Skip to main content

FPT Algorithms Exploiting Carving Decomposition for Eulerian Orientations and Ice-Type Models

  • Conference paper
  • First Online:
  • 562 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10755))

Abstract

An Eulerian orientation of an undirected graph is an orientation of edges such that, for each vertex, both the indegree and the outdegree are the same. Eulerian orientations are important in a variety of fields. In statistical physics, the partition function of the so-called ice model, which is the special case of the ice-type model, is related to the number of Eulerian orientations of a 4-regular graph, which is the value of its Tutte polynomial at the point \((0,-2)\). The problem of counting the number of Eulerian orientations in a 4-regular graph is #P-complete, and yet there is an FPT (Fixed Parameter Tractable) algorithm for it with respect to the tree-width of the graph.

This paper presents two FPT algorithms based on a carving decomposition. One of them counts the number of Eulerian orientations for a general graph in \(O(k \cdot (2 \sqrt{2})^k \cdot n)\) time and \(O(2^k \cdot n)\) memory consumption, and the other calculates the partition function of a general ice-type model for a 4-regular graph in \(O(k \cdot (2 \sqrt{2})^k \cdot n)\) time and \(O(2^k \cdot n + (2 \sqrt{2})^k)\) memory consumption where, for an input graph, k is the carving-width and n is the size of the vertex set.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Andrzejak, A.: An algorithm for the Tutte polynomials of graphs of bounded treewidth. Discret. Math. 190(1–3), 39–54 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  2. Balaji, N., Datta, S., Ganesan, V.: Counting Euler tours in undirected bounded treewidth graphs. In: Proceedings of the 35th IARCS Annual Conference on Foundation of Software Technology and Theoretical Computer Science, pp. 246–260 (2015)

    Google Scholar 

  3. Brightwell, G.R., Winkler, P.: Counting Eulerian circuits is #P-complete. In: Proceedings of the Seventh Workshop on Algorithm Engineering and Experiments and the Second Workshop on Analytic Algorithmics and Combinatorics, pp. 259–262 (2005)

    Google Scholar 

  4. Cai, J.-Y., Fu, Z., Shao, S.: A complexity trichotomy for the six-vertex model. arXiv:1704.01657 [cs.CC] (2017)

  5. Cai, J.-Y., Fu, Z., Xia, M.: Complexity classification of the six-vertex model. arXiv:1702.02863 [cs.CC] (2017)

  6. Chebolu, P., Cryan, M., Martin, R.: Exact counting of Euler tours for graphs of bounded treewidth. arXiv:1310.0185 [cs.DM] (2013)

  7. Creed, P.J.: Counting and sampling problems on Eulerian graphs. Ph.D. thesis, The University of Edinburgh (2010)

    Google Scholar 

  8. Euler, L.: Solutio problematis ad geometriam situs pertinentis. Commentarii Academiae Scientiarum Petropolitanae 8, 128–140 (1741)

    Google Scholar 

  9. Fomin, F.V., Golovach, P.A., Lokshtanov, D., Saurabh, S.: Intractability of clique-width parameterizations. SIAM J. Comput. 39(5), 1941–1956 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  10. Ge, Q., Stefankovic, D.: The complexity of counting Eulerian tours in 4-regular graphs. Algorithmica 63(3), 588–601 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  11. Huang, S., Pinyan, L.: A dichotomy for real weighted Holant problems. Comput. Complex. 25(1), 255–304 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  12. Lieb, E.H.: Residual entropy of square ice. Phys. Rev. 162(1), 162–172 (1967)

    Article  Google Scholar 

  13. Mihail, M., Winkler, P.: On the number of Eularian orientations of a graph. In: Proceedings of the Third Annual ACM/SIGACT-SIAM Symposium on Discrete Algorithms, pp. 138–145 (1992)

    Google Scholar 

  14. Minc, H.: Upper bounds for permanents of (0,1)-matrices. Bull. Am. Math. Soc. 69, 789–791 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  15. Noble, S.D.: Evaluating the tutte polynomial for graphs of bounded tree-width. Comb. Probab. Comput. 7(3), 307–321 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  16. Pauling, L.: The structure and entropy of ice and of other crystals with some randomness of atomic arrangement. J. Am. Chem. Soc. 57(12), 2680–2684 (1935)

    Article  Google Scholar 

  17. Sasák, R.: Comparing 17 graph parameters. Master’s thesis, The University of Bergen (2010). http://bora.uib.no/handle/1956/4329

  18. Schrijver, A.: Bounds on the number of Eulerian orientations. Combinatorica 3(3), 375–380 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  19. Sekine, K., Imai, H., Tani, S.: Computing the Tutte polynomial of a graph of moderate size. In: Proceedings of the 6th International Symposium on Algorithms and Computation, pp. 224–233 (1995)

    Google Scholar 

  20. Seymour, P.D., Thomas, R.: Call routing and the Ratcatcher. Combinatorica 14(2), 217–241 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  21. Thilikos, D.M., Serna, M.J., Bodlaender, H.L.: Constructive linear time algorithms for small cutwidth and carving-width. In: Goos, G., Hartmanis, J., van Leeuwen, J., Lee, D.T., Teng, S.-H. (eds.) ISAAC 2000. LNCS, vol. 1969, pp. 192–203. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-40996-3_17

    Chapter  Google Scholar 

  22. Valiant, L.G.: Holographic algorithms (Extended Abstract). In: Proceedings of the 45th Symposium on Foundations of Computer Science, pp. 306–315 (2004)

    Google Scholar 

  23. van der Waerden, B.L.: Aufgabe 45. Jber. Deutsch. Math.-Verein. 35, 117 (1926)

    Google Scholar 

  24. Welsh, D.J.A.: The computational complexity of some classical problems from statistical physics. In: Disorder in Physical Systems, vol. 307, pp. 307–321. Oxford University Press (1990). http://www.statslab.cam.ac.uk/~grg/books/jmh.html

  25. Welsh, D.J.A.: Complexity: Knots, Colourings and Counting. Cambridge University Press, Cambridge (1995)

    MATH  Google Scholar 

Download references

Acknowledgment

The work by the third and fourth authors was supported in part by KAKENHI JP15H01677, JP16K12392, JP17K12639. The authors also thank anonymous reviewers for their helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shinya Shiroshita .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Shiroshita, S., Ogasawara, T., Hiraishi, H., Imai, H. (2018). FPT Algorithms Exploiting Carving Decomposition for Eulerian Orientations and Ice-Type Models. In: Rahman, M., Sung, WK., Uehara, R. (eds) WALCOM: Algorithms and Computation. WALCOM 2018. Lecture Notes in Computer Science(), vol 10755. Springer, Cham. https://doi.org/10.1007/978-3-319-75172-6_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-75172-6_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-75171-9

  • Online ISBN: 978-3-319-75172-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics