Skip to main content

WMH Segmentation Challenge: A Texture-Based Classification Approach

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10670))

Abstract

This Grand Challenge at MICCAI 2017 aims to directly compare methods for the automatic segmentation of White Matter Hyperintensities (WMH) of presumed vascular origin. Our method automatically segment WMH by using texture-based classification of pixels within the brain white matter. It uses no a priori information about the WMH size, contrast or location. The main goal is to compute the probability of each pixel being normal or WMH tissue, by generating a probability map. Based on this probability map, we can automatically segment the WMHs.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    http://wmh.isi.uu.nl/.

References

  1. Appenzeller, S., Vasconcelos Faria, A., Li, L.M., Costallat, L.T., Cendes, F.: Quantitativemagnetic resonance imaging analyses and clinical significance of hyperintense white matter lesions in systemic lupus erythematosus patients. Ann. Neurol. 64(6), 635–643 (2008)

    Article  Google Scholar 

  2. Bento, M., Rittner, L., Lotufo, R.: Texture descriptors and pattern recognition classifiers based analysis of white matter hyperintensity in MR images. In: Proceedings of Workshop of Theses and Dissertations in SIBGRAPI 2013 (XXVI Conference on Graphics, Patterns and Images) (2013)

    Google Scholar 

  3. Bento, M., Sym, Y., Frayne, R., Lotufo, R., Rittner, L.: Probabilistic segmentation of brain white matter lesions using texture-based classification. In: Karray, F., Campilho, A., Cheriet, F. (eds.) ICIAR 2017. LNCS, vol. 10317, pp. 71–78. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59876-5_9

    Chapter  Google Scholar 

  4. Calabrese, M., Rocca, M., Atzori, M., Mattisi, I., Bernardi, V., Favaretto, A., Barachino, L., Romualdi, C., Rinaldi, L., Perini, P., Gallo, P., Filippi, M.: Cortical lesions in primary progressive multiple sclerosis: a 2-year longitudinal MR study. Neurology 72(15), 1330–1336 (2009)

    Article  Google Scholar 

  5. Chen, L., Bentley, P., Rueckert, D.: A novel framework for sub-acute stroke lesion segmentation based on random forest. In: Proceedings of Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries: First International Workshop, Brainles 2015, Held in Conjunction with MICCAI 2015 (2015)

    Google Scholar 

  6. Despotovic, I., Goossens, B., Philips, W.: MRI segmentation of the human brain: challenges, methods, and applications. Comput. Math. Methods Med. 2015(1), 1–23 (2015)

    Article  Google Scholar 

  7. Feng, C., Zhao, D., Huang, M.: Segmentation of Ischemic stroke lesions in multi-spectral MR images using weighting suppressed FCM and three phase level set. In: Crimi, A., Menze, B., Maier, O., Reyes, M., Handels, H. (eds.) BrainLes 2015. LNCS, vol. 9556, pp. 233–245. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-30858-6_20

    Chapter  Google Scholar 

  8. Griffanti, L., Zamboni, G., Khan, A., Li, L., Bonifacio, G., Sundaresan, V., Schulz, U., Kuker, W., Battaglini, M., Rothwell, P., Jenkinson, M.: BIANCA (Brain Intensity Abnormality Classification Algorithm): a new tool for automated segmentation of white matter hyperintensities. NeuroImage 141, 191–205 (2016)

    Article  Google Scholar 

  9. He, D.C., Wang, L.: Texture unit, texture spectrum, and texture analysis. IEEE Trans. Geosci. Remote Sens. 28(1), 509–512 (1990)

    Google Scholar 

  10. Ithapu, V., Singh, V., Lindner, C., Austin, B., Hinrichs, C., Carlsson, C., Bendlin, B., Johnson, S.: Extracting and summarizing white matter hyperintensities using supervised segmentation methods in Alzheimer’s disease risk and aging studies. Hum. Brain Mapping 35(1), 4219–4235 (2014)

    Google Scholar 

  11. Jones, E., Oliphant, T., Peterson, P., et al.: SciPy: open source scientific tools for Python (2001). http://www.scipy.org/

