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Abstract. In this paper, we study the parallel and the space complexity
of the graph isomorphism problem (GI) for several parameterizations.
Let H = {H1,H2, · · · ,Hl} be a finite set of graphs where |V (Hi)| ≤ d

for all i and for some constant d. Let G be an H-free graph class i.e.,
none of the graphs G ∈ G contain any H ∈ H as an induced subgraph.
We show that GI parameterized by vertex deletion distance to G is in
a parameterized version of AC1, denoted Para-AC1, provided the colored
graph isomorphism problem for graphs in G is in AC

1. From this, we
deduce that GI parameterized by the vertex deletion distance to cographs
is in Para-AC1.
The parallel parameterized complexity of GI parameterized by the size
of a feedback vertex set remains an open problem. Towards this direc-
tion we show that the graph isomorphism problem is in Para-TC0 when
parameterized by vertex cover or by twin-cover.
Let G′ be a graph class such that recognizing graphs from G′ and the col-
ored version of GI for G′ is in logspace (L). We show that GI for bounded
vertex deletion distance to G′ is in L. From this, we obtain logspace algo-
rithms for GI for graphs with bounded vertex deletion distance to interval
graphs and graphs with bounded vertex deletion distance to cographs.

1 Introduction

Two graphs G = (Vg, Eg) and H = (Vh, Eh) are said to be isomorphic if there

is a bijection f : Vg → Vh such that for all pairs {u, v} ∈
(

Vg

2

)

, {u, v} ∈ Eg if
and only if {f(u), f(v)} ∈ Eh. Given a pair of graphs as input the problem of
deciding if the two graphs are isomorphic is known as the graph isomorphism
problem (GI). Whether this problem has a polynomial-time algorithm is one of
the outstanding open problem in the field of algorithms and complexity theory.
It is in NP but very unlikely to be NP-complete as it is in NP ∩ coAM [7]. Re-
cently Babai [4] designed a quasi-polynomial time algorithm for GI improving the

best previously known runtime 2O(
√
n logn) [2,36]. However, efficient algorithms

for GI have been discovered for various restricted classes of graphs e.g., planar
graphs [25], bounded degree graphs [30], bounded genus graphs [32], bounded
tree-width graphs [6] etc.
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For restricted classes of graphs the complexity of GI has been studied more
carefully and finer complexity classifications within P have been done. Lindell [28]
gave a deterministic logspace algorithm for isomorphism of trees. In the recent
past, there have been many logspace algorithms for GI for restricted classes of
graphs e.g., K3,3 or K5 minor free graphs [18], planar graphs [17], bounded
tree-depth graphs [16], bounded tree-width graphs [20] etc. On the other hand
parallel isomorphism algorithms have been designed for graphs with bounded
eigenvalue multiplicity [3], bounded color class graphs [31] etc.

The graph isomorphism problem has been studied in the parameterized
framework for several graph classes with parameters such as the tree-depth [8],
the tree-distance width [35], the connected path distance width [33] and recently
the tree-width which corresponds to a much larger class [29]. A more detailed
list of FPT algorithms for GI in parameterized setting can be found in [9].

While there are many results on the parallel or the logspace complexity of
problems in the parameterized framework [19], very little is known in this di-
rection for GI. The parameterized analogues of classical complexity classes have
also been studied in [12,22,21]. The class Para-C is the family of parameterized
problems that are in C after a pre-computation on the parameter, where C is a
complexity class. In this paper we study the graph isomorphism problem from a
parameterized space and parallel complexity perspective. Recently Chandoo [14]
showed that GI for circular-arc graphs is in Para-L when parameterized by the
cardinality of an obstacle set.

Since the graph isomorphism problem parameterized by tree-width has a
logspace [20] as well as a separate FPT algorithm [29] it is natural to ask if
we can design a parameterized parallel algorithm for this problem. In fact, the
parallel complexity of GI parameterized by the well known but weaker parameter
feedback vertex set number (FVS) is also unknown. We make some progress in
this direction by showing that GI parameterized by the size of a vertex cover,
which is a weaker parameter than the FVS, is parallelizable in the parameterized
setting.

Let G be a graph class characterized by a finite set of forbidden induced
subgraphs (see Section 3 for the formal definition). Kratsch et al. [27] gave an
FPT algorithm for GI parameterized by the distance to G by taking a polynomial
time colored graph isomorphism algorithm for graphs in G as a subroutine. In
Section 3, we show that the result of [27] is parallelizable in the parameterized
framework. More precisely, we give a Para-AC1 algorithm for this problem. As
a consequence, observe that GI parameterized by the distance to cographs is in
Para-AC1.

Using bounded search tree method we also design a parallel recognition al-
gorithm for graphs parameterized by the distance to G. One would ask if the
problem is in Para-L using the same method as in [12] and [19]. However, the
recent corrigendum Cai et al. [13] suggests that this may need completely new
ideas.

In the above mentioned parallel analogue of the result by Kratsch et al. [27],
G is a class of graphs characterized by a finite set of forbidden induced subgraphs.
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Instead of that if we take G to be the set of bounded tree-width graphs then
the parallel parameterized complexity is again open. Note that the analogous
preconditions of the theorem by Kratsch et al. [27] in this scenario is met by
the logspace GI algorithm for bounded tree-width graphs by Elberfeld et al.
[20]. In fact, the problem is open even when G is just the set of forests because
this is the same problem: GI parameterized by feedback vertex set number. We
study the graph isomorphism problem for bounded distance to any graph class G
under reasonable assumptions: the colored version of GI for the class G and the
recognition problem for G are in L. We give a logspace isomorphism algorithm
for such classes of graphs.

In Section 4, we show that GI is in Para-TC0 when parameterized by the ver-
tex cover number. By using the recognition algorithm for graphs parameterized
by the vertex cover number due to [5], we first design a recognition algorithm
for graphs parameterized by twin-cover number. We then prove that the graph
isomorphism problem parameterized by twin-cover is in Para-TC0.

Parameter/Problem Recognition Graph Isomorphism

Vertex Cover Para-AC0[5] Para-TC0 [*]
Twin Cover Para-AC0

Para-TC0 [*]

Distance to H-free graphs Para-AC0↑ [*] Para-AC1 [*]
Feedback Vertex set number Open for Para-L Open for Para-L

Table 1. Parallel/Space complexity results/status on the graph isomorphism problem
parameterized by various parameters. [*] indicates results presented in this paper.

2 Preliminaries

The basic definitions and notations of standard complexity classes are from [1]
and the definitions of parameterized versions of complexity classes are from [21,12,34].
A parameterized problem is pair (Q, k) of a language Q ⊆ Σ∗ and a parame-
terization k : Σ∗ → N that maps input instances to natural numbers, their
parameter values1. The class Para-C is defined to be the family of problems that
are in C after a precomputation on the parameter where C is a complexity class.

Definition 1. [21] For a complexity class C, a parameterized problem (Q, k)
belongs to the para class Para-C if there is an alphabet Π, a computable function
π : N → Π∗ and a language A ⊆ Σ∗ ×Π∗ with A ∈ C such that for all x ∈ Σ∗

we have x ∈ Q ⇔ (x, π(k(x))) ∈ A.

If the complexity class C is L then we get the complexity class Para-L. The
following equivalent definition of Para-L is convenient when designing Para-L
algorithms.

1 Often we write k in stead of k(x).
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Definition 2. [21] A parameterized problem (Q, k) over Σ is in Para-L if there
is function f : N → N such that the question x ∈ Q can be decided within space
f(k) + O(log |x|).

The parameterized parallel complexity classes are defined by using the basic
complexity classes in place of L in above and basic gates (AND and OR gates)
as follows [34]:

Para-ACi (Para-TCi): The class of languages that are decidable via family of
circuits over basic gates (resp. together with threshold gates) with unbounded
fan-in, size O(f(k)nO(1)), and depth O(f(k) + logi n) if i > 0 and depth O(1) if
i = 0. From the definition of Para-C, we know that for two complexity classes C
and C′, C ⊆ C′ if and only if Para-C ⊆ Para-C′ [5]. Hence we have the following
relation between complexity classes Para-AC0 ( Para-TC0 ⊆ Para-L ⊆ Para-AC1.
There exists a circuit class Para-AC0↑ in between Para-AC0 and Para-AC1 which is
strictly more powerful than Para-AC0. The definition of Para-AC0↑ is as follows.

Definition 3. [5] Para-AC0↑ is a class of languages that are decidable via family
of circuits over basic gates with unbounded fan-in, size O(f(k)nO(1)), and depth
g(k) where f and g are computable functions.

The depth of the circuits in this class is bounded by a function that depends
only on the parameter. We have Para-AC0 ( Para-AC0↑ ⊆ Para-AC1 and Para-
AC

0 ( Para-L ⊆ Para-AC1. We do not know relation between Para-AC0↑ and
Para-L. The computational versions of all the above circuit classes can be defined
in the usual manner by having multiple output gates.

In this paper, the graphs we consider are undirected and simple. For a graph
G = (V,E) , let V (G) and E(G) denote the vertex set and edge set of G re-
spectively. An edge {u, v} ∈ E(G) is denoted as uv for simplicity. For a subset
S ⊆ V (G), the graph G[S] denotes the subgraph of G induced by the vertices of
S. We use notation G \S to refer the graph obtained from G after removing the
vertex set S. For a vertex u ∈ V (G), N(u) denotes the set of vertices adjacent
to u and N [u] = N(u)∪{u}. For a set X ⊆ V (G), N(X) denoted as ∪v∈XN(v).

In this paper we study problems similar to the graph modification problems
where given a graph G, and a graph class G the task is to apply some graph
operations (such as vertex or edge deletions) on G to get a graph in G. For
example, if G is the class of edgeless graphs then the number of vertices to be
deleted from graph G to make it edgeless is the vertex cover problem. For a
graph class G, the distance to G of a graph G is the minimum number of vertices
to be deleted from G to get a graph in G. For a positive integer k, we use G+ kv
to denote the family of graphs such that each graph in this family can be made
into a graph in G by removing at most k vertices.

Cographs are P4-free graphs i.e., they do not contain any induced paths on
four vertices. Interval graphs are the intersection graphs of a family of intervals
on the real line. A graph is a threshold graph if it can be constructed recursively
by adding an isolated vertex or a universal vertex.

The parameterized Vertex Cover problem has input a graph G and a
positive integer k. The problem is to decide the existence of a vertex set X ⊆
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V (G) of size at most k such that for every edge uv ∈ E(G), either u ∈ X or
v ∈ X . A minimal vertex cover of a graph is a vertex cover that does not contain
another vertex cover.

Definition 4. Let G be a graph. The set X ⊆ V (G) is said to be twin-cover of
G if for every edge uv ∈ E(G) either
(a) u ∈ X or v ∈ X, or (b) u and v are twins2.

An edge between a pair of twins is called a twin edge. The graph G′ obtained by
removing a twin-cover from G is a disjoint collection of cliques [23].

A kernel for a parameterized problem Q is an algorithm which transforms
an instance (I, k) of Q to an equivalent instance (I ′, k′) in polynomial time such
that k′ ≤ k and |I ′| ≤ f(k) for some computable function f . For more details
on parameterized complexity see [19].

In this paper, a coloring of a graph is just a mapping of the vertices of a
graph to a set of colors, and it need not be proper.

Definition 5. The colored graph isomorphism problem is to decide the exis-
tence of a color preserving isomorphism between a pair of colored graphs G =
(V,E) and G′ = (V ′, E′), i.e., there exists a bijection mapping ϕ : V → V ′,
satisfying the following conditions: 1) (u, v) ∈ E ⇔ (ϕ(u), ϕ(v)) ∈ E′ for all
u, v ∈ V 2) color(v) = color(ϕ(v)) for all v ∈ V .

3 GI for Distance to a Graph Class is in Para-AC1

In this Section, first we give a generic method to solve GI for graphs from G+kv
in Para-L provided there is a logspace colored GI algorithm for graphs in G and
a Para-L algorithm for enumerating vertex deletion sets.

Theorem 1. Let G be a any graph class. Suppose enumerating all the vertex
deletion sets of G + kv is in Para-L and the colored graph isomorphism problem
for graphs from G is in L. Then the graph isomorphism problem for graphs from
G + kv is in Para-L.

Proof. Let AI be a logspace algorithm to check whether two given input colored
graphs G1 and G2 from G are isomorphic. We assume that graphs G1 and G2 are
at a distance at most k from G. If G1 and G2 belong to G then use the algorithm
AI to check the isomorphism between G1 and G2. Otherwise we consider a
vertex deletion set S ⊆ V (G1) of minimum size (say s) such that G1 \ S ∈ G
and all possible vertex deletion sets S1, S2, · · · , Sm of size s for G2 such that
G2 \ Si ∈ G for all i ∈ [m] given as input. Notice that m ≤ f(k).

