
九州大学学術情報リポジトリ
Kyushu University Institutional Repository

Boosting over non-deterministic ZDDs

Fujita, Takahiro
Department if Informatics, Kyushu University

Hatano, Kohei
Faculty of Arts and Science, Kyushu University

Takimoto, Eiji
Department if Informatics, Kyushu University

https://hdl.handle.net/2324/1932329

出版情報：2018-03. Springer
バージョン：
権利関係：

Boosting over non-deterministic ZDDs

Takahiro Fujita1, Kohei Hatano2, and Eiji Takimoto1

{takahiro.fujita,hatano,eiji}@inf.kyushu-u.ac.jp12

1 Department of Informatics, Kyushu University
2 Faculty of Arts and Science, Kyushu University / RIKEN AIP

Abstract. We propose a new approach to large-scale machine learning,
learning over compressed data: First compress the training data some-
how and then employ various machine learning algorithms on the com-
pressed data, with the hope that the computation time is significantly
reduced when the training data is well compressed. As the first step,
we consider a variant of the Zero-Suppressed Binary Decision Diagram
(ZDD) as the data structure for representing the training data, which
is a generalization of the ZDD by incorporating non-determinism. For
the learning algorithm to be employed, we consider boosting algorithm
called AdaBoost∗ and its precursor AdaBoost. In this work, we give ef-
ficient implementations of the boosting algorithms whose running times
(per iteration) are linear in the size of the given ZDD.

1 Introduction

Most tasks in machine learning are formulated as optimization problems of var-
ious types. Recently, the amount of data to be treated is growing enormously
large, and so the demands on scalable optimization methods are increasing. Prob-
abilistic approach such as stochastic gradient descent methods [3] is now widely
employed as standard techniques for large scale machine learning. Obviously,
these methods require the time and/or the space complexity to be proportional
to the size of given data.

In this paper, we propose a new approach: learning over compressed data.
That is, we first compress the given data somehow, and then employ vari-
ous machine learning algorithms on the compressed data without explicitly re-
constructing the original data. To be more precise, for any target machine learn-
ing algorithm to be employed, we apply an efficient algorithm running over the
compressed data, which simulates the behavior of the target algorithm running
over the original data, with the hope that the time and space complexity are
significantly reduced when the data is well compressed. Although the complex-
ity for compressing data of the first phase needs to be sufficiently small, we can
expect great improvement of time and space complexity, especially when high
compression ratio is achieved.

The methodology of working over compressed data has gained much atten-
tion in the areas of database and data mining, where various methods have been
developed, say, for the string search from a compressed string and the frequent

2 Takahiro Fujita, Kohei Hatano, Eiji Takimoto

word extraction from compressed texts [2, 4, 8]. But, as far as the authors are
aware, most of all the methods developed so far are limited to simple tasks
such as search and counting, and few results are known for more complex tasks
such as optimization in machine learning. Notable exceptions contain the re-
sults of Nishino et al. [14] and Tabei et al. [18], respectively. Their methods
use string compression techniques to perform matrix-based computations under
small memory spaces. Our method, we will show later, is completely different
from theirs.

As the first step toward establishing a general methodology of learning from
compressed data, we consider a variant of the Zero-Suppressed Binary Decision
Diagram (ZDD) as the data structure for representing the training data. The
ZDD is a general data structure for representing a family of sets [7, 10], and is
appropriate for our purpose. One of the reasons is that many results are reported
in the literature that the ZDD indeed has ability of compactly representing
various data in various domains [5, 11,12].

In this paper, we slightly generalize the ZDD by incorporating non-determinism
and propose a new data structure called the non-deterministic ZDD (NZDD, for
short). The NZDD has more flexibility for representing data because of the non-
determinism. Also, our efficient simulation algorithms (showed later) fit naturally
to the NZDDs. On the other hand, it seems to be NP-hard to construct an NZDD
of minimal size from a given training data. An efficient construction method of
succinct NZDDs is left as future work.

For the learning algorithm to be employed over the NZDD representation of
the training data, we consider a boosting algorithm called the AdaBoost∗ [16].
The AdaBoost∗ is a refined version of the seminal boosting algorithm Ad-
aBoost [1] and is guaranteed to find a hyperplane that maximizes the margin.
In this paper, we give an efficient implementation of the AdaBoost∗. Its running
time (per iteration) does not depend on the size of training data but is only
linear in the size of the given NZDD. In addition, our proposed framework can
be applicable to the AdaBoost as well and a similar guarantee also holds.

So, our method takes advantage when the size of NZDD is much smaller than
the size of the training data, provided that the time complexity of constructing
the NZDD is moderately small.

2 Problem statement and AdaBoost∗

First we describe the problem of 1-norm hard margin maximization and then
briefly review the AdaBoost∗ which is one of the boosting algorithms that solve
the problem.

2.1 1-norm hard margin maximization

Let X be a set called the instance space, and assume that we are given a finite set
of base hypotheses H = {h1, h2, . . . , hn} ⊆ {h : X → {0, 1}}. Note that the base
hypotheses are usually assumed to take values in {−1, 1}, but since any function

Boosting over non-deterministic ZDDs 3

g : X → {−1, 1} can be represented as the difference of 0-1 valued functions
(e.g., g(x) = 1[g(x) = 1]− 1[g(x) = −1]), we can assume 0-1 valued hypotheses
without loss of generality. The base hypothesis class H defines a feature map,
which maps any instance x ∈ X to the feature vector (h1(x), h2(x), . . . , hn(x))
in the feature space {0, 1}n. Later we will regard the feature vector for x as the
set H(x) = {hj | hj(x) = 1} and thanks to the assumption above, any base
hypothesis hj 6∈ H(x) takes value 0 for x, which is a crucial property that makes
our algorithm work.

Now we give the problem statement of 1-norm hard margin maximization.
The input is a sample S = {(x1, y1), . . . , (xm, ym)} ⊆ X × {−1, 1}, where xi
for yi = 1 is called a positive instance and xi for yi = −1 a negative instance,
and the output is a hyperplane in the feature space that separates the positive
instances from the negative instances as much as possible. More precisely, the
goal is to find

α∗ = arg max
α∈{Rn|‖α‖1=1}

min
1≤i≤m

yi

n∑
j=1

αjhj(xi). (1)

We denote by α ∈ {Rn | ‖α‖1 = 1} the hyperplane whose normal vector is
α, which also represents the convex combination of base hypotheses f(x) =∑n
j=1 αjhj(x). Note that since the 1-norm of α is normalized, |f(x)| denotes the

distance of the feature vector (h1(x), . . . , hn(x)) to the hyperplane α measured
by ∞-norm. Thus, the signed distance yif(xi) (which is positive if and only if
f correctly classifies xi) is called the margin of the hyperplane α with respect
to the labeled instance (xi, yi). Let ρ = mini yif(xi) be the minimum margin of
α over all labeled instances in the sample. Note that α∗ is the hyperplane that
maximizes ρ. It is well known that if ρ > 0, which means that the sample S
is linearly separable, then the combined hypothesis f has a generalization error
bound that is proportional to 1/ρ [9]. So, the goal of maximizing ρ is natural.
Let ρ∗ = mini yi

∑
j α
∗
jhj(xi) be the optimal margin.

In what follows, we assume without loss of generality that all labeled feature
vectors (h1(xi), . . . , hn(xi), yi) are distinct.

2.2 AdaBoost∗

The optimization problem (1) can be formulated as a linear programming prob-
lem of size O(nm) and hence efficiently solved by an LP solver. However, in many
cases, the number n of base hypotheses is very large (sometimes infinite), and
thus the problem is infeasible for LP solvers. In such cases, boosting may provide
an alternative way. In particular, the AdaBoost∗ of Rätsch and Warmuth [16]
provably converges to the maximum margin ρ∗ within precision ν in 2 log(mν2)
iterations. Below we describe how the AdaBoost∗ behaves when applied to the
base hypothesis class H. On each round t = 1, 2, . . . , T , it (i) computes a dis-
tribution dt over the sample S, (ii) finds a base hypothesis hjt ∈ H with the
maximum edge (average margin) with respect to dt, and (iii) updates the coeffi-
cient αjt . Finally, normalizing the coefficient α, it obtains a final hypothesis f .

4 Takahiro Fujita, Kohei Hatano, Eiji Takimoto

Algorithm 1 AdaBoost∗
Input S = {(x1, y1), . . . , (xm, ym)} ⊆ X × {−1, 1}
Output f

1. Let αj = 0 for j = 1, . . . , n
2. Let d1(i) = 1/m for i = 1, . . . ,m
3. For t = 1, . . . , T

(a) Compute the edges
γt,j =

∑m
i=1 dt(i)yihj(xi) for j = 1, . . . , n.

(b) Let jt = arg max1≤j≤n |γt,j |; γt = γt,jt .
(c) Set ρt = minr=1,...,t |γr| − ν;
(d) Update cofficients αjt = αjt + 1

2
log 1+γt

1−γt −
1
2

log 1+ρt
1−ρt

(e) Update weights
dt+1(i) = dt(i) exp(−αjtyihjt(xi))/Zt
for i = 1, . . . ,m, where
Zt =

∑m
i=1 dt(i) exp (−αjtyihjt(xi))

4. Let f(x) =
∑n
j=1

αj

‖α‖1
hj(x)

A pseudocode is given in Algorithm 1, where part (ii) above is implemented in
a very naive manner: compute the edges of all base hypotheses (line 3-(a)) and
then choose the maximum among them (line 3-(b)). So, this implementation is
inefficient for a very large n. But, AdaBoost∗ (and any other boosting algorithm)
has a considerable advantage over LP solvers when the hypothesis class H has
an efficient implementation, called the base learner, for this part: to find a base
hypothesis with the maximum edge from a given distribution over the sample.
In this case, the two lines (3-(a) and 3-(b)) are replaced by the base learner. The
next theorem shows a performance guarantee of the AdaBoost∗.

Theorem 1 (Rätsch and Warmuth [16]). If T ≥ 2 logm
ν2 , then AdaBoost∗

(Algorithm 1) outputs a combined hypothesis f such that min1≤i≤m yif(xi) ≥
ρ∗ − ν.

In this paper, we consider the situation where the size n of H is small but the
sample size m is very large, as is often the case, and both the direct applications
of LP solvers and the AdaBoost∗ may be useless.

2.3 AdaBoost

The AdaBoost, proposed by Freund and Schapire [1], is a precursor of the
AdaBoost∗. The algorithm, unlike the AdaBoost∗, is not shown to provably max-
imize the hard margin. However, it is shown that it achieves at least half of the
maximum hard margin asymptotically under weak technical conditions [15, 16].
Besides, the AdaBoost is much more popular because of its simplicity and the
empirical performances. The behavior of the AdaBoost is almost the same as
the AdaBoost∗. More precisely, instead of 3. (c) and (d) in Algorithm 1, the

Boosting over non-deterministic ZDDs 5

Fig. 1. An NZDD representation for {{a, b}, {a, b, c}, {a, d, e}, {b, c, d}, {b, d}}

AdaBoost updates the coefficient as αjt = αjt + 1
2 log 1+γt

1−γt . Therefore, the theo-
retical results we will show also are applicable to the AdaBoost.

3 A dag representation for samples

As a data structure for storing the sample, we propose a dag representation for
a family of sets called the non-deterministic ZDD (NZDD, for short). It can be
seen as a generalization of the ZDD by incorporating non-determinism.

3.1 Non-deterministic ZDD (NZDD)

An NZDD is specified by a 4-tuple G = (V,E,Σ, Φ), where (V,E) is a directed
acyclic graph with a single root and a single leaf, Σ is a ground set, and Φ :
E → 2Σ is a function that assigns to each edge e a subset Φ(e) of Σ. Note that
Φ(e) can be the empty set ∅. Furthermore we require the additional properies as
described below. Let PG be the set of all paths from the root to the leaf in G,
where a path P in PG is specified by the set of edges in P , i.e., P ⊆ E.

1. Every path P ∈ PG represents a subset S(P) ⊆ Σ defined as S(P) =⋃
e∈P Φ(e). Thus, the NZDD G defines a subset family as L(G) = {S(P) |

P ∈ PG} ⊆ 2Σ .
2. For every pair of paths P, P ′ ∈ PG, S(P) 6= S(P ′) if P 6= P ′.
3. For every path P ∈ PG, Φ(e) ∩ Φ(e′) = ∅ for any e, e′ ∈ P with e 6= e′.

Note that by the second property, there exists a one-to-one correspondence
between the set of paths PG and the subset family L(G). In particular, we have
|PG| = |L(G)|. The third property says that every element a ∈ Σ appears at
most once in every path P ∈ PG. That is, letting E(a) = {e ∈ E | a ∈ Φ(e)},
we have |E(a) ∩ P | ≤ 1 for every P ∈ PG. Finally, we define the size of G as
|G| =

∑
e∈E |Φ(e)|. Note that the size |G| can be significantly small as compared

with the number of paths |PG|. In other words, the NZDD G is a compact
representation for the subset family L(G). As an example, we give in Fig. 1 an
NZDD that represents a subset family.

6 Takahiro Fujita, Kohei Hatano, Eiji Takimoto

3.2 NZDD representation for the sample

Now we describe how we represent the sample S as an NZDD.
Recall that H(x) = {hj ∈ H | hj(x) = 1} for each instance x ∈ X. Let

Z+ = {H(xi) | (xi, 1) ∈ S} and Z− = {H(xi) | (xi,−1) ∈ S} be the subset
families with the ground set Σ = H, which correspond to the positive and the
negative instances in the sample S, respectively. Let G+ and G− be NZDDs for
the families Z+ and Z−, respectively. That is, L(G+) = Z+ and L(G−) = Z−.
Finally, the NZDD G for the sample S is obtained by (i) putting an additional
node as the global root with two outgoing edges labeled with ∅, where one edge is
connected to the root of G+ and the other is to the root of G−, and (ii) merging
the leaves of G+ and G− to a single leaf (See Fig. 2 for example). Note that G
is not necessarily a minimal NZDD even if G+ and G− are minimal, because G
may be further simplified by merging a node in G+ and a node in G−. But, we
define G in this way, so that any path in G+ and any path in G− are disjoint.

(i) (ii)
(iii)

Fig. 2. (i) An NZDD G+ for Z+ = {{h1, h3}, {h2, h3}}; (ii) An NZDD G− for
Z− = {{h1, h2, h4}, {h2, h4}, {h3}}; (iii) An NZDD for the sample consisting of positive
instances Z+ and negative instances Z−

3.3 Relations to ZDDs and NFAs

We show that the ZDD representation is a special case of the NZDD represen-
tation. To see this, we consider the class of NZDDs of the following form:

1. Each edge e is labeled with either a singleton or the empty set. That is,
|Φ(e)| ≤ 1.

2. Each internal node has one or two outgoing edges. If it has two outgoing
edges, one of them is labeled with the empty set.

3. There exists a fixed ordering over Σ such that for any pair of edges e and e′

labeled with singletons {a} and {a′}, respectively, if e is an ancestor of e′,
then a precedes a′ in this ordering.

It is easy to see that any ZDD can be seen as an NZDD in this form.
Conversely, consider the class of NZDDs of the following form:

Boosting over non-deterministic ZDDs 7

1. It is ordered. That is, the third condition above is satisfied.
2. For each pair of edges e and e′ outgoing from a common node, Φ(e)∩Φ(e′) =
∅.

Then, we can show that any NZDD of this class has an equivalent ZDD of the
same size. So, only the difference of ordered NZDDs from ZDDs is that we allow
non-determinism, i.e., Φ(e) ∩ Φ(e′) 6= ∅.

Next we consider the relation of ordered NZDDs to NFAs. Under the ordering
over Σ, we can identify a subset {a1, a2, . . . , ak} ⊆ Σ with a string a1a2 · · · ak ∈
Σ∗ over the alphabet Σ, where a1 < a2 < · · · < ak under the ordering <. Note
that the empty set corresponds to the empty string ε. In this way, a subset family
can be seen as a language. From this viewpoint, we can regard an NZDD G as an
NFA that recognizes the language L(G), with the root identified with the start
state and the leaf with the unique accepting state. The difference is that, in the
NZDD representation, we have only a single accepting path for each string in
the language. This implies that any DFA for such a language can be converted
to an NZDD in an obvious way. Note that in order to make the accepting state
unique, we may need to put an additional leaf and connecting every accepting
state to the leaf by an additional edge labeled with the empty set (ε-transition).

3.4 Complexity of constructing NZDDs

When given a subset family L ⊆ 2Σ , we want to compute a minimal NZDD G
with L(G) = L. So far, the time complexity of the problem is unknown, but it
seems to be NP-hard because so are the closely related problems, namely, con-
struction of a minimal ZDD (over all ordering) [7] and construction of a minimal
NFA [6]. On the other hand, we have a polynomial time algorithm for construct-
ing a minimal ZDD when given an ordering [17] and a linear time algorithm for
constructing a minimal DFA for a finite lanugage [17]. So, practically, we can
use these algorithms for constructing an ordered NZDD of small size.

4 Simulating AdaBoost∗ over an NZDD representation
for the sample

In this section, we give an algorithm that efficiently simulates the AdaBoost∗
over an NZDD G that represents a sample S = {(x1, y1), . . . , (xm, ym)}, without
explicitly reconstructing the sample S from G. In particular, the running time
(per iteration) of our algorithm does not depend on the sample size m but is
linear in the size of G. First we state the main theorem.

Theorem 2. There exists an algorithm that, when given an NZDD G that rep-
resents a sample S, exactly simulates AdaBoost∗ whose running time is O(|G|)
per iteration.

So, if the sample is significantly compressed in the NZDD representation, our
algorithm runs much faster than the direct application of the AdaBoost∗ when

8 Takahiro Fujita, Kohei Hatano, Eiji Takimoto

the computation time of constructing G from S is negligible. More specifically, if
we use a linear time algorithm for constructing an NZDD from a minimal DFA
as described in the previous section, then the total running time of our algorithm
is O(nm+T |G|), whereas the total running time of the direct application of the
AdaBoost∗ is O(nmT). So, if |G| � nm, then our algorithm would be faster3.

Further, since the AdaBoost is almost identical to the AdaBoost∗ in an al-
gorithmic sense, we have the following corollary as well.

Corollary 3. There exists an algorithm that, when given an NZDD G repre-
senting S, simulates AdaBoost whose running time is O(|G|) per iteration.

Below we describe a basic idea of the algorithm. Obviously, we cannot ex-
plicitly maintain the distribution dt over the sample S. Instead, we maintain one
weight wt,e for each edge e of G, so that the edge weights wt implicitly repre-
sents dt. The same idea is used in [19] to efficiently simulate online prediction
algorithms with multiplicative update rules, where the decision space is the set
of paths of a given directed acyclic graph.

To describe the idea formally, we need some additional notations. Recall that
there exists a one-to-one correspondence between the sample S and the set of all
root-to-leaf paths PG in G. So, we identify a labeled instance (xi, yi) ∈ S with
a path P ∈ PG, and we will denote the weight for the instance by dt(P) instead
of dt(i). Furthermore, let P+

G and P−G denote the set of paths that pass through
G+ and the set of paths that pass through G−, respectively.

Now we give the two conditions C1 and C2 that the edge weights wt need to
satisfy, so as to represent the path distribution dt.

C1. The edge weights wt need to satisfy

dt(P) =
∏
e∈P

wt,e

for every path (labeled instance) P ∈ PG.
C2. The outflow from each internal node should be one. That is, wt need to

satisfy ∑
a:(u,a)∈E(G)

wt,(u,a) = 1

for every internal node u, where E(G) denotes the set of edges of G.

What we need to show is how to simulate AdaBoost∗ efficiently by using the
edge weights wt. More precisely, we need to simulate the two parts of AdaBoost∗:

(a) updating the path distributions dt (corresponding to Line 2 and Line 3-(e)
of Algorithm 1), and

(b) computing the edges γt,j (corresponding to Line 3-(a)).

In the following subsections, we give algorithms that simulate the two parts.

3 Note that it always holds that |G| ≤ nm.

Boosting over non-deterministic ZDDs 9

Algorithm 2 Initializing the path distribution

1. Let w′e = 1 for all edges in G.
2. Apply the Weight Pushing algorithm to w′ and get w1.

Algorithm 3 Updating the path distribution

1. Forall e ∈ E(G), let w′e = wt,e
2. Forall e ∈ E(G+) such that hjt ∈ Φ(e), let w′e = w′e exp(−αjt)
3. Forall e ∈ E(G−) such that hjt ∈ Φ(e), let w′e = w′e exp(αjt)
4. Apply the Weight Pushing algorithm to w′ and get wt+1.

4.1 Updating the path distributions dt

To simulate this part, we use the Weight Pushing algorithm developed by [13],
which rearranges the edge weights so that relative weights on the path remain un-
changed but again satisfy the two conditions. More precisely, the Weight Pushing
algorithm has the following property.

Proposition 4 (Mohri [13]). When given arbitrary edge weights w′e ≥ 0, the
Weight Pushing algorithm produces edge weights we in time O(|E|) such that we
satisfies condition C2 and ∏

e∈P
we =

∏
e∈P w

′
e∑

P∈PG

∏
e∈P w

′
e

for every path P ∈ PG.

The initialization of the path weights (d1(P) = 1/m) of Line 2 of Algorithm 1
can be realized by the two steps as described in Algorithm 2. It is justified by
Proposition 4 which implies∏

e∈P
w1,e =

1

|PG|
= 1/m = d1(P).

Moreover, the running time of Algorithm 2 is O(|E|).
The update of path distributions of Line 3-(e) of Algorithm 1 can be realized

by multiplying the weights of the edges e such that hjt ∈ Φ(e), and applying the
Weight Pushing algorithm. See Algorithm 3 for more details.

Below we give a justification of Algorithm 3.

Lemma 5. Algorithm 3 exactly simulates Line 3-(e) of Algorithm 1 in time
O(|E|).

Proof. Let P be a path in PG that corresponds to a labeled instance (xi, yi) and
examine the quantity

∏
e∈P w

′
e. Recall that⋃

e∈P
Φ(e) = {hj ∈ H | hj(xi) = 1}

10 Takahiro Fujita, Kohei Hatano, Eiji Takimoto

by the definition of the NZDD construction for S.
First consider the case where hjt(xi) = 0. In this case, there is no edge e ∈ P

such that hjt ∈ Φ(e). Therefore, w′e = wt,e for all edges e in P . Thus,∏
e∈P

w′e =
∏
e∈P

wt,e = dt(P)

= dt(P) exp(−αjtyihjt(xi))
= dt(i) exp(−αjtyihjt(xi)).

Next consider the case where yi = 1 (i.e., P passes through G+) and hjt(xi) =
1. In this case, there exists a unique edge e ∈ P such that hjt ∈ Φ(e). The
uniqueness comes from Property 3 of the NZDD. So, w′e = wt,e exp(−αjt) for
the edge e. Since hjt 6∈ Φ(e′) for any other edge e′ ∈ P , we have

∏
e∈P

w′e =

(∏
e∈P

wt,e

)
exp(−αjt)

= dt(P) exp(−αjtyihjt(xi))
= dt(i) exp(−αjtyihjt(xi)).

For the last case where yi = −1 and hjt(xi) = 1, a similar argument to the
case above gives

∏
e∈P

w′e =

(∏
e∈P

wt,e

)
exp(αjt)

= dt(P) exp(−αjtyihjt(xi))
= dt(i) exp(−αjtyihjt(xi)).

Hence for all paths P , we have∏
e∈P

w′e = dt(i) exp(−αjtyihjt(xi)).

Therefore, Proposition 4 ensures that wt+1 represents the path distribution dt+1

as desired. ut

4.2 Computing the edges γt,j

To compute γt,j , we first compute the following quantity

fe =
∑

P∈PG:e∈P
dt(P)

for all edges e, which can be interpreted as the probability flow of edge e, i.e.,
the probability that the path P goes through edge e when P is chosen according
to the distribution dt. Since G is a directed acyclic graph, we can compute fe

Boosting over non-deterministic ZDDs 11

for all edges e by dynamic programming (e.g., the forward-backward algorithm)
in linear time. Then, it is not hard to see that γt,j can be computed by

γt,j =
∑

e∈E(G+):hj∈Φ(e)

fe −
∑

e∈E(G−):hj∈Φ(e)

fe.

We summarize the result as in the following lemma.

Lemma 6. There exists an algorithm that exactly simulates Line 3-(a) of Al-
gorithm 1 in time O(|G|).

Theorem 2 follows from Lemma 5 and Lemma 6.

5 Conclusions

We have proposed the NZDD, a variant of ZDDs for representing the training
data succinctly and algorithms, given a NZDD, simulate AdaBoost∗ as well
as AdaBoost on the training data efficiently. As future work, we will evaluate
empirical performances of our method on real and synthetic data sets. Also,
investigation of efficient construction methods of NZDDs is important. One of
open problems is to extend our method to the 1-norm soft margin maximization,
where additional constraints make the theoretical results of the direct application
of our method worse. Also, the problem of obtaining similar results for the 2-
norm support vector machines remains open.

Acknowledgments

We thank anonymous reviewers for helpful comments. This work is supported in
part by JSPS KAKENHI Grant Number JP16J04621, JP16K00305 and JP15H02667,
respectively.

References

1. Yoav Freund and Robert E. Schapire. A Decision-Theoretic Generalization of On-
Line Learning and an Application to Boosting. Journal of Computer and System
Sciences, 55(1):119–139, 1997.

2. Keisuke Goto, Hideo Bannai, Shunsuke Inenaga, and Masayuki Takeda. Fast q-
gram mining on SLP compressed strings. Journal of Discrete Algorithms, 18:89–99,
2013.

3. Elad Hazan. Introduction to online convex optimization. Now Publishers Inc.,
2016.

4. Danny Hermelin, Gad M. Landau, Shir Landau, and Oren Weimann. A unified
algorithm for accelerating edit-distance computation via text-compression. In 26th
International Symposium on Theoretical Aspects of Computer Science (STACS
2009), 2009.

12 Takahiro Fujita, Kohei Hatano, Eiji Takimoto

5. Takeru Inoue, Keiji Takano, Takayuki Watanabe, Jun Kawahara, Ryo Yoshinaka,
Akihiro Kishimoto, Koji Tsuda, Shin-ichi Minato, and Yasuhiro Hayashi. Distri-
bution Loss Minimization With Guaranteed Error Bound. IEEE Transactions on
Smart Grid, 5(1):102–111, 2014.

6. Tao Jiang and Bala Ravikumar. Minimal NFA problems are hard. SIAM Journal
on Computing, 22(6):1117–1141, 1993.

7. Donald E. Knuth. Art of Computer Programming, Volume 4, Fascicle 1, The:
Bitwise Tricks & Techniques; Binary Decision Diagrams. Addison-Wesley, 2009.

8. Yury Lifshits. Processing compressed texts: a tractability border. In CPM’07
Proceedings of the 18th annual conference on Combinatorial Pattern Matching,
pages 228–240, 2007.

9. O. L. Mangasarian. Arbitrary-norm separating plane. Oper. Res. Lett., 24(1-2):15–
23, 1999.

10. Shin-ichi Minato. Zero-suppressed BDDs for set manipulation in combinatorial
problems. In DAC ’93: Proceedings of the 30th international conference on Design
automation, 1993.

11. Shin-ichi Minato and Takeaki Uno. Frequentness-transition queries for distinctive
pattern mining from time-segmented databases. In Proceedings of the 10th SIAM
International Conference on Data Mining (SDM2010), pages 339–349, 2010.

12. Shin-ichi Minato, Takeaki Uno, and Hiroki Arimura. LCM over ZBDDs: Fast
generation of very large-scale frequent itemsets using a compact graph-based rep-
resentation. In Pacific-Asia Conference on Knowledge Discovery and Data Mining,
pages 234–246, 2008.

13. Mehryar Mohri. General algebraic frameworks and algorithms for shortest-distance
problems. Technical report, Technical Memorandum 981210-10TM, AT&T Labs-
Research, 62 pages, 1998.

14. Masaaki Nishino, Norihito Yasuda, Shin-ichi Minato, and Masaaki Nagata. Ac-
celerating Graph Adjacency Matrix Multiplications with Adjacency Forest. In
Proceedings of the 2014 SIAM International Conference on Data Mining (SDM
14), pages 1073–1081, 2014.

15. Gunnar Rätsch. Robust Boosting via Convex Optimization: Theory and Applica-
tions. PhD thesis, University of Potsdam, 2001.

16. Gunnar Rätsch and Manfred K. Warmuth. Efficient margin maximizing with boost-
ing. Journal of Machine Learning Research, 6:2131–2152, 2005.

17. Dominique Revuz. Minimisation of acyclic deterministic automata in linear time.
Theoretical Computer Science, 92:181–189, 1992.

18. Yasuo Tabei, Hiroto Saigo, Yoshihiro Yamanishi, and Simon J. Puglisi. Scalable
Partial Least Squares Regression on Grammar-Compressed Data Matrices. In
Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (KDD ’16), pages 1875–1884, 2016.

19. Eiji Takimoto and Manfred Warmuth. Path kernels and multiplicative updates.
Journal of Machine Learning Research, 4:773–818, 2003.