  12. Kamnitsas, K., Chen, L., Ledig, C., Rueckert, D., Glocker, B.: Multi-scale 3D convolutional neural networks for lesion segmentation in brain MRI. In: Proceedings of Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries: First International Workshop, Brainles 2015, Held in Conjunction with MICCAI 2015 (2015)

    Google Scholar 

  13. Kashif, M., Raza, S., Sirinukunwattana, K., Arif, M., Rajpoot, N.: Handcrafted features with convolutional neural networks for detection of tumor cells in histology images. In: Proceedings of IEEE 13th International Symposium on Biomedical Imaging (2016)

    Google Scholar 

  14. Kloppenborg, R., Nederkoorn, P., Geerlings, M., Berg, E.: Presence and progression of white matter hyperintensities and cognition: a meta-analysis. Neurology 82(1), 2127–2138 (2014)

    Article  Google Scholar 

  15. Lao, Z., Shen, D., Liu, D., Jawad, A.F., Melhem, E.R., Launer, L.J., Bryan, R.N., Davatzikos, C.: Computer-assisted segmentation of white matter lesions in 3D MR images, using support vector machine. Acad. Radiol. 15(3), 300–313 (2008)

    Article  Google Scholar 

  16. Lapa, A., Bento, M., Rittner, L., Ruocco, H., Castellano, G., Damasceno, B., Costallat, L., Lotufo, R., Cendes, F., Appenzeller, S.: Support vector machines classification of texture parameters of white matter lesions in childhood-onset systemic lupus erythematosus. Possible mechanism to distinguish between demyelination and ischemia. Ann. Rheum. Dis. 71(269) (2013)

    Google Scholar 

  17. Leite, M., Gobbi, D., Salluzi, M., Frayne, R., Lotufo, R., Rittner, L.: 3D texture-based classification applied on brain white matter lesions on MR images. In: Proceedings Volume 9785: Medical Imaging 2016: Computer-Aided Diagnosis SPIE (2016)

    Google Scholar 

  18. Leite, M., Lapa, A., Appenzeller, S., Lotufo, R., Rittner, L.: A new approach for longitudinal study of white matter lesion based on texture variation. In: Proceedings of XXV Congresso Brasileiro de Engenharia Biomédica (2016)

    Google Scholar 

  19. Leite, M., Rittner, L., Appenzeller, S., Ruocco, H., Lotufo, R.: Etiology-based classification of brain white matter hyperintensity on magnetic resonance imaging. J. Med. Imaging 2(1), 014002-1–014002-10 (2015)

    Article  Google Scholar 

  20. Loizou, C., Petroudi, S., Seimenis, I., Seimenis, I., Pantziaris, M.: Pattichis: quantitative texture analysis of brain white matter lesions derived from T2-weighted MR images in MS patients with clinically isolated syndrome. Neuroradiology 42(2), 99–114 (2015)

    Article  Google Scholar 

  21. Loizou, C., Seimenis, I., Seimenis, I., Pantziaris, M., Kasparis, T., Kyriacou, E., Pattichis, C.: Texture image analysis of normal appearing white matter areas in clinically isolated syndrome that evolved in demyelinating lesions in subsequent MRI scans: multiple sclerosis disease evolution. In: Proceedings of the 10th IEEE International Conference on Information Technology and Applications in Biomedicine (2010)

    Google Scholar 

  22. Merkel, D.: Docker: lightweight Linux containers for consistent development and deployment. Linux J. 2014(239) (2014). Article No. 2

    Google Scholar 

  23. Mortazavi, D., Kouzani, A., Soltanian, H.: Segmentation of multiple sclerosis lesions in MR images: a review. Neuroradiology 54(4), 299–320 (2012)

    Article  Google Scholar 

  24. Nourbakhsh, B., Nunan-Saah, J., Maghzi, A., Julian, L., Spain, R., Jin, C., Lazar, A., Pelletier, D., Waubant, E.: Longitudinal associations between MRI and cognitive changes in very early MS. Multiple Sclerosis Relat. Disord. 5(1), 47–52 (2016)

    Article  Google Scholar 

  25. Oppedal, K., Eftestol, T., Engan, K., Beyer, M., Aarsland, D.: Classifying dementia using local binary patterns from different regions in magnetic resonance images. Int. J. Biomed. Imaging 2015, 1–14 (2015)