For each i ∈ [m], the algorithm iterates over all possible isomorphisms be-
tween G[S] to G[Si], and tries to extend them to isomorphisms from G1 to G2

with the help of the colored graph isomorphism algorithm AI applied on some
colored versions of G1 \S and G2 \Si, where the colors of the vertices are deter-
mined by their neighbors in the corresponding deletion set. A crucial observation

2 Two vertices u and v are twins if N(u) \ {v} = N(v) \ {u}.
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is that any bijective mapping from S to Si can be viewed as a string in [s]s and
can be encoded as a string of length O(k log k). The string is x1 · · ·xs encodes
the map that sends the ith vertex in S to the xith vertex in Si.

For all i algorithm iterates over all s! bijective mappings from S to Si using
string of length O(s log s). Next it checks whether the bijective mapping is actu-
ally an isomorphism from G1[S] to G2[Si]. For each isomorphism ϕ from S to Si,
we need to check whether this isomorphism can be extended to an isomorphism
from G1 \ S to G2 \ Si by using algorithm AI . We color the vertices of G1 \ S
according to their neighbourhood in S. Two vertices of G1 \ S get same color if
they have the same neighbourhood in S. A vertex u in G1 \ S and a vertex v
in G2 \ Si will get same color if ϕ(N(u) ∩ S) = N(v) ∩ Si. We query algorithm
AI with input the graphs G1 \ S and G2 \ Si colored as above. If the algorithm
AI says ‘yes’ then G1

∼= G2 and the algorithm accepts the input. Otherwise it
tries the next isomorphism from S to Si. If for all i and all isomorphisms from
S to Si, the algorithm AI rejects then the we conclude that G1 ≇ G2 and the
algorithm rejects the input.

We note few more details of the algorithm to demonstrate that it uses small
space. The enumeration over the Si’s can be done using a logm bit counter. To
check if two vertices u in G1 \ S and v in G2 \ S2 have same color in logspace
we can inspect each vertex in G1, find out if it in S, find out if it is a neighbour
of u, and check if its image under ϕ is a neighbour of v. This needs constantly
many counters. ⊓⊔

Next we give a Para-AC0↑ recognition algorithm for graphs parameterized
by the distance to a graph class G by using the bounded search tree technique,
where G is characterized by finitely many forbidden induced subgraphs.

Definition 6. [27] A class G of graphs is characterized by finitely many for-
bidden induced subgraphs if there is a finite set of graphs H = {H1, H2, · · · , Hl}
such that a graph G is in G if and only if G does not contain Hi as an induced
subgraph for any i ∈ {1, 2, · · · , l}.

Let G and H be classes as defined above. We use the bounded search tree tech-
nique [19,11] to find a set S of size at most k such that G\S ∈ G. In this method
we can compute all deletion sets of size at most k. Let d be the size of the largest
forbidden induced subgraph in H. The algorithm constructs a tree T as follows.
The root of the tree is labelled with the empty set. It finds a forbidden induced
subgraph Hi ∈ H of size at most d in G. Any vertex deletion set S must contain
a vertex of Hi. We add |V (Hi)| many children to the root labelled with vertices
of Hi. In general if a node is labelled with a set P , then we find a forbidden
induced subgraph Hj in G \ P and create |V (Hj)| many children for the node
labeled P and label each child with P ∪ {vi}, where vi ∈ Hj . If there exists a
node labeled with a set S in T of size at most k such that G \S ∈ G, then S is a
required vertex deletion set. From this, we also know that there are at most dk

minimal vertex deletion sets of size at most k. Using the same process we can
also find all the minimal vertex deletion sets of size at most k.

Cai et al. [12] implemented bounded search tree method and kernelization to
find the vertex cover in Para-L in 1997. However, the implementation of bounded

6



search tree method in Para-L was reported to have some errors [13]. Thus, this
paper seems to give the first implementation of bounded search tree method in
Para-AC0↑. Let us recall form Section 2, that there is no known relation between
Para-AC0↑ and Para-L.

Lemma 1. Let G be a class of graphs characterized by finitely many forbidden
induced subgraphs H = {H1, H2, · · · , Hl} with |V (Hi)| ≤ d for all 1 ≤ i ≤ l
where d is a constant. On input a graph G, the problem of computing all vertex
deletion sets of size at most k is in Para-AC0↑ where k is the parameter.

Proof. The idea to implement the bounded search tree method in Para-AC0↑ is
as follows:

Consider the set of all subsets of size at most d that induce a forbidden
subgraph in G. We order these subsets lexicographically to obtain a list L =
A1, · · · , Am where for each i, G[Ai] is isomorphic to some graph in H. Notice
that m = O(nd). The list L can be computed in Para-AC0↑ by first producing
all subsets of V (G) of size at most d and then keeping only those that induce a
subgraphs isomorphic to someH in H. Observe that any vertex deletion set must
contain at least one vertex from each Ai for all i. The algorithm uses all strings
Γ = γ1 · · · γk ∈ [d]k in parallel to pick the vertex deletion sets S of size at most k
as follows: Let us concentrate on the part of the circuit that processes a particular
string Γ = γ1 · · · γk. Initially the deletion set S is empty. The algorithm puts
the γith vertex (in lexicographic order) of A1 in S if |A1| ≥ γ1. If |A1| < γ1 the
computation ends in this part of the circuit. Suppose the algorithm has already
picked i vertices using γ1 · · · γi. It picks the (i + 1)th vertex using γi+1. To do
so it picks the first set Aj in the list L such that Aj ∩ S = φ (if Aj ∩ S 6= φ
we say that Aj is ‘hit’ by S). Then it puts the γi+1th vertex of Aj in S if
|Aj | ≥ γi+1. Otherwise the computation ends in the part processing Γ . If on or
before reaching γk we have obtained a set S such that Aj ∩ S 6= φ for all j, the
algorithm has successfully found a vertex deletion set. We say that the algorithm
is in phase i if it processing γi.

To see that the algorithm can be implemented in Para-AC0↑, we just need to
observe that in each phase the algorithm has to maintain the list of sets in L
that are not yet hit by S. The depth of the circuit is O(k) and the total size is
dkpoly(n). ⊓⊔

We implemented the bounded search tree method in Para-AC0↑. This implemen-
tation can be used not only to recognize the graph class defined in the Definition 6
but also, as we can show, for designing Para-AC0↑ algorithms for the problems
Restricted Alternating Hitting Set and Weight ≤ k q-Cnf Satisfia-

bility. The problems are as follows:
Problem 1: [19,12] Restricted Alternating Hitting Set

Instance: A collection C of subsets of a set B with |S| ≤ k1 for all S ∈ C.
Parameter: Two positive integers (k1, k2).
Question: Does Player I have a win in at most k2 moves in the following game?
Players play alternatively and choose unchosen elements, until, for each S ∈ C
some member of S has been chosen. The player whose choice this happens to be
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wins.
Problem 2: [19,12] Weight ≤ k q-Cnf Satisfiability

Instance: Boolean formula ϕ in conjunctive normal form with maximum clause
size q where q is fixed.
Parameter: A positive integer k.
Question: Does ϕ have a satisfying assignment with at most k literals true?

Theorem 2. The following problems are in Para-AC0↑:
(i) Restricted Alternating Hitting Set.
(ii) Weight ≤ k q-Cnf Satisfiability.

Downey et al. [19] gave FPT algorithms for these two problems by using bounded
search tree method. We implemented the bounded search tree method in Para-
AC

0↑. Thus, these two problems are also in Para-AC0↑.
The next theorem is obtained by replacing the complexity class Para-L by

Para-AC1 in Theorem 1. The proof of the theorem uses similar ideas and the
implementation is easier. Moreover, because of Lemma 1 we do not have to
assume the existence of an algorithm that outputs all the vertex deletion sets.

Theorem 3. Let G be a class of graphs characterized by finitely many forbidden
induced subgraphs H = {H1, H2, · · · , Hl} with |V (Hi)| ≤ d for all 1 ≤ i ≤ l
where d is a constant. Suppose the colored graph isomorphism problem for graphs
from G is in AC

1. Then the graph isomorphism problem for graphs from G + kv
is in Para-AC1.

Corollary 1. The graph isomorphism problem parameterized by the distance to
cographs is in Para-AC1.

Proof. Recall that cographs are graphs without any induced P4. The colored
graph isomorphism for cographs was shown to be in L using logspace algo-
rithm to find the modular decomposition [24]. From this along with Theorem 3
and Lemma 1, we deduce that the graph isomorphism problem for distance to
cographs is in Para-AC1. ⊓⊔

As a consequence of the above corollary, we can also solve graph isomorphism
problem for some of the other graph classes e.g., distance to cluster (disjoint
union of cliques), distance to threshold graphs in Para-AC1 by using the gener-
alized meta Theorem 3.

For larger parameters like vertex-cover, distance to clique and twin-cover,
we can get better complexity theoretic results which we discuss in the following
section.

4 GI Parameterized by Vertex Cover is in Para-TC0

In this section we give a parameterized parallel algorithm for GI parameterized
by vertex cover. Sam Buss [10] showed thatVertex Cover admits a polynomial
kernel. Based on this kernelization result, Cai et al. [12], Elberfeld et al. [21] and
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Bannach et al. [5] showed that Vertex Cover is in Para-L, Para-TC0 and Para-
AC

0 respectively. These methods not only determines the existence of a vertex
cover of size at most k but can also output all vertex covers of size at most k
in Para-AC0. We give a brief overview of the procedure to enumerate all vertex
covers of size at most k by using kernelization method given in [12,5,21].

Observe that any vertex of degree more than k must belong to any vertex
cover of a given graph G. For the graph G = (V,E), consider the set VH = {v ∈
V (G)

∣

∣d(v) > k}. If |VH | is more than k then we declare that there is no k sized

vertex cover. Let us assume |VH | = b. Consider the set VL = {v ∈ V (G)
∣

∣d(v) ≤
k and N(v) \ VH 6= ∅} of vertices that have at least one neighbour outside VH .
Notice that none of the edges in G[VL] are covered by VH . Let S′ be a vertex
cover of G[VL]. It is easy to see that VH ∪ S′ forms a vertex cover of G. On the
other hand if S is a vertex cover of G then VL ∩ S is a vertex cover of G[VL]. If
the cardinality of VL is more than (k − b)(k + 1) then reject (because the graph
induced by vertices VL with k−b vertex cover and all vertices degree bounded by
k has no more than (k− b)(k+1) vertices). So the cardinality of VL is not more
than (k − b)(k + 1). We can use the best known vertex cover algorithm [15] to
find the (k− b) vertex cover on the sub graph induced by vertices VL. Elberfeld
et al. [21] pointed that the parallel steps of this process are the following:

i. Checking whether the vertex belongs to VH .
ii. Checking whether |VH | at most k.
iii. Checking whether |VL| at most k(k + 1).
iv. Computing the induced subgraph G[VL] from G .

The computation of above steps can be implemented by Para-AC0 circuits [5].
The above process finds all vertex covers of size at most k by enumerating all
the 2|VL| possible binary strings on length |VL|.

Theorem 4. The graph isomorphism problem parameterized by vertex cover is
in Para-TC0.

Proof. Given two input graphs G and H with vertex cover of size at most k,
we need to test if G to H are isomorphism in Para-TC0. Using the kernelization
method of Bannach et al. [5] we can recognize whether these two graphs have
same sized vertex covers or not. For the graph G we find a minimal vertex
cover S of size at most k and for graph H we find all minimal vertex covers
S1, S2, · · · , Sm, each of size at most k. Notice that m is at most 2k. We know
that if G ∼= H then G[S] ∼= H [Si] for some 1 ≤ i ≤ m. We try all isomorphisms
from the minimal vertex cover S of G to each minimal vertex cover Si of H .
Suppose G[S] ∼= H [Si] via ϕ. We need to extend this isomorphism from the
independent set G \ S to H \ Si. There are at most k! isomorphisms between
G[S] to H [Si]. The algorithm processes all pairs (S, Si) and all the isomorphisms
in parallel.

For each isomorphism ϕ, we need to check whether this ϕ can be extended to
an isomorphism between G \ S to H \ Si. We partition the vertices of the graph
G \S into at most 2k sets (called ‘types’) based on their neighborhood in S. For
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each U ⊆ S let TG(U, S) = {u ∈ G \ S | N(u) = U}. It is not hard to see that
G ∼= H if and only if there is a minimal vertex cover Si of H and an isomorphism
ϕ from G[S] to H [Si] such that for each U ⊆ S, |TG(U, S)| = |TH(ϕ(U), Si)|.
The problem of testing whether G is isomorphic to H reduces to counting the
number of vertices in each type. We represent each type using an n-length binary
string, where ith entry is one if vi belongs to that type and zero otherwise. Since
the Bit Count3 problem is in TC

0, counting the number of vertices in a type
can be implemented using a TC

0 circuit. In summary, for each Si and each
isomorphism between G[S] and H [Si], and for each U ⊆ S we check whether
|TG(U, S)| = |TH(ϕ(U), Si)|. This completes the proof. ⊓⊔

Corollary 2. The graph isomorphism problem is in Para-TC0 when parameter-
ized by the distance to clique.

Proof. We apply Theorem 4 to the complements of the input graphs. ⊓⊔

Corollary 3. The graph isomorphism problem parameterized by the size of a
twin-cover is in Para-TC0.

Proof. To find the twin-cover, we first remove all the twin edges and then com-
pute a vertex cover of size at most k in the resulting graph as was done in [23].
The first step runs through all edges and deletes an edge if it is a twin edge. Next
it finds a vertex cover in the resulting graph which can be done in Para-AC0 [5].
Thus, computing all the twin-covers can be done in Para-AC0.

Now we describe the process of testing isomorphism. The idea for testing
isomorphism of the input graphs parameterized by the size of a twin-cover is
similar to that in the proof of Theorem 4. Let S1 be a fixed twin-cover in G1

and S2 be a twin-cover in G2 of same size. The algorithm processes all such
(S1, S2) pairs in parallel. First fix an isomorphism (say σ) from S1 to S2 and try
to extend it to G1 \ S1 to G2 \ S2. Again, all such isomorphisms are processed
in parallel. We know that the graph G \ S obtained by removing a twin-cover
S from G is a disjoint collection of cliques. Any two vertices in a clique C have
same neighbourhood in G i.e., if u, v ∈ C then N [u] = N [v]. Thus, the ‘type’ of
a clique is completely determined by the neighbourhood of any of the vertices in
the vertex deletion set, and the size of the clique. Formally, with respect to the
isomorphism σ, a clique Cg1 in G1 \S1 and a clique Cg2 in G2\S2 have same type
if 1) |V (Cg1 )| = |V (Cg2)| and 2) σ(N(Cg1 )) = N(Cg2). The algorithm needs to
check that the number of cliques in each type is same in both the graphs. This
problem can again be reduced to instances of the Bit Count problem.

It is easy to see that, the above process can be implemented in Para-TC0. ⊓⊔

5 Logspace GI Algorithms for Bounded Distance to

Graph Classes

In this Section, we show that for fixed k GI for graphs in G + kv is in L if the
colored GI for graphs in G is in L where G is a graph class. From this result we

3 Counting the number one’s in n length binary string.
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obtain that GI for cographs + kv and interval + kv graphs is in L. Note that
these results are not in the parameterized complexity theory framework. The
proof of the following theorem given in appendix.

Theorem 5. Let k be a fixed and G be a class of graphs. Suppose the problem
of deciding if a given graph is in G and the colored graph isomorphism problem
for graphs in G is in L. Then the graph isomorphism problem for graphs from
G + kv is in L.

Suppose graph class G is define as in Definition 6. It is not hard to see the
problem of deciding if a graph G is in a class G characterized by finitely many
forbidden induced subgraphs is in logspace (See Lemma 2 in the Appendix). The
proof of the next corollary follows from Lemma 2 and Theorem 5.

Corollary 4. Let the graph class G be characterized by finitely many forbidden
induced subgraphs H = {H1, H2, · · · , Hl} with |V (Hi)| ≤ d for all 1 ≤ i ≤ l
where d is a constant. The graph isomorphism problem for graphs with bounded
vertex deletion from G is in L provided the colored graph isomorphism problem
for graphs from G is in L.

Corollary 5. The graph isomorphism problem is in L for following graph classes:
1) distance to interval graphs 2) distance to cographs.

Proof. The proof of (1), follows from Theorem 5 and the logspace algorithm for
colored GI for interval graphs (see [26]).
The proof of (2), follows from Corollary 4 and the logspace isomorphism algo-
rithm for colored GI for cographs [24]. ⊓⊔

6 Conclusion

In this paper we showed that graph isomorphism problem is in Para-TC0 when
parameterized by the vertex cover number of the input graphs. We also stud-
ied the parameterized complexity of graph isomorphism problem for the class
of graphs G characterized by finitely many forbidden induced subgraphs. We
showed that graph isomorphism problem is in Para-AC1 for the graphs in G+ kv
if there is an AC

1 algorithm for colored-GI for the graph class G. From this result,
we show that GI parameterized by the distance to cographs is in Para-AC1.

The following questions remain open. Can we get a parameterized logspace
algorithm for GI parameterized by feedback vertex set number? Does the problem
admit parameterized parallel algorithm? Elberfeld et al. [20] showed that GI is
in logspace for graphs of bounded tree-width. In this paper, we showed that GI
for some subclasses of bounded clique-width graphs is in L. It is an interesting
open question to extend these results to bounded clique-width graphs.
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7 Appendix

Proof of Theorem 5

Proof. The idea behind this proof is similar to that of Theorem 1. Let G1 and
G2 be the two input graphs. The logspace graph isomorphism algorithm for
graphs in G works via finding a vertex deletion set S1 for G1 of size at most k.
Next we iterate over all vertex deletion sets S2 of the same size. The idea is to
fix an isomorphism from G1[S1] to G2[S2] and check if the isomorphism can be
extended to an isomorphism of the input graphs. To store the vertex deletion
sets we need O(k logn) space in the work-tape.

We first describe how to find a vertex deletion set of a graph G. Choose a
set S of size at most k vertices from V (G) and test whether G \ S ∈ G by using
the logspace algorithm (say Ar) for deciding if an input graph is in G. For every
set S of size at most k from V (G), if the recognition algorithm says G \ S /∈ G
then algorithm can infer that G /∈ G + kv. If for any of the sets, the algorithm
Ar says G\S ∈ G then algorithm outputs S as vertex deletion set. The iteration
of over sets of size at most k can be easily implemented in logspace by using k
counters. Therefore, the whole process can be executed in logspace.
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Let S1 and S2 be the vertex deletion sets of G1 and G2 obtained using the
above logspace procedure. Fix a bijection σ from S1 to S2 and test if it is an
isomorphism form G1[S1] to G2[S2]. If not we try the next S2 in the lexicographic
input order. Otherwise, we test if σ can be extended to an isomorphism of the
input graphs. The map σ induces a coloring of the graphs G′

1 = G1 \ S1 and
G′

2 = G2 \ S2. Two vertices in G′
1 (G′

2) get same color if they have the same
neighbourhood in S1 (S2 respectively). A vertex u in G′

1 and a vertex v in G′
2

will get same color if σ(N(u)∩S1) = N(v)∩S2. It is easy to see that the resulting
graphs have at most 2k colors. Moreover, σ can be extended to an isomorphism
of G1 and G2 if and only if the colored versions of G′

1 and G′
2 are isomorphic.

Computing if two vertices u and u′ in G′
1 have same color amounts to search-

ing their neighbourhood in S1. Since S1 is in the work-tape this can be done
in logspace. Similarly, by the fact that S2 and σ are in the work-tape, checking
σ(N(u)∩S1) = N(v)∩S2 can also be performed in logspace. Since we can com-
pute the colors in logspace, testing if colored G′

1 and G′
2 can be done in logspace

using the logspace isomorphism test of colored graphs in G. This completes the
description of the algorithm. ⊓⊔

Lemma 2. Let G be a class of graphs characterized by finitely many forbidden
induced subgraphs H = {H1, H2, · · · , Hl} with |V (Hi)| ≤ d for all 1 ≤ i ≤ l
where d is a constant. There is a logspace algorithm that on input a graph G
decides if G ∈ G.

Proof. Given a graph G, the aim is to check whether G ∈ G. For this it is enough
to check for each i ∈ {1, 2, · · · , l} whether G containsHi as an induced subgraph.
The algorithm heavily uses the input order of the vertices of G. Let di be the
number of vertices in Hi. To check if Hi appears as an induced subgraph of G,
the algorithm picks vertices v1, v2, · · · , vdi

from V (G) and checks if these vertices
induces Hi in G. If not then the algorithm chooses a different set of d vertices
according to the input order of V (G) and repeats the same process. For each i, if
none of the di-sized subsets of V (G) forms Hi then the algorithm concludes that
G ∈ G. Otherwise it concludes that G /∈ G. It is easy to see that this algorithm
can be implemented in logspace because at each step we need O(d log n) space
to store at most d vertices of G and constantly many counters. ⊓⊔
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