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Abstract. Using the GPUs embedded in mobile devices allows for in-
creasing the performance of the applications running on them while re-
ducing the energy consumption of their execution. This article presents a
task-based solution for adaptative, collaborative heterogeneous comput-
ing on mobile cloud environments. To implement our proposal, we extend
the COMPSs-Mobile framework – an implementation of the COMPSs
programming model for building mobile applications that offload part of
the computation to the Cloud – to support offloading computation to
GPUs through OpenCL. To evaluate our solution, we subject the proto-
type to three benchmark applications representing different application
patterns.

Keywords: programming model, heterogeneous computing, collabora-
tive computing, GPGPU, OpenCL, Mobile Cloud Computing, Android

1 Introduction

Graphical Processing Units (GPUs) employ SIMT architecture to achieve higher
instruction execution rates compared to multi-core CPUs while saving energy
through simpler control logic. During the last decade, heterogeneous systems
combining multi-core CPU, GPU, and other accelerators have become ubiquitous
thanks to the general-purpose computing on GPU (GPGPU) frameworks. Even
some system-on-chips (SoCs) already have integrated them on the same die;
for instance, the Qualcomm Snapdragon and the NIVIDA Tegra. Both target
mobile devices where energy efficiency is a major issue and CPU computing
power, highly constrained.

The most widely used programming models for developing applications for
GPGPU are OpenCL [9] and CUDA [14]. Both present the hardware as a parallel
platform allowing programmers to be agnostic to the actual parallel capabilities
of the underlying hardware. On the one hand, these frameworks offer a multi-
platform programming language to describe the computation to perform on the
computing device; and, on the other hand, they provide an API to handle the
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parallel platform (launching computations, managing memory, and querying ac-
tual hardware details for high-performance purposes).

In this article, we propose a solution to enable applications running on a
mobile device to exploit the heterogeneous resources of a distributed system.
The internal computing devices within the mobile (CPU, GPU and other ac-
celerators) and external resources in the Cloud (either nearby cloudlets or VM
instances hosted on Cloud providers such as Amazon) collaborate to shorten the
execution time, reduce the energy footprint and improve the user experience. For
that purpose, we based our work on COMPSs-Mobile [11], an implementation
of the COMPSs [12] programming model specifically designed for Mobile Cloud
environments.

COMPSs is a task-based programming model that automatically exploits the
parallelism inherent in an application. Developers code in a sequential fashion,
being totally unaware of the underlying infrastructure and without using any
specific API. At execution time, a runtime system detects the tasks that compose
the application and orchestrates their execution on the available resources (local
computing devices or remote nodes) guaranteeing the sequential consistency of
the application.

Given that CUDA is a proprietary platform exclusive for devices equipped
with the Tegra SoC – considering only embedded devices –, we opted for building
our prototype on OpenCL: an open standard widely adopted by processor manu-
facturers, and thus, by a wide range of users. However, the proposed architecture
does not lose any generality, and CUDA support could be easily added.

The contribution presented in this work consists on enabling COMPSs-Mobile
applications to benefit from the computing resources within the mobile device
other than the cores of CPU. For that purpose, we extend the COMPSs program-
ming model to allow developers to declare the availability of OpenCL kernels that
implement a task. Regarding the COMPSs-Mobile system, we revisit the policy
to assign computing resources to each task, so it considers offloading parts of
the computation to any embedded OpenCL device. To ease the interaction of
the runtime system with the devices, we construct a generic computing plat-
form leveraging on OpenCL. This platform orchestrates the execution of tasks
on a settable OpenCL device; it submits the necessary commands to execute
the corresponding kernels and manage the content of the memory of the device
for kernels to operate on correct values. Thus, our solution hides from the pro-
grammer all the parallel platform management details (no need of invoking the
API of the GPGPU framework) while the application user profits from their use.
Finally, we conducted several tests to evaluate the behavior of the resulting pro-
totype in different situations and measure the potential benefits of our proposal
on Android applications.

The article goes on presenting the related work in Section 2. Section 3 intro-
duces the extended COMPSs programming model, while Section 4 gives insights
on the runtime implementation to support the execution of tasks on GPGPU
devices. In Section 5, we describe the applications used for evaluating the per-
formance of the solution and present the obtained results. Finally, to wrap up
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the article, we expose the conclusions and future directions of our research in
Section 6.

2 Related Work

To the best of our knowledge, COMPSs-Mobile is the first framework target-
ing mobile devices to bring together adaptative, heterogeneous computing and
computation offloading to the Cloud.

Regarding adaptative heterogeneous computing on mobile devices, Android
already provides a natively integrated framework for running computationally
intensive tasks at high performance: RenderScript [2]. Programming with a C99-
derived language, developers write code portable across the computing devices
available on the SoC. At execution time, the RenderScript toolkit parallelizes the
work considering the availability of the resources (load balancing) and manages
the memory. Although RenderScript achieves performances similar to OpenCL
or CUDA, it can not exploit remote resources.

Beyond mobile computing, there exist other programming models/languages
aiming to ease the development of task-based applications with GPU support.
OmpSs [7] and StarPU [3] are two programming models that leverage on OpenMP
pragmas to declare either CPU or GPU task implementations. Conversely, PaR-
SEC [4] allows programmers to describe the application as a DAG compactly
represented in a format called JDF. For each task, JDF indicates the execu-
tion space, the parallel partitioning of the data, how the method operates on
the parameters and the method to call to execute the task (allowing one CPU
implementation and one for the GPU).

Regarding automatic computation offloading to Cloud resources from mobile
devices, there exist several other frameworks that consider CPU task offloading.
Some examples are AlfredO [16], Cuckoo [8], MAUI [6], CloneCloud [5] and
ThinkAir [10]. However, they only consider CPU code offloading; developers need
to deal explicitly with GPGPU frameworks to exploit the computing power of
GPUs and manually balance the load across the computing devices.

Although COMPSs-Mobile does not currently offload GPU code to remote
nodes, other frameworks already have implemented it. To exploit GPGPUs on
mobile devices without a GPU, Ratering et al. [15] propose using virtual OpenCL
devices as the interface to compute clouds. For CUDA-enabled applications,
rCUDA [17] takes a driver-split approach where the driver manages all the nec-
essary details to execute the kernels on the local or remote GPU. A complete
framework for computation offloading is the result of the RAPID[13] EU project,
which allows CPU and GPU code offloading; however, none of the proposed of-
floading frameworks automatically deals with load balancing.

3 Programming Model

COMP Superscalar (COMPSs) is a framework that aims to ease the develop-
ment and execution of parallel applications atop distributed infrastructures. The
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core of the framework is the COMPSs Programming Model (PM) which ab-
stracts away the parallelization and distribution concerns by offering a sequen-
tial, infrastructure-agnostic way of programming. The PM considers applications
as composites of invocations to pieces of software whose execution is to be or-
chestrated aiming to exploit the parallelism inherent in the application. These
computations are encapsulated as methods, called Core Elements (CEs) .

During application development, programmers write their code in a sequen-
tial fashion with no references to any COMPSs-specific API or the underlying
infrastructure. At execution time, calls to CE methods are transparently replaced
by asynchronous tasks whose execution is to be orchestrated by the runtime sys-
tem. To define CE methods, developers create an interface, called Core Element
Interface (CEI), where they declare those methods along with some meta-data in
the form of directives. To pick a method as a CE, the programmer annotates the
method declaration on the CEI with @Method indicating the class containing
the method implementation. The code snippet in Figure 1 reproduces a simple
example of a COMPSs application. Subfigure 1(a) shows the sequential code
of the application which runs N simulations and selects the best one. The CEI
presented in Subfigure 1(b) selects two methods to become a CE: runSimulation
and getBest.

For the runtime system to determine the dependencies between CE invoca-
tions, developers specify how each CE operates on the accessed data (its param-
eters) by adding (@Parameter) directive indicating the parameter type – which
can be automatically inferred at execution time – and directionality (in, out, in-
out). The runSimulation CE is a void method with no parameters that updates
the content of the callee instance with the result of the simulation considering
its initial value; therefore, the only datum on which the method operates is the
callee. COMPSs considers the object from which the method is invoked as an
implicit INOUT access. Conversely, getBest is a static method which compares
two Sim objects and returns the one whose simulation obtained a better per-
formance. Consequently, the developer declares the CE on the CEI with two IN
parameters.

public Sim checkSimulation(int N) {
Sim best = null;
for (int i=0; i < N; i++) {

Sim s = new Sim();
s.prepareSimultation(...);
s.runSimulation();
best = Sim.getBest(best, s);

}
return best;

}

(a) Application main code

public interface SampleCEI {
@Method(declaringClass=”Sim”)
void runSimulation();

@Method(declaringClass = ”Sim”)
Sim getBest(

@Parameter(direction = IN)
Sim s1,
@Parameter(direction = IN)
Sim s2

);
}

(b) Core Element Interface

Fig. 1. Sample application code written in Java
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Often, several algorithms exist to achieve the same functionality with dif-
ferent requirements and complexity; for instance, the MergeSort and RadixSort
algorithms sort a set. COMPSs supports these cases, but all the versions of the
same CE need to be homonymous – sort – and share parameters and access
patterns. To declare multiple versions for a CE, the programmer adds as many
@Method directives as different versions and in each one indicates the imple-
menting class as shown in the code snippet in Figure 2. The runtime creates a
new task for the CE regardless the called method and selects the implementation
to run according to the running host and input data characteristics.

@Method (declaringClass = ”containing.package.RadixSort”)
@Method (declaringClass = ”containing.package.MergeSort”)
void sort (

@Parameter(direction = INOUT)
int[] values

);

Fig. 2. Sort method CE declaration with two possible versions implemented in Radix-
Sort and MergeSort classes respectively.

3.1 Extension for GPU support

Likewise, different versions can target different computing architectures; pro-
grammers can implement the same CE to run on a CPU core or GPU threads.
To indicate OpenCL implementations of a method, programmers annotate the
method declaration with @OpenCL. In this case, instead of pointing out the
class implementing the method, programmers indicate the file (attached as an
application resource) containing the OpenCL code of the kernel.

As with native language implementations, the runtime determines which ver-
sion is to run and makes all the management to enable its execution. In the case
of an OpenCL implementation, this includes the copy of input values into the
GPU memory, the kernel invocation, the monitoring of the execution, and the
collection of output values.

Unlike CPU-oriented languages, where programmers describe the computa-
tion to run on a single core, the sequential code in OpenCL and CUDA runs con-
currently on several execution threads known as work-items. For each work-item
to operate on a specific subset of the input/output data, they are uniquely iden-
tified according to the coordinates within a 3D grid. Developers are to specify the
number of work-items through the dimensions of this grid (global work size) and
the offset (global work offset) used to calculate the global ID of the work-item re-
garding the original coordinates. Besides, the library partitions the grid in several
work-groups whose dimensions are defined as another 3D grid (local work size).
Each work-item within a work-group has a local ID, and programmers can syn-
chronize the progress of the work-items within a work-group. For the COMPSs
runtime system to invoke the kernel automatically, developers indicate these
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three values on the CEI by adding three attributes to the @OpenCL directive.
However, the actual value of these variables – specially global work size – may
depend on the input values or its size. For that purpose, COMPSs allows simple
algebraic expressions using the values and dimensions of the parameters as vari-
ables. To refer to a parameter, the developer uses the keyword par along with
its index – starting by 0 –; for instance, par0 would refer to the first parameter
of the invocation; par1, to the second one; and so on so forth. If the parameter
is a number, COMPSs can use its value; if the parameter is an array, it can
use the value of one of its positions or its length. For multi-dimensional arrays,
developers can refer to the length of any of its dimensions using the dimensional
identifiers x, y and z respectively to indicate the first, second and third dimen-
sion. The default value for global work offset is (0, 0,... 0) and NULL for the
local work size, in which case the OpenCL implementation determines how to
break the global work-items into appropriate work-group instances.

Another important characteristic of OpenCL is that kernels do not return
values. To work around the constraint that OpenCL kernels must be void func-
tions, COMPSs assumes the return value, if any, to be the last parameter of
the kernel; therefore, the kernel implementations of a CE with return value have
an additional parameter compared to the native language implementations. As
opposed to native methods, where the return value is created within the method
code, the memory space for the return value of OpenCL implementations needs
to be allocated prior the invocation of the kernel. The runtime is to manage the
allocation of result values automatically when it decides to run an OpenCL ker-
nel. Again, the amount of memory to allocate depends on each CE and, likely, on
the input values; therefore, programmers need to specify the number of elements
within each dimension of the return value with an algebraic expression. The ac-
tual number of bytes is inferred according to the return type of the declaration.

Figure 3 depicts an example of a COMPSs application performing a matrix
multiplication. The actual computation of the operation is encapsulated within
a CE, multiply, implemented either as a regular method and an OpenCL kernel.
Note that, while the Java version has two parameters (A and B) and returns
value, the OpenCL implementation is a void method with three parameters (a,
b and c) .

4 Runtime Support Implementation

To parallelize and distribute the computation, COMPSs-Mobile replaces the CE
invocations by asynchronous tasks whose execution is orchestrated by the run-
time toolkit. Also, accesses to data generated on remote nodes need to fetch
the value. To instrument the application, COMPSs-Mobile extends the Android
application building process and adds an extra step: Parallelization. For code
instrumentation, the framework leverages on Javassist [1] to replace the origi-
nal Java bytecode with an instrumented version. Thus, when the user runs the
application, the instrumented calls are executed and invoke the runtime toolkit.
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package es.bsc.compss.matmul;

public class Matmul {
public static void main(String[] args) {

int[][] A;
int[][] B;
int[][] C;
...
C = multiply(A, B);
...

}

public static int[][] multiply(int[][] A, int[][] B) {
// Matrix multiplication code
// C = AB
...
return C;

}
}

(a) Application Java code

kernel void multiply (
global const int *a,
global const int *b,
global int *c)

{
//Matrix multiplication code
// C = AB
...

}

(b) OpenCL code in matmul.cl

public interface CEI {
@OpenCL(kernel=”matmul.cl”, globalWorkSize=”par0.x,par1.y”, resultSize=”par0.x,par1.y”)
@Method(declaringClass=”es.bsc.compss.matmul.Matmul”)
int[][] multiply (

@Parameter(direction = IN)
int[][] A,
@Parameter(direction = IN)
int[][] B

);
}

(c) Core Element Interface

Fig. 3. Example of a matrix multiplication with two implementations: one in OpenCL
and one as a regular method.

4.1 COMPSs-Mobile Runtime Architecture

The main purpose of the toolkit is to orchestrate the execution of CE invocations
(tasks) to fully exploit the available computing resources (local devices or remote
nodes) while guaranteeing sequential consistency. Since several applications can
share computing resources and data values, the runtime library consists of two
parts.

On the one hand, the application-private part of the runtime controls those
aspects of the execution related to the application. In other words, it detects
CE invocations and creates new asynchronous tasks, monitors the private values
they access (objects) and hosts the execution of the tasks. On the other hand,
the orchestrator is in charge of handling all those aspects of the execution that
might affect several applications; namely, accesses to shared data (files) and
managing the usage of the available computing devices. While each COMPSs-
Mobile application instantiates the application-private part of the runtime, there
is only one single instance of the former deployed in an Android device running
as an Android service on a separate process.

The Analyzer processes tasks upon their detection; private and public data
registers identify the accessed data values and assign a unique ID to the cor-
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Fig. 4. Runtime system architecture

responding version. These IDs allow the runtime to detect and enforce data
dependencies among tasks. After that, tasks move forward to the Executor for
their execution. To decide which resources should host the execution, the runtime
relies on the concept of Computing Platform: a logical grouping of computing
resources capable of running tasks. The decision is made by the Decision En-
gine (DE), which is unaware of the actual computing devices supporting the
platform nor the details of their interaction. The DE polls each of the available
platforms – configured by the user beforehand – for a forecast of the expected
end time, energy consumption and economic cost of the execution. According
to a configurable heuristic, the DE picks the best platform to run the task and
requests its execution. The selected platform is responsible for monitoring the
data dependencies of the task and scheduling both the execution of the task
on its resources and the obtaining and preparation of any necessary value. To
achieve these duties, each platform can turn to different strategies: centralizing
the management on the orchestrator process, centralizing it in a remote resource
or distributed across multiple resources. Regardless the approach followed to
solve the scheduling, all platforms delegate the execution of tasks on a Platform
Backend hosted off the orchestrator. For platforms handling local resources, the
backend runs on the application-private part of the runtime since both the ap-
plication code and any possible object are private elements of the application.
Otherwise, the backend is a service running on a remote node.

In order to support data value delivery, each process hosts a common data
repository, the Data Manager (DM). The DM is asynchronous; either Comput-
ing Platforms, Platform Backends or the instrumented code of the application
subscribe to the existence or value of datums (using the unique ID assigned by
the Analyzer), and the DM notifies all the subscribers upon the publication of
the value. The local instance of the DM is responsible for handling the fetching
of requested values if they are located in a different process.

Figure 4 contains a diagram of the runtime architecture.
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4.2 OpenCL Platform

In order to enable the execution of tasks on GPU devices, we implemented a
Computing Platform with its corresponding OpenCL Platform Backend running
on the application process. Each such platform maps to one computing device
of an OpenCL platform, whose names are provided by the users when setting
up the available platforms.

Upon the submission of a new task execution, the platform subscribes to the
existence of all the input values and continues to monitor the status update from
the DM until the task is dependency-free. To properly manage the lifecycle of
several concurrent tasks, the platform has an event-based Task Scheduler that
leverages on the out-of-order mode of OpenCL. The out-of-order mode allows
OpenCL users to enqueue commands with no specific order of execution; users
explicitly enforce order constraints across commands using events that OpenCL
returns upon the command submission. Once the last dependency is satisfied,
the platform orders its backend to fetch all the input values in a remote location
through the DM and run the kernel.

Once the DM in the application process has all the input values loaded on the
host memory, the backend needs to copy the input values from the host memory
to the memory of the GPU device before launching the kernel on the GPU. For
that purpose, it creates a memory buffer for each parameter and enqueues buffer
copies for every value read by the kernel. Immediately after that, it enqueues
the kernel invocation depending on the ordered copies to enforce the completion
of the copies before the kernel executes. For each parameter updated during the
kernel execution, the backend enqueues a memory copy command depending on
the kernel execution to retrieve the new value. For detecting the end of the kernel
and collecting all the outputs, the backend subscribes a listener for the kernel
execution event and one for each value-to-read. Once it finishes, the backend
stores the results on the local DM.

To better exploit locality, the backend monitors the content of the device
memory. By keeping track of the buffer containing each data value and the
writing event, the backend can discover the existence of another buffer with the
value. Using the existing buffer as a parameter of the kernel and enforcing its
execution to wait upon the corresponding writing event, the scheduler avoids
the overhead of creating and filling a new buffer. Hence, the backend notices
the existence of those values computed on the device when the producing kernel
invocation is enqueued and internally bypasses the existence notification of the
DM to hand over the scheduling of the kernel to OpenCL.

We expect COMPSs-Mobile applications to have a high degree of parallelism
and a sufficient number of coarse-grain tasks so that data transfers (from the
remote nodes and to the GPU memory) can overlap with the execution of other
tasks. When generating a forecast of completion time for tasks, the runtime
considers the execution time and the wait for resources (memory allocation for
result values happens during this waiting period, and the actual transfer time is
negligible). Cost is only related to the number of bytes transferred from remote
nodes. The energy model considers the consumption during the execution and
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the energy spent on transfers from remote nodes; transfers from and to the
device memory are also negligible. The platform uses the statistical data from
the profiling of previous executions to predict the forecasts.

5 Performance Evaluation

To validate our proposal, we ported three applications to Android following the
COMPSs programming model: Digits Recognition (DR), Bézier Surface (BS) and
Canny Edge Detection (CED). DR is a Convolutional Neural Network trained
to recognize digits out of hand-written numbers. The algorithm applies eight
processing steps to a set of images. We merge the processing of all the images
on each step within a task; thus, the application becomes a sequence of tasks.
BS is a mathematical spline that interpolates a surface given a set of control
points. The application splits the output surface, and each task computes the
result values within a chunk independently of each other. Finally, CED is an
image-processing algorithm for edge detection where each frame goes through a
four-stage process (Gaussian filter, Sobel filter, non-maximum suppression and
hysteresis) each one encapsulated within a CE. We apply the algorithm to 30
frames of 354x626 pixels producing a workload composed of 30 parallel chains of
four tasks. We selected these applications and implementations because of the
diversity of patterns presented by their workloads as shown in Figure 5.

(a) DR (b) BS (c) CED

Fig. 5. Applications’ dependency graphs

The experiments to evaluate the behavior of our prototype run on a OnePlus
One smartphone equipped with a Qualcomm SnapDragon 801 processor (a Krait
400 quad-core CPU at 2.5 GHz and an Adreno 330 GPU). We appraise different
configurations using two Computing Platforms operating on the local resources:
the CPU Platform using the cores of the CPU (varying the number of available
ones) and the OpenCL Platform leveraging on the Adreno device.

5.1 OpenCL Platform Performance

The first test aims to check the proper behavior of the OpenCL platform and
evaluate the impact of the implemented optimizations. For that purpose, we
executed the three applications considering six possible scenarios: CPU, GPU,
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R1CPU, R4CPU, RGPU, RGPUO. The CPU and GPU scenarios execute an
Android-native version of the application; while CPU runs the application se-
quentially on the CPU, GPU naively5 offloads the computation to the GPU
through OpenCL. On the remaining four scenarios, the developer codes the ap-
plication following the COMPSs programming model and the final user sets up
the runtime to force the runtime to execute on a specific computing platform.
On R1CPU and R4CPU, the runtime uses only the CPU platform exploiting
one and four cores respectively. On RGPU and RGPUO, the runtime offloads all
the tasks to the GPU through the OpenCL platform. The former disables all the
optimizations obtaining a behavior similar to the GPU scenario, while the latter
enables all the optimizations (reusing memory buffers and overlapping transfers
with other kernel executions).