    Article  Google Scholar 

  26. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12(1), 2825–2830 (2011)

    MathSciNet  MATH  Google Scholar 

  27. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  28. Roura, E., Oliver, A., Cabezas, M., Valverde, S., Pareto, D., Vilanova, J., Ramió-Torrentà, L., Rovira, A., Lladó, X.: A toolbox for multiple sclerosis lesion segmentation. Neuroradiology 57(10), 1031–1043 (2015)

    Article  Google Scholar 

  29. Roura, E., Sarbu, N., Oliver, A., Valverde, S., González-Villà, S., Cervera, R., Bargalló, N., Lladó, X.: Automated detection of lupus white matter lesions in MRI. Front. Neuroinformatics 10(33), 1–11 (2016)

    Google Scholar 

  30. Salembier, P., Oliveras, A., Garrido, L.: Antiextensive connected operators for image and sequence processing. IEEE Trans. Image Process. 7(4), 555–570 (1998)

    Article  Google Scholar 

  31. Samet, H., Tamminen, M.: Efficient component labeling of images of arbitrary dimension represented by linear bintrees. IEEE Trans. Pattern Anal. Mach. Intell. 10(4), 579 (1988)

    Article  Google Scholar 

  32. Stankiewicz, J., Glanz, B., Healy, B., Arora, A., Neema, M., Benedict, R., Guss, Z., Tauhid, S., Buckle, G., Houtchens, M., Khoury, S., Weiner, H., Guttmann, C., Bakshi, R.: Brain MRI lesion load at 1.5T and 3T vs. clinical status in multiple sclerosis. J. Neuroimaging 21(2), 1–15 (2011)

    Article  Google Scholar 

  33. Steenwijk, M., Pouwels, P., Daams, M., Dalen, J., Caan, M., Richard, E., Barkhof, F., Vrenken, H.: Accurate white matter lesion segmentation by k nearest neighbor classification with tissue type priors (kNN-TTPs). NeuroImage Clin. 3, 462–469 (2013)

    Article  Google Scholar 

  34. Sudre, C., Cardoso, M., Ourselin, S.: Longitudinal segmentation of age-related white matter hyperintensities. Med. Image Anal. 38, 50–64 (2017)

    Article  Google Scholar 

  35. Taha, A., Hanbury, A.: Metrics for evaluating 3D medical image segmentation: analysis, selection, and tool. BMC Med. Imaging 15(29), 1–29 (2015)

    Google Scholar 

  36. Vernooij, M., Ikram, M., Tanghe, H., Vincent, A., Hofman, A., Krestin, G., Niessen, W., Breteler, M., van der Lugt, A.: Incidental findings on brain MRI in the general population. New England J. Med. 357(18), 1821–1828 (2007)

    Article  Google Scholar 

  37. Walt, S., Colbert, S., Varoquaux, G.: The NumPy array: a structure for efficient numerical computation. Comput. Sci. Eng. 13, 22–30 (2011)

    Article  Google Scholar 

  38. van der Walt, S., Schönberger, J.L., Nunez-Iglesias, J., Boulogne, F., Warner, J.D., Yager, N., Gouillart, E., Yu, T.: The scikit-image contributors: Scikit-image: image processing in Python. Peer J. Bioinform. Software Tools Collect. 2, e453 (2014)

    Google Scholar 

  39. Zhang, Y.: MRI texture analysis in multiple sclerosis. Int. J. Biomed. Imaging 2012, 1–7 (2012). Article ID 762804

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank Hotchkiss Brain Institute; CAPES process PVE 88881.062158/2014-01; FAPESP processes 2012/21826-1 CEPID2013/07559-3 for providing financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mariana Bento .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bento, M., de Souza, R., Lotufo, R., Frayne, R., Rittner, L. (2018). WMH Segmentation Challenge: A Texture-Based Classification Approach. In: Crimi, A., Bakas, S., Kuijf, H., Menze, B., Reyes, M. (eds) Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries. BrainLes 2017. Lecture Notes in Computer Science(), vol 10670. Springer, Cham. https://doi.org/10.1007/978-3-319-75238-9_41

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-75238-9_41

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-75237-2

  • Online ISBN: 978-3-319-75238-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics