7].

– p5: Personality - Different personalities react differently to the same influ-
ences. We implement personality traits for agents, where different personal-
ities are subject to different influences:
1. Conscientiousness - influenced by Messenger.
2. Agreeableness - influenced by Social Norms and Messenger.
3. Extroversion - influenced by Social Norms [18].

In a model, there is a distinct set of actions and observations recorded for
agents. A trace generated from a model records agents moving between locations,
tailgating being permitted or denied, agents successfully tailgating, agents failing
to tailgate and agents observing tailgating being permitted or denied. This is all
public information, the private information, such as the model parameters and
agent contexts are not in a trace. A trace does not contain information such as
if an agent can be influenced by Messenger or Social Norms. We do this to see if
decision trees can determine the underlying rules for the different parameterised
models.

5 Assessment Methodology

We define a model with a set of parameters such that each model contains a
different set of parameters. However, the initial state of each model is identical



in terms of agent context and agent location. We then run a number of simula-
tions for each model and generate a trace for each simulation run. A model will
therefore, be associated with many traces.

A trace contains the number of entries equal to the number of agents, where
an entry contains all of the features for an agent and is accompanied by the
final security preference of that agent. The features of agents are the number of
violations, preventions, attempts at tailgating and the number of times an agent
is in close proximity when tailgating between other agents occurs.

Given all of the traces for a model, we use cross validation to construct and
assess the accuracy of using decision trees for each model. The cross validation
consists of a training and testing phase, where the training is inclusive for the
security preference of an agent and the testing phase is exclusive of the security
preference.

A prediction from a decision tree is either usable or secure. If we consider
secure as our target value then a true-positive (tp) is a correct prediction for se-
cure, true-negative (tn) is a correct prediction for usable. False-positive (fp) is an
incorrect prediction for secure and false-negative (fn) is an incorrect prediction
for usable. From these we can calculate the error rate, precision and recall:

err(fp, fn, tp, tn) =
fp+ fn

tp+ tn+ fp+ fn
(11)

(tp, fp) =
tp

tp+ fp
r(tp, fn) =

tp

tp+ fn
(12)

The cross validation creates a number of decision trees for each parametrised
model. Given a set of Decision Trees D where a set of testing traces T are present.
A testing trace contains a set of entries E excluding the security preference,
where a function f : D × E → O takes a decision tree, an entry and returns an
outcome O where O = {fpo, fno, tpo, tno}.

g : N× N× N× N×D × P(E)→ N× N× N× N

g(i, j, k, l, d, E) =



g((i+ 1), j, k, l, d, (E \ e)), ∃e ∈ E where f(d, e) = fp0

g(i, (j + 1), k, l, d, (E \ e)), ∃e ∈ E where f(d, e) = fn0

g(i, j, (k + 1), l, d, (E \ e)), ∃e ∈ E where f(d, e) = tp0

g(, j, k, (l + 1), d, (E \ e)), ∃e ∈ E where f(d, e) = tn0

(i, j, k, l) otherwise

(13)
Using the function g we can calculate the number of different types of out-

comes a decision tree produces. We can then use the function calc to assess the
accuracy of a decision tree:

calc : D × P(P )→ [0, 1]

calc(d,E) = err(g(0, 0, 0, 0, d, E)) (14)



Once we can calculate the error rate for one decision tree, we can then assess
the accuracy of all the decision trees generated for a particular model:

µerror(D,E) =

∑
d∈D calc(d,E)

|D|
(15)

We do the same for the precision and recall of the decision trees, however,
we do not provide the notation for this. Each model is associated with a set of
decision trees. Therefore, for each model we can calculate µerror to identify the
accuracy of decision trees for a given set of parameters.

6 Analysis - Case Study

In this section we discuss the use of parametrised models and make remarks
surrounding the results for three different cases.

The number of possible parametrised models is 25, we only consider 11 of
these 32. The expected arrival rate is included in the majority of the parame-
terised models, as we do not consider too many models where all agents always
arrive at the exact same time, of course this could happen, but it is very unlikely.
The personality parameter is dependent upon a behaviour change parameter be-
ing present, therefore, it does not add to a model if Social Norms and/or the
Messenger parameters are not included.

We used the Julia programming language to implement our case study and
made use of the SysModels package [5,17]. We generated synthetic data on a
Toshiba laptop with a 2.4 GHz i5 processor and 8GB RAM. To generate the data
for 11 models with 200 agents it took 22 minutes which is roughly 2 minutes per
model. Each model is generated with 10 traces each starting from an identical
initial state for each model.

For the analysis we performed four test cases and used 50, 100 and 200 agents.
Table 2 is the results for the 100 agents, the results for 50 and 200 agents are in
the Appendix in Tables 3 and 4 respectively.

For each test case, we calculated the average error rate, the standard devi-
ation, the precision and the recall of each parameterised model, where Table 2
shows the parameters for each model. We now make remarks regarding the re-
sults we have obtained.

Remark 1 The average error rate for model m1 is significantly more accurate
with 50 than 100 or 200 agents.

With regards to Remark 1, as the expected arrival time is not set, all agents
arrive at the same time. The majority of agents don’t ever permit, deny or
attempt to tailgate, therefore, a decision tree will make inaccurate predictions
for some agents, particularly when more than 50 agents are used.

Remark 2 If the probabilistic parameter is set, then the average error rate sig-
nificantly increases. In particular, it impacts more than both the Messenger and
Social Norms parameters.



Table 2: 100 Agents: p1: Expected Arrival Rate; p2: Probabilistic Decision;
p3: Norms Influence (Social Proof); p4: Messenger Influence; p5: Personality;
µ(error): Average error rate of a model; pr(s): The precision of the model to-
wards secure; r(s): The recall of the model for secure;

p1 p2 p3 p4 p5 Model µ(error) σ(error) pr(s) r(s)

m1 0.255 0.067 0.659 0.830
X m2 0.001 0.002 1 0.997
X X m3 0.234 0.028 0.697 0.712
X X m4 0.073 0.019 0.963 0.953
X X m5 0.160 0.024 0.884 0.898
X X X m6 0.094 0.018 0.928 0.938
X X X m7 0.114 0.016 0.904 0.910
X X X m8 0.271 0.024 0.724 0.731
X X X m9 0.367 0.031 0.634 0.624
X X X X m10 0.027 0.012 0.975 0.969
X X X X X m11 0.277 0.028 0.675 0.675

The use of the probabilistic parameter significantly increases the average
error rate of the decision trees. Due to the uncertainty of agent behaviour, i.e.
secure agents acting usable and vice versa, a secure agent could have always
behaved as usable. A classifier model would always conclude that they are usable
when they are in fact secure. Whilst Remark 2 is not surprising, the impact
of uncertain behaviour against social influences is a useful result for a security
practitioner. In the real world, some people will always be secure or usable, some
hover between the two and some are slightly more secure or slightly more usable,
some insight towards these numbers would allow us to calculate the impact of
agents towards a model.

Remark 3 The Messenger influence has a slightly more of an impact to the
error rate, precision and recall of a model than Social Norms. It is true for all
four of the test cases. They both impact the error rate, precision and recall of
every model.

The influences themselves differ in how they are implemented. The Messenger
relies on an agent observing a behaviour of another agent that they consider to
be an authoritative figure. The Social Norms is a cumulative influence, where the
number of observations of a particular action can trigger the security preference
of an agent to change. For Remark 3, the interest is that they are not probabilistic
behaviours, they are private behaviours.

We have defined very simple rules for our influences. We wish to know if de-
cision trees are capable of generating rules to deal with these simple behaviour
changes. Given the data for our number of agents. We can see a slight improve-
ment when 200 agents are present. However, the decision trees still perform
poorly for these basic implementations of influences.



Remark 4 On average, the models for 200 agents are more accurate than 50
and 100 agents.

A trend emerged for the accuracy of models as we increased the number of
agents. Whilst some of the models were more accurate for 50 agents, in general
Remark 4 holds, in particular for the complex models where influences and
probabilistic decisions are present. This is due to an increase number of entries
to train decision trees, improving its accuracy.

Overall, we can see that with some basic aspects of human behaviour such as
an uncertainty of decisions between secure and usable agents, the decision trees
perform poorly. Even more so that we are just considering the polar opposites
for security preferences. Whilst the influencing effects implemented are relatively
simple, we believe as they increase in complexity, i.e. become heterogeneous for
each agent, this would reduce the accuracy of decision trees even more. On
another note, and mainly due to processing limitations, it’s not clear if the
accuracy can be improved by generating thousands of traces to use in the cross
validation analysis.

7 Conclusion

In this paper we designed a multi agent system to generate synthetic data.
Secondly, we identified features from the synthetic data. Finally, using cross
validation we trained and tested many different decision trees for four test cases.

The generated decision trees showed that as the complexity of human be-
haviour increases, the less accurate decision trees are for predicting attributes,
in this case, the security preference of employees. The remarks from Section 6
highlight the important features of the models with regards to the parameters.
For example, probabilistic decisions impact the model significantly more than
influences with regards to the error rate, precision and recall. Between the influ-
ences, the Messenger influence had a greater impact, however, this is partially
down to how a security practitioner or designer implements behaviour change.

The insights towards the impact of these different parameters allows for an
understanding between the limitations of decision trees and predicting security
preferences. In particular, the certainty in the accuracy of the decision trees.

The three elements of the MAS allow for the bigger problem to be broken
down into manageable chunks towards validation. For example, focusing on how
we observe and formalising this notion will further support the work carried out
here. Interviews to evaluate how our behaviour changes, again, will improve the
MAS presented in this work.

The future of this work will target the unanswered questions that we can draw
from this paper. Providing validation for those three elements of the multi agent
system which are the physical locations, observations and behaviour change.
Calculating the impact the parameters have towards error rate, precision and
recall would allow a security practitioner to identify when probabilistic agents,
influences or any other behaviours are present without having prior knowledge as



we did. The techniques for building classifier models will be explored, for exam-
ple, by considering different algorithms for building classifier trees, or sampling
a range of features to assess the importance of each feature.
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Appendix A Additional Results

Table 3: 50 Agents; See Table 2 for column definitions.

Model µ(error) σ(error) pr(s) r(s)

m1 0.070 0.037 0.896 0.943
m2 0.018 0.010 0.974 0.980
m3 0.279 0.035 0.658 0.642
m4 0.050 0.025 0.947 0.950
m5 0.162 0.029 0.853 0.867
m6 0.031 0.018 0.955 0.977
m7 0.091 0.030 0.893 0.937
m8 0.266 0.039 0.701 0.686
m9 0.365 0.051 0.694 0.656
m10 0.017 0.012 0.976 0.986
m11 0.325 0.056 0.622 0.581

Table 4: 200 Agents; See Table 2 for column definitions.

Model µ(error) σ(error) pr(s) r(s)

m1 0.201 0.135 0.861 0.912
m2 0.006 0.003 0.996 0.998
m3 0.170 0.013 0.910 0.888
m4 0.014 0.006 0.993 0.993
m5 0.050 0.009 0.976 0.972
m6 0.024 0.007 0.984 0.990
m7 0.047 0.011 0.976 0.973
m8 0.140 0.021 0.933 0.912
m9 0.277 0.029 0.833 0.812
m10 0.040 0.008 0.975 0.980
m11 0.161 0.016 0.920 0.892
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