For each scenario, we measured the execution time and its energy consump-
tion. Within the execution time, we distinguish the amount time spent on the ex-
ecution of tasks (Tasks) from the overhead surrounding the computation (Over-
head). This experiment focuses on isolating the part of this overhead correspond-
ing to transfers between main and devices memories (Ov. Mem.) to evaluate the
benefits of the optimizations implemented on the GPU backend. Regarding the
energy consumption, we only separate the energy used for computing the tasks
(Tasks) from the energy consumed by the whole system including the screen
(System).

Digits Recognition Charts in Figure 6 depict the results obtained from pro-
cessing 512 images with the Digits Recognition application. It is plain to see
that GPU allows a significant improvement both on time and energy regard-
less of using COMPSs. Comparing CPU to GPU scenarios, the execution time
shrinks from 18,516 ms to 4,358 ms (23.53%) – 1,531 ms of which correspond
to memory transfers –; and the energy consumption, from 36.48 J to 8.68 J
(27.8%). R1CPU and R4CPU present a behavior similar to the CPU case since
the application has no task-level parallelism; however, on both cases, the run-
time incurs a negligible overhead (31 ms and 0.02 J) caused by the inter-process
communication among the runtime components. Likewise, the overhead appears
on both scenarios where the runtime uses the GPU. Besides this overhead, the
application performs as on GPU when the platform optimizations are disabled.
When enabled, the runtime reuses the memory values generated by one task
as the input of the succeeding one; thus allows to reduce the overhead of data
copies from and to the device memory from 1,531 ms to 5 ms. The optimizations
implemented for the management of the device memory allow COMPSs-Mobile
to speed up the execution of the application on GPUs even when they have
no task level parallelism. Despite the improvement on the execution time, these
optimizations have a low impact on the energy consumption (0.56 J) since the
source of the most significant part of it is the actual computation of the kernels.

5 OpenCL commands are synchronous, and all the input and output data is copied to
and from the device memory on every kernel execution
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Fig. 6. Execution time (left) and energy consumption (right) obtained from the Digits
Recognition runs

Bézier Surface Interpolling a surface of 1024 x 1024 points using 256 x 256
blocks with the Bézier Surface application presents results similar to DR as
shown in Figure 7. Although GPU computes the tasks 2.99 times faster than the
CPU (2,672 ms vs. 7,984 ms), the memory transfers overhead (337 ms) slows
down the application. It only achieves a 2.65x lower execution time (3,009 ms)
and a 50.45% reduction of the energy consumption (15.73 J vs. 7.8 J). As with
DR, the runtime incurs a little overhead (39 ms and 0.02 J) when comparing
CPU to RCPU and GPU to RGPU.

Unlike DR, tasks in BS have no dependencies; thus, the runtime can ex-
ploit the parallelism and use the four cores of the CPU at a time speeding up
the execution of the kernels up to 2.72x (2,939 ms). The reduction of the CPU
frequency to control the temperature of the processor and the thread oversub-
scribing with the runtime threads separates the obtained performance from the
optimal. These measures increase the energy consumption of the tasks which
grows from 15.74 J to 19.65 J. Since BS tasks have no dependencies, they never
read values generated by other tasks; therefore, the runtime cannot reuse values
already transferred for preceding tasks. However, the computation of one task
can overlap with the transfers of output/input values of the preceding and suc-
ceeding ones. This optimization allows the runtime to reduce the time spent on
memory transfers from 337 ms to 3 ms on the RGPUO scenario. On the RGPUO
scenario, BS lasts 2,714 ms and consumes 7.68 J.
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Canny Edge Detection In this case, the GPU device processes the 30 frames
in 420 ms, 11.95x faster than the CPU; and again, the data transfers worsen the
application performance adding a 324 ms overhead. In overall, the application
takes 5,020 ms to run in the CPU scenario and consumes 9.39 J; while for the
GPU case, it needs 744 ms and 1.33 J respectively. The runtime adds an overhead
of 34 ms and 0.02 J slightly noticeable when comparing CPU and GPU to R1CPU
and RGPU, respectively.

In this case, the application presents task-level parallelism and dependencies
among tasks; thus, the GPU can apply both optimizations. The GPU reuses the
output of some tasks as the input of its successors; thus, the runtime reduces
the number of transfers. Besides, the remaining transfers can overlap with the
computation of other dependency-free tasks. Enabling these optimizations allows
the runtime to reduce the 324 ms overhead caused by memory transfers to 1 ms.
On the RGPUO scenario, the application lowers the execution time to 455 ms
and its energy consumption to 1.22 J.
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Fig. 8. Execution time (left) and energy consumption (right) obtained from the Canny
Edge Detection runs

5.2 Load balancing policies

The second experiment studies the impact of extending the resource-assignment
policies on the execution time and energy consumption of the application. For
that purpose, we run the COMPSs-Mobile version of each application with dif-
ferent task granularity using every possible combination of resources. For the
heterogeneous scenarios - i.e., using both computing platforms -, we compare
the results of three different policies: Static, DynPerf and DynEn. Static is a
predetermined load distribution that mimics what application developers could
easily devise to minimize the execution time. The load arrangement employed
on each execution depends on the application workflow, the number of tasks
and the time they require to run on each device; further details on the division
applied on each application are provided on the corresponding subsection. With
the same purpose, the DynPerf policy automatically decides which computing
platform executes the task according to the earliest end time forecasted by the
platforms. Conversely, DynEn aims to find a balance between reducing the exe-
cution time and the additional energy that it incurs. For that purpose, the policy
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takes into account not only the end time of the task but also the energy spent
on its processing; the policy would pick a later end time if for each sacrificed ms
the application can save 5 mJ.

Digits Recognition DR is an application where a set of images go through
a 7-stage process. Each stage is encapsulated in a task; thus, their granularity
depends on the number of images to process. In this experiment, we use three
different input sets composed of 128, 256 and 512 images. Since DR has no task-
level parallelism, we dismiss all those configurations using more than one core of
the CPU. All the CEs that compose the application take less time and energy
to run on the GPU device than on the CPU; therefore, the Static policy for this
application consists of submitting all the tasks to the GPU.
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Fig. 9. Execution time (left) and energy consumption (right) for Digit Recognition
runs using 128, 256 and 512 images (from top to bottom)

Charts in Figure 9 show the execution time (left) and energy consumption
(right) when processing 128, 256 and 512 images (from top to bottom). Despite
the difference in the magnitude of the values, the application behaves alike re-
gardless the input size. As we double it, almost does so the execution time and
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the energy consumption whether if the application runs on the CPU (4,762 ms
and 9.333 J for 128 images; 9,410 ms and 18.490 J for 256 images, and 18,547
ms and 36.493 J for 512 images) or on the GPU (731 ms and 2.015 J, 1,446 ms
and 4.065 J, and 2,862 ms and 8.127 J respectively for processing 128, 256 and
512 images). Given that the GPU is faster and less energy-consuming than the
CPU and that the application presents no task-level parallelism, submitting all
the executions to the GPU is the optimal solution either from the performance
or the energy point of view. Hence, both dynamic policies schedule all the ex-
ecutions to the GPU as expected. Despite all the employed configurations use
the COMPSs-Mobile runtime which incurs an overhead, it is important to no-
tice that dynamically deciding where to run a task adds no significant overhead
compared to those cases where the runtime handles a homogeneous system or
the decision is statically set beforehand.

Bézier Surface BS is an application whose task-granularity and parallelism
depends on the partitioning of the output. For this experiment, the application
computes a fixed-size surface of 1024x1024 points varying the size of the chunk
computed by a task from a 1024x1024 block – 1 task –, through 256x256 – 4
tasks – and 512x512 blocks – 16 tasks–, right up to blocks of 128x128 points
– 64 tasks. Figure 10 depicts the execution time (left) and energy consumption
(right) of running the application with the four granularities (top to bottom).
Considering the number of tasks, the number of CPU cores and the ratio between
the time to run a task on a GPU and a CPU – the more CPU cores are used,
the higher the speedup is; 3x, 3.4x, 3.9 and 4.3x respectively for using 1, 2, 3
and 4 cores –, it is easy for the application developer to find the number of tasks
to assign to each computing device to minimize the application execution time.
For instance, in the case of a 128x128 block size output using a single core of the
CPU, the speedup is 3.03x; thus, the optimal load balancing from a temporal
point of view is to run 48 tasks on the GPU while the CPU core processes 16.
For the Static policy in this experiment, we assume the application developer to
be fully aware of the number of CPU cores to use, the granularity of the task and
the corresponding speedup and code the application to balance the load using
this knowledge.

From a temporal point of view, the Static policy balances the load in such
a way that the execution time is minimal. As with DR, DynPerf behaves like
Static in all executions (as expected) achieving the optimal performance with no
significant overhead due to taking the decision dynamically. Regarding energy
consumption, running all the tasks on the GPU is the optimal solution in all
four cases (7.825 J, 7.741 J, 7.684 J and 7.538 J respectively for 1024, 512, 256
and 128). The cause of this reduction in the energy is the better performance of
the GPU when processing smaller chunks – 2,692 ms to compute the surface in
one single block vs. 2,621 ms to compute 64 blocks, 40.96 ms each –; the CPU
behaves alike – 8,035 ms vs. 7, 934 ms.

For those cases with a coarse granularity, the low number of tasks and the big
difference in the energy consumption of the computing devices lead the DynEn



16 Francesc Lordan, Rosa M. Badia, and Wen-Mei Hwu

 0

 2000

 4000

 6000

 8000

 10000

S
t
a
t
i
c

D
y
n
P
e
r
f

D
y
n
E
n

Tasks

Overhead

T
im

e
 (

 m
s
 )

 
  
 

1CPU    
+ GPU    

GPU      1CPU    

 0

 5

 10

 15

 20

S
t
a
t
i
c

D
y
n
P
e
r
f

D
y
n
E
n

Tasks

System

E
n

e
rg

y
 (

 J
 )

 
  
 

1CPU    
+ GPU    

GPU      1CPU    

 0

 2000

 4000

 6000

 8000

 10000

1
 
c
o
r
e

2
 
c
o
r
e
s

3
 
c
o
r
e
s

4
 
c
o
r
e
s

S
t
a
t
i
c

D
y
n
P
e
r
f

D
y
n
E
n

S
t
a
t
i
c

D
y
n
P
e
r
f

D
y
n
E
n

S
t
a
t
i
c

D
y
n
P
e
r
f

D
y
n
E
n

S
t
a
t
i
c

D
y
n
P
e
r
f

D
y
n
E
n

Tasks
Overhead

T
im

e
 (

 m
s
 )

 
  
 

4CPU    
+ GPU    

3CPU    
+ GPU    

2CPU    
+ GPU    

1CPU    
+ GPU    

GPU      only CPU    

 0

 5

 10

 15

 20

1
 
c
o
r
e

2
 
c
o
r
e
s

3
 
c
o
r
e
s

4
 
c
o
r
e
s

S
t
a
t
i
c

D
y
n
P
e
r
f

D
y
n
E
n

S
t
a
t
i
c

D
y
n
P
e
r
f

D
y
n
E
n

S
t
a
t
i
c

D
y
n
P
e
r
f

D
y
n
E
n

S
t
a
t
i
c

D
y
n
P
e
r
f

D
y
n
E
n

Tasks
System

E
n

e
rg

y
 (

 J
 )

 
  
 

4CPU    
+ GPU    

3CPU    
+ GPU    

2CPU    
+ GPU    

1CPU    
+ GPU    

GPU      only CPU    

 0

 2000

 4000

 6000

 8000

 10000

1
 
c
o
r
e

2
 
c
o
r
e
s

3
 
c
o
r
e
s

4
 
c
o
r
e
s
 

S
t
a
t
i
c

D
y
n
P
e
r
f

D
y
n
E
n

S
t
a
t
i
c

D
y
n
P
e
r
f

D
y
n
E
n

S
t
a
t
i
c

D
y
n
P
e
r
f

D
y
n
E
n

S
t
a
t
i
c

D
y
n
P
e
r
f

D
y
n
E
n

Tasks
Overhead

T
im

e
 (

 m
s
 )

 
  
 

4CPU    
+ GPU    

3CPU    
+ GPU    

2CPU    
+ GPU    

1CPU    
+ GPU    

GPU      only CPU    

 0

 5

 10

 15

 20

1
 
c
o
r
e

2
 
c
o
r
e
s

3
 
c
o
r
e
s

4
 
c
o
r
e
s

S
t
a
t
i
c

D
y
n
P
e
r
f

D
y
n
E
n

S
t
a
t
i
c

D
y
n
P
e
r
f

D
y
n
E
n

S
t
a
t
i
c

D
y
n
P
e
r
f

D
y
n
E
n

S
t
a
t
i
c

D
y
n
P
e
r
f

D
y
n
E
n

Tasks
System

E
n

e
rg

y
 (

 J
 )

 
  
 

4CPU    
+ GPU    

3CPU    
+ GPU    

2CPU    
+ GPU    

1CPU    
+ GPU    

GPU      only CPU    

 0

 2000

 4000

 6000

 8000

 10000

1
 
c
o
r
e

2
 
c
o
r
e
s

3
 
c
o
r
e
s

4
 
c
o
r
e
s

S
t
a
t
i
c

D
y
n
P
e
r
f

D
y
n
E
n

S
t
a
t
i
c

D
y
n
P
e
r
f

D
y
n
E
n

S
t
a
t
i
c

D
y
n
P
e
r
f

D
y
n
E
n

S
t
a
t
i
c

D
y
n
P
e
r
f

D
y
n
E
n

Tasks
Overhead

T
im

e
 (

 m
s
 )

 
  
 

4CPU    
+ GPU    

3CPU    
+ GPU    

2CPU    
+ GPU    

1CPU    
+ GPU    

GPU      only CPU    

 0

 5

 10

 15

 20

1
 
c
o
r
e

2
 
c
o
r
e
s

3
 
c
o
r
e
s

4
 
c
o
r
e
s

S
t
a
t
i
c

D
y
n
P
e
r
f

D
y
n
E
n

S
t
a
t
i
c

D
y
n
P
e
r
f

D
y
n
E
n

S
t
a
t
i
c

D
y
n
P
e
r
f

D
y
n
E
n

S
t
a
t
i
c

D
y
n
P
e
r
f

D
y
n
E
n

Tasks
System

E
n

e
rg

y
 (

 J
 )

 
  
 

4CPU    
+ GPU    

3CPU    
+ GPU    

2CPU    
+ GPU    

1CPU    
+ GPU    

GPU      only CPU    

Fig. 10. Execution time (left) and energy consumption (right) for Bézier Surface runs
using block sizes of 1024x1024, 512x512, 256x256 and 128x128 (from top to bottom)

policy to schedule the execution of all tasks on the GPU. On finer-grained sce-
narios, the heterogeneous systems and the GPU present a different behavior. In
the case of 256x256, 1 task is computed on the CPU; thus allows the application
to reduce 167 ms despite an increase of 381 mJ. Using more CPU cores increases
both the execution time and the energy consumption of each task run on the
CPU (by 72 ms and 116 mJ); DynEn dismisses executing more tasks on the CPU
to avoid their growth. Using smaller blocks reduces the difference in time and
energy; thus gives more freedom to the DE and allows more diverse schedulings
as shown by the four heterogeneous cases using 128x128 blocks. With the GPU
and one core of the CPU at its disposal, DynEn assigns 12 tasks to the CPU
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(requiring 2,130 ms and 7.70 mJ to run), while DynPerf assigns 16 tasks to the
CPU (1,983 ms and 8.09 mJ). For the heterogeneous case using 2 CPU cores,
DynEn assigns 18 tasks to the CPU vs. the 23 assigned by DynPerf. Again the
growth on the execution time and energy consumption due to the concurrent
exploitation of multiple cores cuts the number of tasks assigned to the CPU;
DynEn and DynPerf assign 18 and 27 tasks to the CPU with three available
CPU cores. For the same reason, when using all the computing devices of the
phone, DynEn reduces the number of tasks assigned to the CPU to 16 while
DynPerf assigns 30 to it. Thus, DynEn shrinks the energy consumption from
12.09 J to 9.5 J while DynPerf shortens the execution time 570 ms.

Canny Edge Detection Instead of using different input sizes, for the third
application, we always process a 30-frames video. However, we consider two
different workload divisions that the developer could easily implement: Task
Partitioning, where the GPU runs the first two tasks of each frame and the
CPU the last two; and Data Partitioning, where one device processes the whole
frame. Figure 11 shows the execution time (left) and energy consumption (right)
obtained when running the application and compares them to the ones obtained
with DynPerf and DynEn.
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Fig. 11. Execution time (left) and energy consumption (right) obtained from the Canny
Edge Detection runs

Task Partitioning achieves lower energy consumptions while Data Partition-
ing offers better performance. The behavior of Task Partitioning does not change
when it has more than one core at its disposal. The time to process the first two
tasks of a frame on the GPU – 12 ms – is higher than what it takes to execute
the last two – 9 ms and 5 ms respectively, but the executions corresponding to
different iterations can overlap. With one CPU core available, the application
takes 451 ms and consumes 1.71 J, vs. 412 ms and 1.87 J when using two or
more CPU cores.

Data Partitioning assigns the whole processing of a frame to the same com-
puting unit. The problem of this approach is that the number of frames assigned
to the CPU does not progress according to the number of available cores – 2,
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4, 4, 4 frames, respectively for 1 to 4 cores– due to the performance loss when
using multiple cores simultaneously. Using one core, the application takes 427
ms and 1.67 J. When using two or more cores, the execution time shows no im-
provement – 399 ms with 2 and 4 cores available; indeed, using 3 cores worsens
the execution time to 410 ms –; however, the energy consumption reflects the
usage of more cores and increases according to the number of used cores – 2.19
J, 2.40 J and 2.79 J.

DynPerf avoids this effect and schedules the executions similarly to Task
Partitioning but adjusting the load imbalances. When only one core is available,
DynPerf assigns 4 non-maximum suppressions and 1 hysteresis to the GPU to
balance the 2 ms difference. Thus, the execution time is reduced to 411 ms
consuming only 1.65 J. Conversely, when using more cores, the runtime fills
their idle time with Gaussian filter tasks. With two cores at its disposal, the DE
decides to run two of them on the CPU reducing the execution time to 395 ms
with an energy consumption of 1.84 J; with more cores available, it assigns 6
Gaussian filter tasks to the CPU achieving a 379 ms execution time (79 FPS)
with an energy consumption of 2.12 J.

DynEn tends to schedule more tasks on the GPU to avoid the higher con-
sumption of the CPU. Hence, with one available core, the DE submits only 14
non-maximum suppressions and 27 hystereses to the GPU; thus obtaining an
execution time of 422 ms and an energy consumption of 1.51 J – the GPU alone
achieves 455 ms and 1.22 J). From two cores on, the number of non-maximum
suppressions assigned to the CPU raises to 24 to shrink the execution time to
409 ms (73 FPS) with an energy consumption of 1.61 J.

6 Conclusions and Future Work

COMPSs-Mobile is a framework to develop applications targetted to Mobile-
Cloud environments. Its programming model, COMPSs, allows developers to
parallelize their applications automatically with no need of modifying the code.
Through an annotated interface, programmers select the methods whose invoca-
tions are replaced by asynchronous tasks. A runtime toolkit executed along with
the application detects the data dependencies among these tasks and orches-
trates their execution on the underlying infrastructure to exploit the application
parallelism while guaranteeing the sequential consistency of the application.

This article introduces an extension to the COMPSs programming model to
allow the implementation of these tasks as OpenCL kernels to run on GPUs, FP-
GAs or any other accelerator. Thus, applications following the model could make
the most of the heterogeneous systems composing the infrastructure and use all
the available computing devices collaboratively. Beyond inherent parallelism ex-
ploitation, the proposed extension helps COMPSs to ease the development of
applications by hiding away from the developer all the details related to the
handling of the OpenCL platform – managing the content of the device memory
and kernels submission – and the load balancing.



Enabling GPU support for the COMPSs-Mobile framework 19

Section 4.2 describes the required developments on the runtime toolkit to
support the execution of OpenCL kernels on the mobile device as well as the
optimizations implemented to maximize the performance of the application au-
tomatically. The results presented in Section 5 for the three applications using
only one core of the CPU or offloading all the computation to the GPU illustrate
the potential benefits of using the accelerators embedded on the device instead
of a CPU core to compute a task either from the temporal or energetic point of
view. For the CED application, the GPU is ∼12x faster and consumes an 87%
less energy; for BS, GPU is ∼3x faster and 54% less energy consuming.

Accelerators may also be part of the remote nodes to which COMPSs-Mobile
offloads computation. Although the proposed extension of the programming
model already allows developers to write applications that use them, the de-
scribed runtime system does not support OpenCL code offloading yet. We believe
that a natural step forward in our research is to enable this feature to improve
the performance of those application taking benefit of computation offloading.

Delegating the load balancing to the runtime system improves the portabil-
ity of applications. The execution time of a task and its energy consumption de-
pends on the characteristics of the hardware running the task; therefore, the task
scheduling is different for each computing infrastructure. The optimal schedul-
ing may not be evident nor easy to implement; dynamic policies can achieve
the desired behavior with no strain for the developer, as shown in the CED test
case. Besides, they allow the application user to decide whether if the application
should aim for the best performance, the lowest energy consumption or finding
a balanced solution with no additional cost for the developer.

Another aspect that we would like to work on is dynamic, adaptative comput-
ing platform assignment. Currently, upon the task detection, the runtime picks
a platform considering the end time, energy consumption and cost forecasts of
running the task on each platform based on the profiling data from previous
executions. Hence, the runtime makes the decision considering only task-scoped
information instead of considering the impact on the execution as a whole. This
makes some scheduling decisions hard to explain. For instance, if the runtime
has to pick between option A, where the task ends at ms 50 consuming 0.1 J,
and B, finishing at ms 250 with 0.07 J consumed; it would choose the former.
However, if we contextualize this decision on an execution that finishes at ms 300
regardless the chosen option, the latter would be better. Besides, the forecasts
are based on the profiling data from previous executions. If the characteristics
of the workload do not meet those of previous workloads, the runtime makes
decisions that harm the application performance. We envisage to enhance the
platform selection by enabling a mechanism to correct the current scheduling by
re-assigning the execution of pending tasks to another platform.
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