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Abstract. Shimmer is a classical acoustic measure of the amplitude
perturbation of a signal. This kind of variation in the human voice allow
to characterize some properties, not only of the voice itself, but of the
person who speaks. During the last years deep learning techniques have
become the state of the art for recognition tasks on the voice. In this work
the relationship between shimmer and deep neural networks is analyzed.
A deep learningmodel is created. It is able to approximate shimmer value
of a simple synthesized audio signal (stationary and without formants)
taking the spectrogram as input feature. It is concluded firstly, that for
this kind of synthesized signal, a neural network like the one we proposed
can approximate shimmer, and secondly, that the convolution layers can
be designed in order to preserve the information of shimmer and transmit
it to the following layers.
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1 Introduction

Shimmer is a classical acousticmeasure of the amplitude perturbation of a signal.
This kind of variations in the human voice allows to characterize some properties,
not only of the voice itself, but on the person who speaks [1].

Shimmer value is associated to voice quality [2–7], state of mind [8–13], age
[14] and gender [15] of people. There are many research works that use shimmer
(among other measures) with goals ranging from pathologies detection [6, 16, 17]
to the improvement of human-machine interfaces through the estimation of the
intensionality of a spoken phrase [19]. Regarding synthesized voices, Yamasaki et
al. show in [18] that a certain shimmer level increases the degree of naturalness.

The application of deep learning techniques is the state of the art in au-
tomated audio analysis, with the detection of pronounced phonemes and the
identification of the person that speaks as main objectives [20–26], but also used
to detect emotions, age, gender, etc. [27–33].

Classifiers based on neural networks can be divided into two groups according
to the type of input features, those using previously calculated acoustic measures
[10, 14] and those using raw audio [22, 24, 25] or spectral data [21–23, 28–31, 34,
35]. In [26] a hybrid approach is applied by adding shimmer and other measures
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to improve the recognition achieved with spectral data. It is important to clarify,
for first group of classifiers, that shimmer calculation has a major complication,
it depends on the previous detection of the fundamental frequency (f0) of vocal
cords vibration. It is difficult to estimate f0 in pathological voices [36, 37]. The
estimation of the actual f0 value is still a research topic [36–40]. Regarding the
second group of classifiers, it is not possible to know whether the outputs are
influenced by the shimmer value of the signal.

1.1 Objectives

The objective of this work is to make an estimation of the value of shimmer in
a synthesized audio signal through a neural model. The neural network must
combine convolutional layers and feed forward layers. The inputs to the neural
model will be the spectral values of the signal.

The main contributions of design a shimmer estimation neural network from
the spectral features of an audio signal are, on the one hand, the procurement of
a f0 independent shimmer calculation method, and on the other, to answer the
question about the extent to which amplitude disturbances of the original audio
can influence the output of a deep learning model with raw audio or spectral
data input. In other words, how much shimmer information is preserved to the
last layers of the model.

1.2 Shimmer Calculation

There are different versions of shimmer. The most important difference between
them is the window size (number of f0 cycles) used in the calculation. Some
versions can be seen in [41].

The chosen version of shimmer for this work is the proposed by Klingholz
and Martin [42], also known as Relative Shimmer.

Relative Shimmer, hereinafter referred to as ”shimmer”, is a way ofmeasuring
the cycle-to-cycle amplitude perturbations of the fundamental frequency of a
signal. It is shown as a perturbation/total amplitude relation.

shimmer =
1

N−1

PN−1
i=1 |Ai −Ai+1|

1
N

PN
i=1 |Ai|

(1)

where N is the number of periods of f0 that the signal has and Ai is the
maximum amplitude into the i period.

2 Methods and Materials

2.1 Neural Models

Deep learning models with ascending complexity were generated for problems
of shimmer approximation. First, shimmer was approximated for f0 variable, k
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constant and fmod constant. Then, shimmer was approximated for f0 variable, k
variable, and fmod constant. Finally, a model was found to approximate shimmer
with f0, k and fmod variable.

In all cases, spectral audio data (instead of raw audio) were used as input
features. There are two reasons, the improvement of training performance due
the dimension reduction, and because in this manner models work in a similar
way as the human auditory system, where spectral division is performed in the
basilar membrane of the cochlea and not by the neurons of the auditory cortex
[43].

2.2 Data

Audio Audio data without harmonics was generated. As in [1] the amplitude
modulation of human voice was approximated by a sinusoidal wave. The expres-
sion of each audio signal y(t) was:

y(t) =
1

1 + k
sin(α+ 2tπf0)(1 + k sin(β + 2tπfmod)) (2)

where t is time [sec], f0 is the frequency of vocal fold vibration [Hz], fmod

is the modulatory frequency [Hz], k is the constant of the amplitude modulator
sensibility, α and β are constant to handle the phase of the signal to bemodulated
and the modulating signal respectively.

For the training, test and validation data generation, random values were
taken with uniform distribution. f0 got values in [200, 1000] Hz range, fmod in
[5, 10] Hz, k in [0, 0.4], α and β in [0, 2π].

250 ms of audio generated with f0 = 200 Hz, fmod = 8 Hz and k = 0.4. is
shown in Fig. 1.

Fig. 1. Generated audio for f0 = 200 Hz, fmod = 8 Hz and k = 0.4
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Training data To train eachmodel, one 2500 elements training dataset, one 500
elements testing dataset and one 500 elements validation dataset were generated.
Each element is composed by shimmer (Eq.(1)) value to be estimated and the
spectrogram of generated audio.

Due to the fact that f0 is known at the time of generating the audio, shimmer
value can be calculated accurately.

The spectrogram is calculated on 2 sec of audio generated with 44100 samples/sec.
For the calculation a Tukey(0.25) window of width = 256 was used, which de-
termines a structure of shape 129 x 393 (frequency/time) containing the spectral
density of the signal.

Fig. 2 shows the values of the second, third and fourth rows (index 1 to 3)
of the spectrogram of signal in Fig. 1.

Spectrograms data and shimmer data was normalized between 0 and 1.

Fig. 2. Three rows with higher average value of Power Spectral Density (PSD) in
spectrogram of audio generated with f0 = 200 Hz, fmod = 8 Hz and k = 0.4

3 Results

An initial analysis was performed with f0, fmod and k known data. It was found
that a neural network with dense connections is able to calculate shimmer value
with high precision if it gets f0, fmod and k as input features. Optimal structure
of this network was empirically found. This is a three layer network, two layers
of 20 neurons with tanh() activation function and a linear neuron as output. In
next models, convolution layers are used at the initial part of the network, and
then, dense layers of 20, 20 and 1 neurons. The function of convolution layers
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is to calculate the values of f0, fmod and k in order to dense layers calculate
shimmer.

It was noted that only the first 15 rows of the spectrogram (lower frequen-
cies) would have significant information. Then, only for the scope proposed in
this work, the rest of the frequencies were eliminated. Then, spectrogram shape
change from 129 x 393 to 15 x 393. This provides a important performance
improvement.

3.1 Shimmer approximation with f0 variable

Without harmonics, the calculation of f0 from the spectrogram is simple, it is
enough to obtain the energy average value weighted by the frequency that each
spectrogram row represents. As expected, a network such as Fig. 3, where each
complete row of the spectrogram connects to a neuron of an Average pooling
layer, is able to perform the weighted average of frequencies and calculate the
shimmer value in densely connected layers. Tests were performed with f0 in
[200, 1000] Hz range, k = 0.4 and fmod = 8 Hz. A satisfactory approximation
was achieved, with a mean square error (MSE) < 10−4.

Fig. 3. Shimmer approximation model on signals with f0 in [200, 1000] Hz range,
fmod = 8 Hz and k = 0.4. Each neuron in the Average pooling layer has a complete
frequency of the spectrogram as its visual field. The activation function of hidden dense
layers neurons is tanh() and the output neuron is linear.

3.2 Shimmer approximation with f0 and k variable

The value of k affects inversely the area under the energy curve of the spectro-
gram.Therefore, information about the value of k can be obtained through the
energy average of the spectrogram. The model presented in the previous section
preserves the information necessary to estimate the energy average. Tests were
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performed with audio data for f0 in [200, 1000] Hz range, k in [0, 0.4] range and
fmod = 8 Hz. Results were satisfactory again. The model approximates shimmer
with an MSE < 10−4.

3.3 Shimmer approximation with f0, k and fmod variable

For f0 in the range [200, 1000] Hz, k in the range [0, 0.4] and fmod in the range
[5, 10] Hz it was necessary to create a more complex model than the previous
one. Shimmer depends on the modulation frequency, so a new transformation is
necessary (the first one was the transformation from time domain to frequency
domain in the spectrogram). The new (second) transformation is performed in
a convolution layer at the initial part of the model (Fig. 4).

Fig. 4. Shimmer approximation model on signals with f0 in the range [200, 1000] Hz,
k in the range [0, 0.4] and fmod in the range [5, 10] Hz. The shape of convolutonal layer
windows is 1 x 40, strides 1 x 1. Convolutional layer has 10 sub-layers. The shape of
max pooling layer windows is 1 x 40, strides 1 x 40. The network finish with three dense
layers of 20, 20 and 1 neurons.

Convolutional layer Each convolution layer neuron is connected to spectro-
gram through a height = 1 and width = 40 window. Convolution is performed
on a single frequency (height = 1) so that the f0 detail level needed in the dense
layers is not lost. The 40-element width is the minimum required to hold a cycle
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of min(fmod). The number of elements of the spectrogram per modulation cycle
(C) for a spectrogram of width Ws and an audio length L is:

C =
Ws

L×min(fmod)
=

393 elements

2 sec× 5Hz
= 39.3 elements/cycle

The window displacement in both directions is 1 step. It imply that on the
frequency dimension there is no overlap, and in time dimension there are 39 over-
lapping elements between the windows of adjacent neurons. Finally, according
to these definitions, the shape of each convolution filter or sub-layer is 15 x 354.
The convolution layer is formed by 10 sub-layers. This amount is a compromise
between performance and the detail level of fmod on the information sent to
dense layers. Neurons of this layer have linear activation function. Weights are
initialized with orthogonal random values. An attempt was made to initialize
them with wavelet families for sinusoidal waves between 5Hz y 10Hz, but no
improvement was achieved on the prediction accuracy.

Max pooling layer The neurons in the max pooling layer have a 1 x 40 window
size on the convolutional layer. Again, height = 1 allows allows f0 information
be able to be transmitted to dense layers with no losing details. The 40-element
width extends the visual field of this layer neurons to 2 cycles of min(fmod) on
the spectrogram. In this way, the output value is invariant to the modulation
signal translations. There is no overlap between the windows, so the size of each
of the 10 sub-layers is 15 x 8 neurons.

The outputs of max pooling layer are connected to three layers with dense
connections equal to those of the previous model.

For this model, 20 training tests were performed. The size of training dataset
was 2500 elements. In all cases, results were compared with a test dataset (500
elements) during training and a validation dataset (500 elements) at the end.
The best result, with 150 training cycles, obtained a MSE = 5.8× 10−5 on the
test dataset. In Fig. 5 expected and calculated shimmer values are displayed in
ascending order for the 500 elements of test dataset.

4 Conclusion

It was verified that, for simple audio signal modulated in amplitude by a si-
nusoidal wave, with variable parameters of fundamental frequency, modulating
frequency and modulation sensitivity, it is possible to obtain a neural model able
to approximate the value of shimmer.

Under the conditions presented in this paper, it is possible to calculate shim-
mer without knowing f0. Moreover, it can be affirmed that if the first layers
of a deep neural network respects the structure of the second presented model,
this neural network is able to use the value of shimmer, internally calculated, to
perform other classifications.
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Fig. 5. Normalized shimmer. Expected (blue) vs. calculated (red) for elements in the
testing dataset (in ascending order of shimmer value).

5 Future Works

It is planned to extend the analysis, first by expanding the ranges of f0 y fmod,
then adding harmonics and noise to the synthesized signals. Finally, it is planned
to analyze the behavior of deep learning models for shimmer calculation on
natural voices.
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