Skip to main content

Integration of Graph Constraints into Graph Grammars

  • Chapter
  • First Online:
Book cover Graph Transformation, Specifications, and Nets

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10800))

  • 1021 Accesses

Abstract

We investigate the integration of graph constraints into graph grammars and consider the filter problem: Given a graph grammar and a graph constraint, does there exist a “goal-oriented” grammar that generates all graphs of the original graph language satisfying the constraint. We solve the filter problem for specific graph grammars and specific graph constraints. As an intermediate step, we construct a constraint automaton accepting exactly the graphs in the graph language that satisfy the constraint.

This work is partly supported by the German Research Foundation (DFG), Grants HA 2936/4-2 and TA 2941/3-2 (Meta-Modeling and Graph Grammars: Generating Development Environments for Modeling Languages).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For definition & existence of pushouts in the category of graphs see e.g. [EEPT06].

  2. 2.

    A rule set \(\mathcal {R}\) is terminating if there is no infinite transformation \(G_0\mathop {\Rightarrow }\limits _{\mathcal {R}} G_1\mathop {\Rightarrow }\limits _{\mathcal {R}}G_2\ldots \).

  3. 3.

    For a rule \(\varrho =\langle p,\mathrm {ac}\rangle \), \(\varrho '=\langle \varrho ,\mathrm {ac}'\rangle \) denotes the rule \(\langle p,\mathrm {ac}\wedge \mathrm {ac}'\rangle \).

  4. 4.

    A pair \((a',b')\) is jointly surjective if, for each \(x\in C'\), there is a preimage \(y\in P'\) with \(a'(y)=x\) or \(z\in C\) with \(b'(z)=x\).

  5. 5.

    For a rule \(p=\langle {L}\hookleftarrow {K}\hookrightarrow {R}\rangle \), \(p^{-1}=\langle {R}\hookleftarrow {K}\hookrightarrow {L}\rangle \) denotes the inverse rule. For \(L'\Rightarrow _p R'\) with intermediate graph \(K'\), \(\langle {L'}\hookleftarrow {K'}\hookrightarrow {R'}\rangle \) is the derived rule.

  6. 6.

    Karl-Heinz Pennemann. Generalized constraints and application conditions for graph transformation systems. Diploma thesis, University of Oldenburg, 2004.

  7. 7.

    A rule \(\varrho \) is \(\mathcal {R}\) -restricting if \(\varrho '\) is \(\varrho \)-restricting for some \(\varrho \in \mathcal {R}\).

  8. 8.

    The match of the rule is marked in a blue color.

  9. 9.

    Two application conditions \(\mathrm {ac}\) and \(\mathrm {ac}'\) are disjoint if the sets \([\![\mathrm {ac}]\!]\) and \([\![\mathrm {ac}']\!]\) are disjoint. \([\![\mathrm {ac}]\!]=\{g\mid g\,\models \, \mathrm {ac}\}\) denotes the semantics of the application condition \(\mathrm {ac}\).

  10. 10.

    In [BDK+12], a slight extension of the single-pushout approach is considered, but the simulation of a deterministic Turing machine is done by a non-deleting double-pushout graph transformation system, see, e.g., [EHK+97].

  11. 11.

    A binary relation \(\preceq \) defined on a set Q is a quasi-ordering [Din92] if it is reflexive and transitive. A sequence \(q_1 ,q_2,\ldots \) of members of Q is called a good sequence (with respect to \(\preceq \)) if there exist \(i < j\) such that \(q_i\preceq q_j\). It is a bad sequence if otherwise. We call \((Q,\preceq )\) a well-quasi-ordering (or a wqo) if there is no infinite bad sequence.

  12. 12.

    Let T be a transition system with a preorder \(\preceq \) defined on its states. T is monotone wrt. to \(\preceq \) if, for any states \(c_1, c_2\) and \(c_3\), with \(c_1 \preceq c_2\) and \(c_1 \rightarrow c_3\), there exists a state \(c_4\) such that \(c_3 \preceq c_4\) and \(c_2 \rightarrow c_4\).

References

  1. Arendt, T., Habel, A., Radke, H., Taentzer, G.: From core OCL invariants to nested graph constraints. In: Giese, H., König, B. (eds.) ICGT 2014. LNCS, vol. 8571, pp. 97–112. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-09108-2_7

    Google Scholar 

  2. Abdulla, P.A., Jonsson, B.: Ensuring completeness of symbolic verification methods for infinite-state systems. Theor. Comput. Sci. 256(1–2), 145–167 (2001)

    Google Scholar 

  3. Bertrand, N., Delzanno, G., König, B., Sangnier, A., Stückrath, J.: On the decidability status of reachability and coverability in graph transformation systems. In: Rewriting Techniques and Applications (RTA 2012). LIPIcs, vol. 15, pp. 101–116 (2012)

    Google Scholar 

  4. Becker, J.S.: An automata-theoretic approach to instance generation. In: Graph Computation Models (GCM 2016), Electronic Pre-Proceedings (2016)

    Google Scholar 

  5. Bergmann, G.: Translating OCL to graph patterns. In: Dingel, J., Schulte, W., Ramos, I., Abrahão, S., Insfran, E. (eds.) MODELS 2014. LNCS, vol. 8767, pp. 670–686. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11653-2_41

    Google Scholar 

  6. Cabot, J., Clarisó, R., Riera, D.: UMLtoCSP: a tool for the formal verification of UML/OCL models using constraint programming. In: 22nd IEEE/ACM International Conference on Automated Software Engineering (ASE), pp. 547–548 (2007)

    Google Scholar 

  7. Ding, G.: Subgraphs and well-quasi-ordering. J. Graph Theor. 16(5), 489–502 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  8. Semeráth, O., Vörös, A., Varró, D.: Iterative and incremental model generation by logic solvers. In: Stevens, P., Wąsowski, A. (eds.) FASE 2016. LNCS, vol. 9633, pp. 87–103. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49665-7_6

    Chapter  Google Scholar 

  9. Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic Graph Transformation. EATCS Monographs of Theoretical Computer Science. Springer, Heidelberg (2006). https://doi.org/10.1007/3-540-31188-2

    MATH  Google Scholar 

  10. Ehrig, H., Heckel, R., Korff, M., Löwe, M., Ribeiro, L., Wagner, A., Corradini, A.: Algebraic approaches to graph transformation. Part II: single-pushout approach and comparison with double pushout approach. In: Handbook of Graph Grammars and Computing by Graph Transformation, vol. 1, pp. 247–312. World Scientific, River Edge (1997)

    Google Scholar 

  11. Habel, A., Pennemann, K.-H.: Correctness of high-level transformation systems relative to nested conditions. Math. Struct. Comput. Sci. 19, 245–296 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. Jackson, D.: Alloy Analyzer website (2012). http://alloy.mit.edu/

  13. Kuhlmann, M., Gogolla, M.: From UML and OCL to relational logic and back. In: France, R.B., Kazmeier, J., Breu, R., Atkinson, C. (eds.) MODELS 2012. LNCS, vol. 7590, pp. 415–431. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33666-9_27

    Chapter  Google Scholar 

  14. Radke, H., Arendt, T., Becker, J.S., Habel, A., Taentzer, G.: Translating essential OCL invariants to nested graph constraints focusing on set operations. In: Parisi-Presicce, F., Westfechtel, B. (eds.) ICGT 2015. LNCS, vol. 9151, pp. 155–170. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21145-9_10

    Chapter  Google Scholar 

  15. Schneider, S., Lambers, L., Orejas, F.: Symbolic model generation for graph properties. In: Huisman, M., Rubin, J. (eds.) FASE 2017. LNCS, vol. 10202, pp. 226–243. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-54494-5_13

    Chapter  Google Scholar 

  16. Taentzer, G.: Instance generation from type graphs with arbitrary multiplicities. Electron. Commun. EASST 47 (2012)

    Google Scholar 

Download references

Acknowledgements

We are grateful to Jan Steffen Becker, Berthold Hoffmann, Jens Kosiol, Nebras Nassar, Christoph Peuser, Lina Spiekermann, and Gabriele Taentzer and the anonymous reviewers for their helpful comments to this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tilman Teusch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Habel, A., Sandmann, C., Teusch, T. (2018). Integration of Graph Constraints into Graph Grammars. In: Heckel, R., Taentzer, G. (eds) Graph Transformation, Specifications, and Nets. Lecture Notes in Computer Science(), vol 10800. Springer, Cham. https://doi.org/10.1007/978-3-319-75396-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-75396-6_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-75395-9

  • Online ISBN: 978-3-319-75396-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics