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Abstract

The Dice overlap ratio is commonly used to evaluate the performance of image segmentation 

algorithms. While Dice overlap is very useful as a standardized quantitative measure of 

segmentation accuracy in many applications, it offers a very limited picture of segmentation 

quality in complex segmentation tasks where the number of target objects is not known a priori, 
such as the segmentation of white matter lesions or lung nodules. While Dice overlap can still be 

used in these applications, segmentation algorithms may perform quite differently in ways not 

reflected by differences in their Dice score. Here we propose a new set of evaluation techniques 

that offer new insights into the behavior of segmentation algorithms. We illustrate these techniques 

with a case study comparing two popular multiple sclerosis (MS) lesion segmentation algorithms: 

OASIS and LesionTOADS.
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1 Introduction

Segmentation is a broad and critical field of research in medical image analysis. The 

evaluation of segmentation algorithms is crucial both for assessing the performance of new 
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algorithms and for choosing a particular algorithm for a new task. In medical image 

segmentation, the Dice [6] and Jaccard [11] overlap ratios are the most popular evaluation 

measures [16,22]. The mean and maximum surface distances between 3D objects are also 

commonly used to evaluate segmentation algorithms [9], as are distances between 

segmentation results and manual landmarks. However, such measures are based on the 

implicit assumption that the number of segmentation targets is known a priori, e.g., whether 

it is one liver, two hippocampi, or five lung lobes. This is in contrast to a different but 

equally important class of segmentation tasks, such as the segmentation of white matter 

lesions or lung nodules, where the number of target objects can vary from zero to hundreds 

or more. In these scenarios, the object detection and segmentation tasks become intertwined 

and as such, performance evaluation needs to take both aspects into consideration. Although, 

it has been customary to use the image-wide Dice overlap in these combined detection and 

segmentation problems, this is an oversimplification and can often hide differences in 

algorithm behaviors (e.g., Fig. 1). Another popular criterion in these types of applications is 

the number of segmented objects, which attempts to evaluate the detection success. 

However, the object count alone is an ambiguous metric as it reflects not only the false 

positive and false negative detections but also larger objects that may be erroneously split 

into multiple smaller ones, or multiple small objects erroneously merged into a single, larger 

object. Furthermore, these commonly used metrics fail to relate the size of the object to the 

final score, which can be important: for many applications, an algorithm that misses large 

objects is considered less clinically relevant than an algorithm that misses small objects.

A prime example of an application domain with a variable number of objects is multiple 

sclerosis (MS) lesion segmentation from MRI scans of the brain. White matter lesions are 

the hallmark of MS and their segmentation and quantification are critical for clinical 

purposes. Many approaches to MS lesion segmentation have been proposed: artificial [10] 

and convolutional neural networks [1]; Bayesian models [7]; Gaussian mixture models [23]; 

graph cuts [8]; and random forests [12]. This field of research remains very active and 

several grand challenges (MICCAI 2008 [19], ISBI 2015 [2], MICCAI 2016 [13]) have been 

organized in recent years. The evaluation of new algorithms often relies on Dice and Jaccard 

overlaps and lesion counts, which limits our ability to fully assess other characteristics in 

performance difference.

We propose a new set of evaluation techniques to compare segmentations with a variable 

number of target objects, including a classification of segmentation results and statistics at 

object and category levels. We illustrate these techniques in an MS lesion segmentation 

study comparing two algorithms: LesionTOADS [17] which is an unsupervised clustering 

algorithm with topological constraints; and OASIS [21] is a supervised classifier based on 

multi-modal logistic regression.

2 Methods

2.1 Data and Compared Methods

As a case study, we used a set of T1w, T2w, PD, and FLAIR images from 70 MS patients 

acquired at 3T. The images of each subject were co-registered rigidly to the T1w space, 

which was also rigidly aligned to the MNI template. Lesions were manually segmented in 
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each T1w-FLAIR pair by an expert with more than 15 years of experience. Two popular 

algorithms, OASIS [21] and LesionTOADS [17], were applied to this dataset. For OASIS, 

data from a disjoint set of 20 MS patients imaged with the same protocol were used for 

training. LesionTOADS was run with T1w and FLAIR inputs; the smoothing parameter was 

adjusted from 0.2 to 0.4 as we empirically found this to improve the quality of the 

segmentations and a different weight (0.7 vs. 1.0 vs. 1.2) was used for the FLAIR image in 

the multi-channel segmentation based on the lesion load (Low vs. Med. vs. High)—see 

Shiee et al. [18] for details.

2.2 Object Correspondence Identification and Classification

Given a pair of segmentations Si1 and Si2 ∈ {0, 1}V for a subject i, e.g., an automated and a 

manual segmentation, respectively, we begin by identifying the (6-) connected components 

in each segmentation as individual objects (i.e., lesions in our application). We name these 

two sets of objects Ci1 and Ci2. Then, for each object in Ci1, we identify its corresponding 

objects by determining all objects in Ci2 (if any) that it overlaps with. Formally, for an object 

Oij1 ∈ Ci1, the set of matching objects is m(Oij1) = {Oik2, ∀k : Oij1 ∩ Oik2 ≠ ∅}. Note that 

this means 0, 1, or multiple corresponding objects are possible. Similarly, for each object 

Oij2 ∈ Ci2, we identify its set of corresponding objects, m(Oij2), by determining all objects in 

Ci1 (if any) that it overlaps with.

Following correspondence identification, it is possible to determine the match configuration 

for each object by considering the number of forward and backward correspondences. For 

example, if an object Oij1 ∈ Ci1 corresponds to a single object Oik2 ∈ Ci2, and Oik2 

corresponds to a single object (i.e., Oij1), then we have a 1-1 match. In contrast, if an object 

Oij1 ∈ Ci1 corresponds to multiple objects Oi12-OiN2, and each of the Oi·2 correspond only to 

Oij1, then we have a 1-N match. Following the nomenclature of [15], we have the following 

categories:

• Correct detection: 1-1 match.

• False alarm: 1-0 match. An object exists in Ci1 that does not exist in Ci2, i.e., a 

false positive if Ci2 is the truth.

• Merge: 1-N match. Multiple objects in Ci2 are merged into a single object in Ci1.

• Split: N-1 match. A single object in Ci2 is split into multiple objects in Ci1.

• Split-merge: N-N match. The conditions for both merge and split are satisfied.

• Detection failure: 0–1 match. An object exists in Ci2 that does not exist in Ci1, 

i.e., a false negative if Ci2 is the truth.

We note that while the results presented in this paper focus on the comparison of an 

automated segmentation Si1 and a manual segmentation Si2, the same idea for classification 

can also be applied to the comparison of two manual segmentations to assess intra- or inter-

rater variability, as well as to segmentations from different timepoints in a longitudinal study 

to assess the disease course.
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2.3 Lesion Segmentation Evaluation

We propose a battery of statistics to compare two binary segmentations for a subject i, Si1 

and Si2, which will be illustrated in Sect. 3.

We begin by reporting the classical image-wide overlap measures. In particular, for each 

subject i, we report the Dice overlap ( DSCi = 2
∣ Si1 ∩ Si2 ∣

∣ Si1 ∣ + ∣ Si2 ∣) [6], the Jaccard overlap 

( 2
∣ Si1 ∩ Si2 ∣
∣ Si1 ∪ Si2 ∣) [11], target overlap ( 

∣ Si1 ∩ Si2 ∣
Si2

), the false negative error ( 
∣ Si2 − Si1 ∣

∣ Si2 ∣ ) and the 

false positive error ( 
∣ Si1 − Si2 ∣

∣ Si1 ∣ ). We also report the number of connected objects (|Ci1|), 

which is another popular evaluation measure.

Next, we classify the object segmentation as described in Sect. 2.2 and report the number of 

objects nik1 and nik2, defined by Si1 and Si2, in each category k. We further report the 

average per-object Dice overlap, DSCik1 = nik1
−1∑ j = 1

nik1 DSCijk, for each category k, where 

DSCijk is the Dice of an object j, defined as the Dice overlap between the segmentation of 

the jth object of type k in Si1, Oijk1, and the matching set m(Oijk1).

Next, we analyze the mean per-object Dice overlap as a function of true object size, i.e., f(s) 

= (DSCijk | |Oijk| = s), where |·| denotes the volume of an object and  is the expectation 

operator. This is done both globally for all objects, as well as separately for each category of 

matches (which we denote by fk(s)), using locally weighted scatterplot smoothing (LOESS) 

[3]. We use scatterplots of Dice vs. true object size to visualize this data. To estimate 95% 

confidence bands for the LOESS scatterplots, we use a nonparametric bootstrap. We 

resample by subject to respect the nested object-within-subject correlation structure. That is, 

for each b ∈ [1, 10000], we resample subjects i ∈ [1, n] with replacement to form a 

bootstrapped sample of pairs of segmentations (S11
(b), S12

(b)), …, (Sn1
(b), Sn2

(b)) and re-estimate f(s), 

and fk(s) and denote these estimates by f̂(b)(s), and f k
(b)(s). We then calculate the pointwise 

2.5% and 97.5% quantiles of f̂(b) and f k
(b) to estimate the lower and upper limits of 

confidence bands. For the false alarm and correct detection classes, we use histograms of 

object size (since the Dice is always 0 for these classes). Additionally, for these two classes, 

we report the spatial distribution of the occurrences by registering all images into a common 

atlas space to construct a spatial occurrence frequency map.

3 Results

Figure 1 shows a summary of the whole-image overlap measures. LesionTOADS and 

OASIS have comparable Dice and Jaccard measures, which is important since these are two 

of the most commonly used measures for comparing segmentation algorithms. 

LesionTOADS has a smaller false negative ratio but a higher false positive ratio than OASIS. 

The number of distinct lesions as segmented by the expert manual rater was 2461; OASIS 

detected 1340 distinct lesions whereas LesionTOADS detected 2810. LesionTOADS reports 
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more lesions than OASIS, but it is uncertain using these measures whether this is driven by a 

higher successful detection rate, more false alarms, more split lesions, or other reasons.

Figure 2(a) shows the per-lesion Dice overlap, summarized per class. Note that the Dice for 

the detection failures and false alarms is 0 by construction. The LesionTOADS algorithm 

has a higher Dice than OASIS in every category, which is rather surprising given that the 

whole-image Dice measures are nearly equal between the two methods (see Fig. 1). Figure 

2(b) shows the number of lesions in each of the classes described in Sect. 2. Compared to 

overall lesion counts, this analysis provides further insight into the algorithm behavior: 

compared to OASIS, LesionTOADS has a larger number of correctly detected lesions 

(good), and fewer detection failures (good), but also more merges (bad), and many more 

false alarms (bad). As such, it is difficult to declare an overall “winner” but each algorithm is 

“winning” for different classes of lesions.

Figure 3(a) shows the per-lesion Dice overlap as a function of true lesion size. On average, 

LesionTOADS seems to perform better than OASIS for small and large lesions, whereas 

OASIS performs better for the more prevalent mediumsized lesions. It is also interesting that 

in this medium-size range, OASIS appears to have a tighter distribution of Dice scores 

whereas LesionTOADS performs either very well (Dice > 0.8) or very poorly (Dice < 0.2). 

Figures 3(c) and (d) provide additional insight by breaking down this data into individual 

classes.

Figure 4 takes this analysis one step further by directly comparing the algorithms’ behaviors 

in each class. Figure 4(a) shows this comparison for the correctly detected lesions. We note 

that the average performance of the LesionTOADS algorithm increases steeply with size in 

this class, indicating the algorithm is highly accurate for all but the smallest lesions (which 

are notoriously difficult to segment correctly), for those lesions that it manages to detect 

correctly. In contrast, OASIS performance improves more slowly with lesion size. Figure 

4(b) compares the two methods for merged lesions; while the performance of the two 

algorithms are roughly comparable and both improve with lesion size, there are overall 

fewer merged lesions for OASIS, which is desirable. Figures 4(c) and (d) provide the same 

comparison for split and split-merge classes, respectively.

For false alarms and detection failures, instead of scatterplots, we present spatial distribution 

maps and size histograms of lesions. Figure 5 shows the detection failures for the two 

algorithms. It is interesting that the distribution of these failures are remarkably similar 

between the two algorithms for smaller lesions, suggesting many of these smaller lesions 

may be generally difficult to detect. The spatial distributions of these detection failures 

concentrate on the septum area for both methods. OASIS has an additional hotspot for 

detection failures near the temporal horn of the ventricles.

Figure 6 compares the false alarms for the two algorithms. LesionTOADS appears to 

generate hardly any small false positive lesions, but many medium-to-large false positive 

lesions. This rather surprising finding explains the counterintuitive result that while 

LesionTOADS reports better Dice overlap for each lesion category (Fig. 2), the whole-image 

Dice scores are nearly identical between the two methods (see Fig. 1). We note that the large 
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number of false alarms reported for LesionTOADS is likely due to the use of a limited range 

of parameters for this study for a fair comparison to OASIS. In other use scenarios, 

LesionTOADS could be run with different parameter settings for each patient. Furthermore, 

it is striking that two algorithms with such similar whole-image Dice scores can have such 

dramatically different performance in different types of lesions, which can go unnoticed in 

studies that only report the whole-image Dice score. The spatial distributions of false alarms 

concentrate around the ventricles as well as the inferior brain for both methods; the latter 

region is especially pronounced for LesionTOADS.

4 Discussion

We have presented a battery of new complementary measures to better evaluate the 

performance of segmentation algorithms. Detailed evaluations can also be useful for 

parameter tuning: algorithms typically require multiple parameters to be set and the effects 

of changing these parameters are not always clear based on image-wide Dice alone. While 

the current study focuses on the MS lesion segmentation task, the presented evaluation 

scheme is directly applicable to other segmentation tasks where the object of interest is of 

variable number, such as lung nodule segmentation and cell counting. Additionally, even 

when the number of objects is known a priori, it has been argued [4] that reducing the 

segmentation quality to a single value represented by the Dice or Haussdorff score may be 

an oversimplification, and that a more detailed evaluation scheme may be beneficial.

The results in our case study highlight a common problem with the popular evaluation 

approach that relies only on Dice overlap: two algorithms with have nearly identical overall 

Dice overlap ratios, but digging deeper reveals that the behaviors of the algorithms are 

dramatically different. Additionally, in this particular study, the number of false alarms 

happens to be consistent with the image-wide false negative rate, and the number of 

detection failures happens to be consistent with the image-wide false positive rate. However, 

this does not have to be the case, as multiple small missed lesions and few large missed 

lesions are indistinguishable in the image-wide measures; similarly for multiple small false 

positive lesions and few large false positive lesions.

It is well known that the pathology of large lesions may often be different than that of 

smaller lesions; multiple small lesions are not equivalent to a single large lesion in terms of 

white matter damage, even if their overall size and location may be similar. Therefore, in 

addition to their relevance for shedding light onto the overall performance of segmentation 

algorithms, the Split, Merge, and Split-Merge categories are also potentially clinically 

relevant. Moreover, in longitudinal studies, it is often desired to “track” lesions over time 

[14,20], and thus analysis of the merging behavior can also be highly relevant in such 

studies.

One potential weakness of the present study is that the identification of overlapping lesions 

is currently performed with no tolerance; i.e., if two lesions overlap by even a single voxel, 

they are considered to be in correspondence. While it would be straightforward to modify 

this to allow a threshold of tolerance (e.g., only consider it a match if X voxels or Y % of the 

true lesion volume are overlapping), this would add a layer of complexity to the 
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interpretation of the results. The connectivity could also be extended beyond just 6-

connectivity. These concerns can be taken into account similar to the multi-label evaluation 

approach in [5] that considers fuzzy segmentations. Further, while it would be 

straightforward to also report Jaccard, target overlap, false negative, and false positive errors 

at the per-lesion scale, here we focused on Dice for the sake of brevity. However, such 

metrics would likely provide additional insights into algorithm behavior. These additional 

analyses will be performed in future work.
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Fig. 1. 
The top row shows a typical example of segmentation results for the two algorithms and 

expert delineation. The second row shows image-wide overlap measures and the lesion 

count for both methods and the expert delineation (True count).
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Fig. 2. 
For both LesionTOADS and OASIS, we show the (a) Dice overlap by lesion class and the 

(b) lesion count by class.
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Fig. 3. 
(a) For both LesionTOADS and OASIS, we show per-lesion Dice overlap as a function of 

true lesion size, bootstrapped per subject. Per-lesion Dice overlap as a function of true lesion 

size, color-coded by classification (see legend in (b)), for both (c) OASIS and (d) 
LesionTOADS.
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Fig. 4. 
Per-lesion Dice overlap vs. true lesion size, bootstrapped per subject.
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Fig. 5. 
Spatial distribution of detection failures on a coronal slice for (a) OASIS and (b) 
LesionTOADS, with both methods exhibiting failures around the septum. Size statistics of 

detection failures for (c) both OASIS and LesionTOADS.
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Fig. 6. 
False alarm category. Spatial distribution for (a, c) OASIS and (b, d) LesionTOADS, and (e) 
size statistics. LesionTOADS appears to generate hardly any small false positive lesions, but 

many medium-to-large false positive lesions.
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