
A Tool for Generating Automata of
IEC60870-5-104 Implementations

Max Kerkers1, Justyna J. Chromik1,
Anne Remke1,2, and Boudewijn R. Haverkort1

1 University of Twente
m.kerkers@alumnus.utwente.nl,

{j.j.chromik, a.k.i.remke, b.r.h.m.haverkort}@utwente.nl
2 University of Münster

Abstract. Power distribution networks are often controlled using the
communication protocol IEC 60870-5-104 (IEC-104). While a specifica-
tion exists, not every device implementing this protocol, actually follows
this specification. We present mealy104, a tool that infers finite-state
automata from IEC-104 implementations and use it on a real device im-
plementing IEC-104, comparing it to the protocol standard. We use the
tool to show that implementations do deviate from the specification.

Keywords: ICS · power grid · SCADA · Mealy machine · IEC-104

1 Introduction

Implementations of communication protocols should closely follow their speci-
fication, as differences or ambiguities might lead to security issues, as recently
shown by the vulnerability that was found in the popular Wi-Fi protocol WPA2
[7]. Similar problems might occur with any protocol, if the specification contains
ambiguity or if implementations do not follow the standard. Vulnerabilities in
industrial control protocols like IEC-104 pose a serious threat to critical infras-
tructures, such as the power distribution grid. The implementations of industrial
control protocols are often not checked against protocol specifications.

To verify whether an implementation follows a specification, both can be
represented as finite state machine and then compared. The automaton repre-
senting the specification should be part of the standard. The other automaton
can be learned from the implementation, e.g., using the tool presented in this
paper. It implements a variant of Angluin’s L? algorithm [1], which produces
Mealy machines that can represent more complex behaviour of input/output
systems [5]. This algorithm has been applied before, e.g., for determining the
correct operation of the ABN Amro e.dentifier2 [2], or implementations of the
Transport Layer Security protocol [3]. To the best of our knowledge, we present
the first tool to check communication protocols in SCADA networks that is made
available under the Gnu General Public License. The source code of this tool
can be found on GitHub3.
3 https://github.com/mkerkers/mealy104

https://github.com/mkerkers/mealy104

2 M. Kerkers et al.

We propose a tool developed for the automated generation of Mealy machines
for implementations of IEC-104 [4], which is crucial for the communication be-
tween control and field stations in power distribution in Europe. The tool we de-
veloped generates a formal representation from an IEC-104 implementation. We
tested three IEC-104 simulators and two real-life devices with our tool [4, Chap-
ter 5]. While none of the simulators implemented the protocol according to
its specification, the investigated hardware, i.e., Sprecher Sprecon-E-C-92 and
Datawatt D05-Lite, only partially matched the specification.

This paper describes the most relevant information about the IEC-104 proto-
col in Section 2 and the tool setup and most significant components in Section 3.
Finally, Section 4 presents a case study on a real-life IEC-104 implementation.

2 SCADA protocol IEC-104

IEC-104 [6] describes two different layers: the Application Protocol Control Infor-
mation (APCI) layer and the Application Service Data Unit (ASDU) layer. The
first runs on top of the TCP layer and has three message formats: (i) unnumbered
control functions (U-format), (ii) numbered Supervisory functions (S-format),
and (iii) the Information transfer format (I-format). U-format messages either
(de)activate a connection using STARTDT (start data transfer) and STOPDT
(stop data transfer) or test whether a connection is still active using TESTFR
(test frame). I-format messages transfer data. They use TypeIDs to define what
kind of message is sent, using, e.g., General Interrogation (C IC NA 1) or Single
Command (C SC NA 1) numbers that range from 0 to 255. S-format messages
acknowledge previously received I-format messages.

3 Description of mealy104 : components and set-up

We first describe the main components of the tool before discussing its general
setup. As shown in Figure 1, the learner builds the automaton based on input
queries from the alphabet that are translated by the mapper to actual IEC-104
messages. The teacher, i.e., the queried device, answers these request. Once an
automaton is constructed, the checker tests it against the protocol specification.

The Alphabet implements all IEC-104 message format types: three U-
format types, the S-format type, and one for each I-format category. The com-
plete alphabet is available in [4, Appendix A]. The Learner is built using the
framework LearnLib4. For each run, a suitable sub-alphabet is chosen to create
automata implementing the L?

M algorithm [5]. The Mapper translates between
abstract (human-readable) messages on the learner side and actual messages
on the teacher side. For every abstract message in the alphabet, the mapper
contains an implementation of a concrete message, structured according to the
format as defined in the IEC-104 specification. To implement these concrete
messages, OpenMUC j608705 is used.

4 http://learnlib.de
5 https://www.openmuc.org/iec-60870-5-104/

http://learnlib.de
https://www.openmuc.org/iec-60870-5-104/

A Tool for IEC-104 Implementations 3

1 Learn / Refine Hypothesis 12 Abstract Equivalence Query
2, 3 Abstract Membership Query 13, 14 Concrete Equivalence Query
4, 5 Concrete Membership Query 15, 16 Concrete Equivalence Answer
6, 7 Concrete Membership Answer 17 Abstract Equivalence Answer
8, 9 Abstract Membership Answer 18 Confirmation / Counterexample
10, 11 Hypothesis 19 Final Hypothesis

Fig. 1: Block diagram of the Mealy104 finite-state automata learner

The Teacher is implemented as master using OpenMUC j60870 such that
all fields in APDUs are adjustable, and sending and receiving of STOPDT and
TESTFR messages is included. The Checker tests if the automaton of the
implementation matches the automaton deduced from the standard [6], as shown
in Figure 2; it has been built using AutomataLib6, and traverses both automata
using the same inputs, and comparing the outputs.

In more detail, the learner consists of: (i) the experiment, (ii) the member-
ship oracle and cache, and (iii) the equivalence oracle. The experiment uses the
membership oracle (Step 1 in Figure 1) to learn a hypothesis, structured as
an Observation Table. During learning, the membership and equivalence oracles
send abstract queries to the mapper (Steps 2, 3 and 12), from which they receive
abstract answers (Steps 8, 9 and 17). A cache between the membership oracle
and the mapper stores each query and its corresponding answer. The mapper
translates each abstract query it receives (Steps 3 and 12), into a concrete IEC-
104 message which is forwarded to the IEC-104 Master (Steps 4 and 13), and
from there to the IEC-104 Client (Subject Under Test). The SUT replies with a
concrete answer (Step 15 and 16), which the Mapper translates into an abstract
answer and sends to the oracles (Steps 8 and 17). The membership oracle con-
tinues sending queries until the hypothesis is closed and consistent. Then, this
learned hypothesis is returned (Step 10) and passed to the equivalence oracle
(Step 11), which attempts to find a counterexample (Step 18). A counterexam-
ple is added to the Observation Table and the learning is restarted. Without a
counterexample, the final hypothesis is transformed into a Mealy machine and
passed to the checker (Step 19).

The equivalence oracle first checks for inconsistencies with the cache, then
it sends random queries to the mapper, checking if the responses match the
hypothesis. The tool is configured to send 1000 random queries to the SUT,
and it resets the SUT and the hypothesis to the initial starting position with

6 https://github.com/LearnLib/automatalib

https://github.com/LearnLib/automatalib

4 M. Kerkers et al.

probability 1%. These settings provide a traversal that is both extensive and time
bound. If a random query contradicts the hypothesis, a counterexample has been
found. If none is found after 1000 random queries, the hypothesis is assumed to
be confirmed. To compare the hypothesis to the standard specification, the tool
contains the standard automaton (cf. Fig. 2) [4, Section 3.5].

4 Case Study and Outlook

We tested several simulators of the IEC-104 protocol and two real devices used
in the Dutch power distribution system [4, Chapter 5]. The Axon Test Simulator
and the Siemens IEC-Test Simulator generated only one state, where all inputs
were accepted; the Mitra Software IEC 870-5-104 Simulator generated two states:
one required to initiate the connection by sending U[STARTDT] message, and
then it accepted any input. Furthermore, the Sprecher Sprecon-E-C-92 did not
match the specification. For example in the UNCONFIRMED STOPPED state,
according to the specification the connection should be terminated upon receiv-
ing an I-format message. Instead, the device keeps accepting incoming I-format
messages.

In the following, we present one result of a DataWatt D05-Lite device used
as an IEC-104 RTU in a field station. We run the tool for different subsets of
the alphabet. For most of the cases, the obtained Mealy machine matches the
one provided by the standard. However, one automaton was learned that does
not comply to the standard when sending the I-format message for File Select.
Figure 2 shows the automaton from the standard, whereas Figure 3 shows the
learned automaton. We used the same name and color for corresponding states

STOPPED U[STOPDT] / U[STOPDT]
U[TESTFR] / U[TESTFR]

STARTED

U[STARTDT] / U[STARTDT]

TERMINATED

S / ERROR
I / ERROR

U[STOPDT] / U[STOPDT]

U[STARTDT] / U[STARTDT]
U[TESTFR] / U[TESTFR]

S / -

UNCONFIRMED
STARTED

I / I

U[STARTDT] / ERROR
U[STOPDT] / ERROR
U[TESTFR] / ERROR

S / ERROR
I / ERROR

S / -

U[STARTDT] / U[STARTDT]
U[TESTFR] / U[TESTFR]

I / I

UNCONFIRMED
STOPPED

U[STOPDT] / -

S / U[STOPDT]

I / ERROR

U[STARTDT] / -
U[STOPDT] / -

U[TESTFR] / U[TESTFR]

Fig. 2: Automaton derived from the IEC-104 standard for any I-frame

in both automata. While they largely overlap, an additional state, indicated by
‘X’ (colored orange) can be observed in Figure 3. As the File Select message does

A Tool for IEC-104 Implementations 5

STOPPED U[STOPDT] / U[STOPDT]

STARTED

U[STARTDT] / U[STARTDT]

TERMINATED

S / ERROR
I[F_SC_NA] / ERROR
I[F_LS_NA] / ERROR

U[STOPDT] / U[STOPDT]

U[STARTDT] / U[STARTDT]
S / -

X

I[F_SC_NA] / -UNCONFIRMED
STARTED

I[F_LS_NA] / I[F_LS_NA]U[STOPDT] / U[STOPDT]

U[STARTDT] / U[STARTDT]
S / -

I[F_SC_NA] / ERROR
I[F_LS_NA] / ERROR

U[STARTDT] / ERROR
U[STOPDT] / ERROR

S / ERROR
I[F_SC_NA] / ERROR
I[F_LS_NA] / ERROR

S / -

I[F_SC_NA] / -

U[STARTDT] / U[STARTDT]
I[F_LS_NA] / I[F_LS_NA]

UNCONFIRMED
STOPPED

U[STOPDT] / -

S / U[STOPDT]

I[F_SC_NA] / ERROR
I[F_LS_NA] / ERROR

U[STARTDT] / -
U[STOPDT] / -

Fig. 3: Automaton learned using alphabet containing File Select I-frame.

not contain a valid address, the RTU is stricter than the standard. It terminates
the connection on the next received I-format message, while the standard expects
a negative confirmation I-format message. Hence, the behavior specified by the
standard is not fully implemented by the investigated device.

Outlook. This tool can be used by vendors or users of devices implementing the
IEC-104 protocol. The variety in the implementations of the IEC-104 protocol
is alarming for both parties. The deviation in the presented implementation was
found in a rarely used File Select function. However, such rare scenarios are often
exploited [7]. Note that the presented tool can be adjusted to other protocols by
adapting its components.

References

1. D. Angluin. Learning regular sets from queries and counterexamples. Information
and Computation, 75(2):87–106, 1987.

2. G. Chalupar, S. Peherstorfer, E. Poll, and J. de Ruiter. Automated Reverse Engi-
neering using Lego. Proceedings of the 8th USENIX Workshop on Offensive Tech-
nologies, page 9, 2014.

3. J. de Ruiter and E. Poll. Protocol state fuzzing of tls implementations. In USENIX
Security Symposium, pages 193–206, 2015.

4. M. Kerkers. Assessing the security of IEC 60870-5-104 implementations using au-
tomata learning. Technical report, May 2017.

5. M. Shahbaz and R. Groz. Inferring Mealy Machines. In Lecture Notes in Computer
Science, volume 5850, pages 207–222. Springer Berlin Heidelberg, 2009.

6. TC 57 - Power systems management and associated information exchange. IEC
60870-5-104:2006. Technical report, International Electrotechnical Commission,
Geneva, 2006.

7. M. Vanhoef and F. Piessens. Key reinstallation attacks: Forcing nonce reuse in
WPA2, 2017.

	A Tool for Generating Automata of IEC60870-5-104 Implementations

