
Gut, Besser, Chunker –
Selecting the best models for text chunking with

voting

Balázs Indig and István Endrédy

Pázmány Péter Catholic University, Faculty of Information Technology and Bionics
MTA-PPKE Hungarian Language Technology Research Group

50/a Práter Street, 1083 Budapest, Hungary
{indig.balazs,endredy.istvan}@itk.ppke.hu

Abstract. The CoNLL-2000 dataset is the de-facto standard dataset
for measuring chunkers on the task of chunking base noun phrases (NP)
and arbitrary phrases. The state-of-the-art tagging method is utilising
TnT, an HMM-based Part-of-Speech tagger (POS), with simple major-
ity voting on different representations and fine-grained classes created by
lexcialising tags. In this paper the state-of-the-art English phrase chunk-
ing method was deeply investigated, re-implemented and evaluated with
several modifications. We also investigated a less studied side of phrase
chunking, i.e. the voting between different currently available taggers,
the checking of invalid sequences and the way how the state-of-the-art
method can be adapted to morphologically rich, agglutinative languages.
We propose a new, mild level of lexicalisation and a better combination
of representations and taggers for English. The final architecture out-
performed the state-of-the-art for arbitrary phrase identification and NP
chunking achieving the F-score of 95.06% for arbitrary and 96.49% for
noun phrase chunking.

Keywords: phrase chunking, voting, IOB labels, multiple IOB repre-
sentations, sequential tagging, HMM, MEMM, CRF

1 Introduction

For chunking in English, the current state-of-the-art tagging method is SS05 [12].
It was tested on the CoNLL-2000 dataset [14] and achieves an F-score of 95.23%
for chunking base noun phrases (NP) and 94.01% for arbitrary phrases. Its con-
cept is based on the lexicalisation of Molina and Pla [6] and voting between
multiple data representations (see details in Section 2.1). However, the paper
leaves multiple questions unanswered. How well does a basic tagger (originally
developed for POS tagging), like TnT [2], maintain well-formedness of chunks?
How converters handle ill-formed input? And so on. In this paper, we also in-
vestigate the independent impact of voting without lexicalisation to F-scores.



2 Balázs Indig, István Endrédy

We also evaluate multiple taggers (with different underlying methods), with re-
spect to the number of invalid sequences created during tagging and converting
between representations.

2 Introduction to chunking

The task of applying tags to each token in a sentence consecutively is called
sequential tagging. In general, the tagger tries to assign labels to (neighbouring)
tokens correctly. The well-known special cases of this task include Part-of-Speech
tagging, Named-Entity Recognition (NER) and chunking. In the latter two IOB
tags are used to determine a well-formed one level bracketing on the text. In
each sentence each token has an assigned label, which indicates the beginning
(B), inside (I), end (E) of a chunk. One may distinguish the outside (O) of a
sought sequence and one-token-long, single (S or 1) chunks. In addition, each
marked sequence (except the outside labels) may have a type that corresponds
to the task (typed or untyped case).

Table 1. Multiple IOB representations: An example sentence from the training set
represented with five different IOB label sets

word IOB1 IOB2 IOE1 IOE2 IOBES

These I B I E S
include O O O O O
, O O O O O
among O O O O O
other I B I I B
parts I I I E E
, O O O O O
each I B I I B
jetliner I I E E E
’s B B I I B
two I I I I O
major I I I I O
bulkheads I I I E E
, O O O O O

2.1 Representation variants

Numerous representations exist, which try to catch information differently (see
table 1 and [15] for details). There are variants which are basically the same.
We try to follow the most convenient form of these. For example, there exists
the BILOU format1 (B=B, I=I, L=E, O=O, U=S) or the bracket variant ([=B,

1 Begin, Inside, Last, Outside, Unique



Gut, Besser, Chunker – Selecting the best models for text chunking 3

I=I, ]=E, O=O, []=S) which are equivalent to the SBIEO2 format. In this paper,
we prefer the name IOBES. IOB2 format is commonly referred to as IOB or
BIO or CoNLL format. There also exists the Open-Close notation (O+C or OC
for short), which is roughly the same as bracket variant ([=B, I=O, ]=E, O=O,
[]=S). In the untyped case, however, where only one type of chunks is sought
one can not make a difference between the outside and the inside chunks, so
the whole representation relies on the right positioning of opening and closing
tags, which makes this representation very fragile. Besides, there are two inferior
representations the Inside-Outside notation (IO) and the prefixless notation,
where the tag consists only of the chunk type. These variants can not distinguish
between subsequent chunks of the same type, but is easy to use (for searching
nonconsecutive chunks) due to their simplicity.

2.2 Conversion of (possibly invalid) IOB sequences

POS taggers and IOB taggers might have many characteristics in common, but
they are significantly different. IOB tags have an important substantial prop-
erty: well-formedness, which relate tags at the intra-token level and can easily
be inspected, while POS tags have no such property. In the literature, there is
no mention of the proper handling of invalid sequences, especially during con-
version between formats. However, lexicalising increases the number of invalid
tag sequences assigned by simple taggers, because as the number of labels grows
the sparse data problem arises.

At the time of writing this paper, we only found one tool that is publicly
available and able to convert between multiple IOB representations: IOBUtils3,
which is the part of the Stanford CoreNLP tools written by Christopher Manning
[5]. This converter is written in JAVA 1.8 and has no external interface to use
by its own. It can handle labelsets IOB1, IOB2, IOE1, IOE2, IO, SBIEO/IOBES
and BILOU with or without type (e.g. B-VP) and it seemed robust and fault-
tolerant. IOBUtils also has some similarities with the official evaluation script
of CONLL-2000 task. First, it converts the chunks from the IOB labels into an
intermediate representation and then transforms them into the required IOB
labelset.

The original source of the SS05 approach (see Section 2.3 for details) served
as another, independent implementation written in Perl. We still decided to
create our own tool for conversion (inspired by the Perl version) in Python 3
(to enable us to verify thoroughly the speed and robustness of the method). We
also examined IOBUtils, a converter based on a rather different concept, jointly
with the original SS05 and our approach. The latter two converters use the fact
that two neighboring tags of each label and the current tag can unambiguously
determine the result of the conversion. This method seemed to be very clumsy
and fragile compared to IOBUtils because a big number of corner cases needed
to be handled properly.

2 Single, Begin, Inside, End, Outside
3 https://github.com/stanfordnlp/CoreNLP/blob/master/src/edu/stanford/

nlp/sequences/IOBUtils.java



4 Balázs Indig, István Endrédy

In our measurements, we compared the three converters on a realistic data
which could be malformed (the intermediate stages of the SS05 algorithm). To
help later reproduction and application of our results, we made all three con-
verters available freely along with our whole pipeline.

2.3 State-of-the-art chunker for English

For chunking English, the CoNLL-2000 shared task [14] is the de-facto standard
for measuring and comparing taggers. The current state-of-the-art method, SS05
[12], uses this dataset with every 10th sentence separated from the training set
for development. We used this method as our baseline.

The concept of SS05 has three basic steps. First, the lexicalisation: every IOB
label is augmented with POS tags and with words which are more frequent than
threshold of 504 (see table 2 for details). Second, the conversion and tagging :
the lexicalised tags converted to the five IOB formats, then tagging is performed
with each format separately with TnT tagger [2]. In the third step, the five
outputs are converted to a common format and voted by simple majority voting
and the resulting tag becomes the final output. This method yields an F-score
of 95.23% for NPs and 94.01% for arbitrary phrases. We mainly followed this
concept, if it is not indicated otherwise.

Table 2. Lexicalisation: every IOB label is augmented with the POS tag, and (above a
given frequency threshold that was set to 50 in SS05) also with the word as well (Full),
and our lighter, mild version with less labels (just words) where just the labels of the
frequent words is modified. We use ‘+’ for separator because it is easier to parse than
‘-’ used originally in SS05.

Unlexicalised Lexicalised
Original format Full Mild (just words)

Word POS IOB Label POS IOB Label POS IOB Label
Rockwell NNP B-NP NNP NNP+B-NP NNP B-NP
said VBD O VBD O VBD O
the DT B-NP the+DT the+DT+B-NP the+DT the+DT+B-NP
agreement NN I-NP NN NN+I-NP NN I-NP

We were given the original Perl source code of SS055, which helped to un-
derstand better the workflow and the undisclosed details. Our first step was to
reproduce their results, but the package did not contain the specific version of
TnT that they were using, so we applied a potentially different version of the
original Brants implementation that we had access to. The review of their code

4 The authors did not disclose why they chosen 50 as threshold and whether they
observed invalid sequences or not

5 The full, original and bug fixed Perl source code is available at our github page
https://github.com/ppke-nlpg/SS05 with the permission of the authors.



Gut, Besser, Chunker – Selecting the best models for text chunking 5

resulted several bug fixes (in the Perl code), and a somewhat parallel (highly
extended), refractored Python code that finally could reproduce their results,
but with smaller F-scores.

3 Adaptation of lexicalisation (to agglutinative
languages)

For English SS05 is a fast (but not freely available) method and has the clear
advantage over other competing taggers. The question comes naturally: can it be
used for agglutinative languages as well? The lexicalisation part of the method
generates finer label classes by adding lexical information to the POS tags and
labels of frequent words and POS tags to the labels of non-frequent words (see
Table 2). Due to this procedure, there is an 18 times increase in the number
of labels (from 23 to 422). Unfortunately, this high number of classes makes
it impossible to use or reasonably slows down most of the taggers available for
English, because of the exponential growth of learning time that can be observed
for example in Maximum Entropy-based (ME) learners, which have been shown
effective for Hungarian maximal NP chunking [3]. In ME training a multi-label
learning problem is broken down into a number of independent binary learning
problems (one per label) which makes the training process exponentially slower.

This problem with a high number of classes holds particularly true for ag-
glutinative languages like Hungarian. If we want to apply the SS05 algorithm
to agglutinative languages (to enjoy its benefits on speed and performance com-
pared to other taggers), we can not use lexicalisation or we rule out most of
the (state-of-the-art) taggers because of the slow-down effect due to the highly
increased number of classes. For example the number of tags describing a token
morphosyntactically in Hungarian in the Humor tagset [7] exceeds 200, which is
one order of magnitude greater than the 36 Penn POS tags used for English.

Lexicalisation, combined with the large number of frequent words and the
forms of IOB tags, makes the number of labels so high that it can not be handled
easily with any tagger, e.g. Brant’s TnT tagger has the upper limit of 2048
tags and ME taggers are also unsuitable because of the exponential slow-down
mentioned above. This fact makes the method unsuitable for complex languages
such as Hungarian.

In order to be able to tackle the challenge arousing from the high number
of labels in agglutinative languages, we made experiments with both zero and
mild lexicalisation. In the latter case just the frequent words (referenced as just
words) and their labels are lexicalised6, the other labels are left untouched (see
table 2 for example) instead of the original full lexicalisation where the labels
of the non-frequent words were augmented with their POS tag. (See Table 2 for
details.)

6 The label of those word and POS combinations, that were above some threshold were
augmented with the word and POS tag. (See Table 2 for details.) The threshold was
selected to be 50 by following the original SS05 paper.



6 Balázs Indig, István Endrédy

4 Multiple taggers voted

Since the results of SS05 were published, many good taggers have been made
available. The original authors wanted to show the impact of their method on an
ordinary tagger, but left the evaluation of better taggers to the reader. As TnT
is being a surprisingly fast POS tagger, we have no doubt that their method was
extremely fast and efficient.

Our primary goal was to create a freely available, fast, and adaptable solution,
that performs in pair or better than SS05 for English and can be evaluated
on other (agglutinative) languages as well to measure the impact of voting on
different representations with a wide spectrum of taggers. Therefore, we gathered
freely available taggers with different inner-workings and compared them to TnT
at the aforementioned levels of lexicalisation.

The following sections contain the brief introductions of the used taggers.
We also wanted to evaluate the performance of some taggers, that represent
the state-of-the-art on an agglutinative language to examine if they yield some
additional improvement to our tagging task.

4.1 TnT

TnT is originally a POS tagger created by Thorsten Brants in 2000 [2]. The
program is not freely available, closed source and written in C/C++. The un-
derlying method uses second-order Hidden Markov Machine (HMM) with an
extra check for boundary symbols at the end of sentences to prevent ‘loose end’.
Additionally, the program uses many trickery solution disclosed partly in the
original paper. The program also uses a guesser, that tries to model suffixes of
rare unseen words, but this feature has no role in this experiment. We used a
different version of this program from the one used originally for SS05, but with
default settings replicating the original experiment.

4.2 NLTK-TNT

In search of a free substitute of TnT we found Natural Language Toolkit for
Python (NLTK) [1] which implements a basic variant of TnT. This framework is
written in Python and the TnT implementation lacks the handling of Unknown
words (but has the API for a drop-in replacement, that was not necessary for this
experiment) and using a simple HMM augmented with the checking of boundary
symbols at the end of a sentence. The whole program is implemented in Python
bearing in mind the simplicity instead of speed, therefore the tagging phase is
very slow and unknown tags are substituted with the Unk symbol.

4.3 PurePOS

PurePOS [10] is a freely available, fast substitute of TnT, including most of the
advanced features found in TnT. The program is implemented in Java and its



Gut, Besser, Chunker – Selecting the best models for text chunking 7

speed is comparable with TnT. PurePOS is the state-of-the-art POS tagger for
Hungarian [10], but to our knowledge it was never used for a task other than
POS tagging. On its input the tagger needs word, stem and label tuples. As
stem we used the word itself to make it impossible for the suffixguesser to have
any impact on the experiments. We also experimented with the words instead
of POS-tags and the combination of words and POS tags without success.

4.4 CRFsuite

We also tested CRFsuite[9], a first-order Conditional Random Field tagger. Con-
ditional Random Fields (CRFs) is a popular method for general sequential tag-
ging and CRFsuite is a fast, freely available implementation of first-order CRFs
in C++. As input, one can define features for each token. The author has his
own featureset for CoNLL-2000 task, which was evaluated as well (referred to
as ‘official CRFSuite’). There is also a slow-down with the increasing number of
labels, but the running times are still feasible.

4.5 HunTag3

To evaluate different methods in our experiments we used HunTag3 [3], a maxi-
mum entropy markov model (MEMM) tagger. The program consists of a simple
Maximum Entropy (ME) unigram model combined with a first- or second-order
Viterbi decoder. The user can define advanced features for tagging and the pro-
gram can handle more than 2 million features. Its authors observed zero invalid
tag sequence with it for Hungarian and English [3]. The program is written in
Python 3 and uses standard tools (SciPy [4], NumPy [16], Scikit-learn [11]) in-
ternally, therefore it is considerably fast without lexicalisation, but due to the
maximum entropy approach many classes make the program exponentially slow.
Therefore we did not use this tagger on lexicalised data.

The authors of HunTag3 made it possible to use CRFSuite as an exter-
nal tagger after the advanced featurization of HunTag3. We also included this
method to our experiments. HunTag3 (including CRFSuite as an external tag-
ger) is successfully surveyed for maximal Noun Phrase (NP) chunking7 making
HunTag3 the current state-of-the-art chunker for Hungarian [3]. In the same
paper, the program is also used for Hungarian named-entity recognition (NER)
and for English chunking on the CoNLL-2000 dataset too8 [3].

5 The test bench

The original CoNLL-2000 data had to be prepared for processing: the devel-
opment set of every tenth sentence was stripped and the set of frequent words

7 where the top level NP in the parse tree is the sought
8 HunTag3 with CRFsuite in this combination outperformed HunTag3, but did not

overcome the state-of-the-art.



8 Balázs Indig, István Endrédy

was generated from the development set with the original threshold frequency
of 50. We implemented an unified wrapper for each tagger and converter, which
made it possible to use each tagger in conjunction with each converter for each
representation on each lexicalisation level. The tagged data then were delexi-
calised and converted to the voting format, voted and then finally evaluated. We
kept the evaluated data at each intermediate step, so we could get an insight of
what is really happening and why. Furthermore, we also surveyed whether voting
more independent taggers boosts F-scores or not. Voting was defined on differ-
ent dimensions: for instance, voting between more taggers in one IOB format or
between all the IOB formats with one tagger9.

During the implementation we found that a good converter can be a crucial
part of the system, and we found that not every bug could be squashed by testing
every possible way of conversion on the original gold standard data.

6 Results

First we tried to reproduce the results of SS05 with the code we got. Since TnT
was not the part of the package, we could not reproduce the exact same numbers
of SS05 even with the original code. The numbers we got were significantly lower,
because of the multiple bugs we found and fixed in the converting routines. The
reproduced numbers, with the fixed programs (as the part of the full experiment)
are in [bracketed typewriter style]. See table 3, 5 and table 6, 8.

6.1 Lexicalisation alone

To measure the gain on voting, we ran each tagger on each representation and lex-
icalisation level solely. We found that CRFSuite with the official features unani-
mously took the lead, and it turned out, that the best lexicalisation level was the
mild lexicalisation (just words), where only the frequent words were lexicalised.
See table 3, 4, 5.

Table 3. We tested each tagger on their own with no lexicalisation. The reproduced
results of SS05 are in [bracketed typewriter style], the best F-scores are in italics.
In all cases official CRFSuite performed best.

TnT
NLTK
TnT

HunTag3
Bigram

HunTag3
Trigram

HunTag3
CRFSuite

Official
CRFSuite

PurePOS

IOB1 [82.23] 82.10 91.73 92.00 92.41 92.84 84.28
IOB2 [84.27] 84.84 92.40 92.75 92.84 93.40 84.92
IOE1 [78.83] 78.75 91.85 92.05 92.10 92.92 84.39
IOE2 [81.45] 81.81 92.37 92.81 92.77 93.25 86.75
IOBES [86.95] 87.58 93.26 93.47 93.41 93.79 87.85

9 The full source code of the test bench is available freely at https://github.com/

ppke-nlpg/gut-besser-chunker



Gut, Besser, Chunker – Selecting the best models for text chunking 9

Table 4. We tested each tagger on their own with mild lexicalisation (just words).
The best F-scores are in italics and all F-scores above 94% are bold. In all cases official
CRFSuite, performed best.

TnT
NLTK
TnT

HunTag3
Bigram

HunTag3
Trigram

HunTag3
CRFSuite

Official
CRFSuite

PurePOS

IOB1 87.39 87.33 93.20 94.13 88.33
IOB2 88.67 88.69 93.85 94.70 88.82
IOE1 87.06 87.00 93.35 94.09 88.50
IOE2 88.95 89.14 94.13 94.61 90.27
IOBES 90.23 90.66 94.28 94.94 91.04

Table 5. We tested each tagger on their own with full lexicalisation. The reproduced
results of SS05 are in [bracketed typewriter style], the best F-scores are in italics
and all F-scores above 94% are bold. In all cases official CRFSuite, performed best.

TnT
NLTK
TnT

HunTag3
Bigram

HunTag3
Trigram

HunTag3
CRFSuite

Official
CRFSuite

PurePOS

IOB1 [91.12] 91.00 92.64 93.65 91.42
IOB2 [91.33] 91.32 93.21 94.03 91.34
IOE1 [91.17] 91.04 92.94 93.65 91.35
IOE2 [91.36] 91.40 93.44 94.12 91.58
IOBES [91.43] 91.61 93.35 94.16 91.65

6.2 Different representations voted against each other

Each training and test data were converted to all representations with all lexical-
isation levels, tagged with each tagger and we selected each five representation
separately and the remaining representations were converted by each converter
and voted by simple majority voting (as in SS05). We also examined the per-
formance of the converters, but apart from some bugs, there were no significant
performance differences. We found that the mild (just words) lexicalisation per-
formed best along with the official CRFSuite tagger and voting did not improved
overall results compared to sole taggers. See tables 6, 7, 8 and 9.

Table 6. We tested each tagger with simple majority voting with no lexicalisation.
The reproduced results of SS05 are in [bracketed typewriter style], the best F-
scores are in italics. In all cases official CRFSuite performed best.

TnT
NLTK
TnT

HunTag3
Bigram

HunTag3
Trigram

HunTag3
CRFSuite

Official
CRFSuite

PurePOS

IOB1 [84.40] 84.64 92.60 92.83 93.11 93.42 85.47
IOB2 [84.47] 84.70 92.69 92.84 93.11 93.45 85.52
IOE1 [84.46] 84.70 92.62 92.84 93.09 93.39 85.50
IOE2 [84.44] 84.74 92.66 92.81 93.12 93.42 85.52
IOBES [85.50] 85.64 93.03 93.17 93.32 93.67 86.11



10 Balázs Indig, István Endrédy

Table 7. We tested each tagger with simple majority voting with mild lexicalisation
(just words). The best F-scores are in italics and all F-scores above 94% are bold.
In all cases official CRFSuite, performed best.

TnT
NLTK
TnT

HunTag3
Bigram

HunTag3
Trigram

HunTag3
CRFSuite

Official
CRFSuite

PurePOS

IOB1 88.58 88.65 94.15 94.68 89.19
IOB2 88.65 88.72 94.17 94.70 89.23
IOE1 88.63 88.72 94.14 94.68 89.23
IOE2 88.59 88.68 94.18 94.70 89.26
IOBES 89.27 89.36 94.51 95.06 89.77

Table 8. We tested each tagger with simple majority voting with full lexicalisation.
The reproduced results of SS05 are in [bracketed typewriter style], the best F-
scores are in italics and all F-scores above 94% are bold. In all cases official CRFSuite,
performed best.

TnT
NLTK
TnT

HunTag3
Bigram

HunTag3
Trigram

HunTag3
CRFSuite

Official
CRFSuite

PurePOS

IOB1 [91.73] 91.63 93.76 94.33 91.77
IOB2 [91.74] 91.64 93.75 94.32 91.77
IOE1 [91.73] 91.66 93.74 94.31 91.77
IOE2 [91.74] 91.67 93.75 94.33 91.78
IOBES [92.18] 92.08 93.96 94.65 92.20

Table 9. Average gain on voting compared to sole tagging on each representation
for each tagger. The table shows no real difference (<1%) with lexicalisation and for
taggers other than TnT.

TnT
NLTK
TnT

HunTag3
Bigram

HunTag3
Trigram

HunTag3
CRFSuite

CRFSuite
Official

PurePOS

No lex. 1.908 1.868 0.398 0.282 0.444 0.23 -0.014
just words 0.284 0.262 0.468 0.27 -0.056
Full lex. 0.542 0.462 0.676 0.466 0.39

In many cases during voting there was a draw between the taggers (2 x 3
or 2 x 2 identical votes and one tagger with a third opinion) and the number
of votes were equal. The original paper and code of SS05 method has not clar-
ified how these situations were handled. We used lexical ordering on tags by
default because the code suggested us this was happened. Although we think
not handling draws in voting by not setting any tie breaking rule is a generally
bad idea as it makes the method unpredictable as this important detail is left to
the implementer. Therefore we set the following tie breaking rule: in case of tie
the first voter is right. In section 6.2 IOB2 was always chosen to be first as the
least converted representation achieving no significant change in results. But in
section 6.2 CRFSuite tagger with its official features was chosen to be first caus-
ing the results to unanimously improve with about 1% for each representation
(which we consider to be an artefact).



Gut, Besser, Chunker – Selecting the best models for text chunking 11

6.3 Different taggers voted against each other

Table 10. Different taggers were voted against each other in each representation on
each lexicalisation level. The best F-scores are in italics and all F-scores above 94%
are bold. In all cases mild lexicalisation (just words), performed best.

No lexicalisation
Just words
lexicalised

Full lexicalisation

IOB1 91.89 93.55 93.45
IOB2 92.61 94.11 93.81
IOE1 92.00 93.56 93.51
IOE2 92.75 94.36 94.04
IOBES 93.32 94.60 94.03

We voted different taggers against each other in each representation on each
lexicalisation level to examine if using more taggers can add information to
voting or not. None of the scores performed as good as CRFSuite official on its
own. See table 10 for details.

6.4 Converters

At the time of writing this paper there is only one converter available (CoreNLP
IOBUtils). We implemented our own version and used the original SS05 code
too. After comparing the three converters we found that IOBUtils is a robust
and error correcting converter. We fixed a lot of bugs in the other two imple-
mentations, reducing the differences between them. Our converter was able to
count invalid tag sequences10. This made possible it to show how lexicalisation
affect the number of invalid sequences on different levels of lexicalisation. See
table 11 for details.

Table 11. Number of invalid sequences (no lex./just words/full lex.): we can observe,
that by tagger, representation and lexicalisation the numbers differ in wide ranges, but
it is clear that lexicalising makes the taggers harder to produce valid sequences.

TnT
NLTK
TnT

HunTag3
CRFSuite

CRFSuite
Official

PurePOS

IOB1 168/234/319 148/230/313 286/260/266 306/294/304 197/274/317
IOB2 423/662/634 490/658/633 0/19/168 0/14/111 0/4/49
IOE1 0/1/1 0/2/2 4/13/11 0/2/2 0/0/0
IOE2 174/107/205 187/84/215 0/44/254 0/12/158 3/16/76
IOBES 862/805/985 647/702/898 2/95/865 2/51/521 2/22/210

10 By counting we mean that we counted the tags with invalid neighbours.



12 Balázs Indig, István Endrédy

6.5 Summary

Albeit voting does not add much to the F-scores, official CRFSuite tagger and
mild lexicalisation (just words) voted on IOBES achived the best results both in
arbitrary phrase chunking and NP chunking. See table 12 for details. However, if
we consider the training times we can not ignore the fact that on one hand, the
lexicalisation is the best performing factor of the SS05 method and can not be
omitted, but on the other hand, it is also the factor that slows down the whole
algorithm.

The cornerstone of the lexicalisation is the right frequency threshold and
lexicalisation rules. In our experiments we used the ones given by the SS05 al-
gorithm as we only wanted to select the best tagger and also to eliminate the
unneccessary part of the lexicalisation to be able to adapt easier for agglutina-
tive languages. The current threshold is not a well-founded, language agnostic
number. We think that, the deep investigation of the lexicalisation threshold
could improve performance and also would optimise the training times. Unfor-
tunately, searching for the right lexicalisation constant in conjunction with the
best tagger would made the training times infeasible.

Given the above fact, the overhead caused by the voting is insignificant.
Especially if one just want to train the tagger only once, because the tagging
and voting not demand considerably more time.

Table 12. Summary of final F-scores, which outperformed the previous state-of-the-art
results (+1% improvement)

method
arbitrary phrase

chunking
NP chunking

SS05 [12] 94.01 95.23
SS05 (as we could reproduce) 91.74 93.99
Official CRFSuite + mild lex. (just words) 95.06 96.49

7 Conclusion

We reimplemented the state-of-the-art SS05 chunking method and asked for
the authors for their source code to determine the parts of the algorithm that
were undisclosed before in the original paper. On the one hand, we were able to
understood their workflow. On the other hand, we could fix numerous bugs in
their program and rerun all their tests. We tested a mild level of lexicalisation
(just words) in conjunction with more taggers with different inner-workings. We
tested multiple IOB label converters and fixed their bugs.

Our mild lexicalisation in conjunction with CRFSuite performed best across
the taggers and lexicalisations. With voting these scores were further improved,



Gut, Besser, Chunker – Selecting the best models for text chunking 13

however we found that simple majority voting in general does not add much to
a combination of a good tagger with the appropriate level of lexicalisation11.

We found that voting between all the examined taggers with simple majority
voting can neither outperform the results of the best tagger alone in any repre-
sentation nor on any level of lexicalisation. We examined the adaptation of the
system to agglutinative languages with far more possible labels at lexicalisation
and checked the number of invalid sequences created by taggers which has an
influence on converters and therefore on the final result. We made our pipeline
including the highly extended version of the SS05 algorithm fully available, to
ease later reproduction and fine-tuning of our method.

8 Future work

In English one must distinguish between arbitrary phrase identification where
most of the tokens belongs to one of the many chunk types and the base Noun
Phrase (NP) chunking task where the only sought type is the lowest level NP-s.
In Hungarian the most sought chunk types are the maximal Noun Phrases (NP)
where the top level NP in the parse tree is needed. In this paper we only could
measure our method on the first two, but we think that in the future all three
of the task could be examined adding the named-entity recognition (NER) task
for both English and Hungarian as well. All of the aforementioned task can be
investigated in the same way by the same programs evaluated here in terms of
voting12, but this task spans beyond this paper.

We think there is much room for improvement on the fine-tuning of the lexi-
calisation such as using word classes generated by word embedding, a nowadays
popular method, for lexical categorisation [13] and use the same technique to
improve the corpus quality [8].

We also think that the possibility of using decision trees or other meta-
learners to the voting task should be considered as all the needed tools are
available including the problem of the large number of draws during the voting.
Additionally, there is also room for experimenting with other available taggers
as with our mild lexicalisation less tagger is ruled out by the large number of
labels.

Acknowledgments We would like to thank professor Anoop Sarkar [12] for
his cooperation and providing the original Perl code and letting us to use and
distribute it with our own. This helped a lot to understand their algorithm
better.

References

1. Bird, S., Klein, E., Loper, E.: Natural language processing with Python. O’Reilly
Media, Inc. (2009)

11 Which makes the whole method more adaptable to agglutinative languages.
12 as the full pipeline is publicly available



14 Balázs Indig, István Endrédy

2. Brants, T.: TnT: a statistical part-of-speech tagger. In: Proceedings of the sixth
conference on Applied natural language processing. pp. 224–231. Association for
Computational Linguistics (2000)

3. Endrédy, I., Indig, B.: HunTag3: a general-purpose, modular sequential tagger –
chunking phrases in English and maximal NPs and NER for Hungarian. In: 7th
Language & Technology Conference, Human Language Technologies as a Chal-
lenge for Computer Science and Linguistics. pp. 213–218. Poznań: Uniwersytet im.
Adama Mickiewicza w Poznaniu (2015)

4. Jones, E., Oliphant, T., Peterson, P., et al.: SciPy: Open source scientific tools for
Python (2001), http://www.scipy.org/

5. Manning, C.D., Surdeanu, M., Bauer, J., Finkel, J., Bethard, S.J., McClosky, D.:
The Stanford CoreNLP natural language processing toolkit. In: Proceedings of
52nd Annual Meeting of the Association for Computational Linguistics: System
Demonstrations. pp. 55–60 (2014), http://www.aclweb.org/anthology/P/P14/

P14-5010
6. Molina, A., Pla, F.: Shallow parsing using specialized hmms. The Journal of Ma-

chine Learning Research 2, 595–613 (2002)
7. Novák, A.: A new form of humor – mapping constraint-based computational mor-

phologies to a finite-state representation. In: Proceedings of the Ninth International
Conference on Language Resources and Evaluation (LREC’14). ELRA, Reykjavik,
Iceland (2014)

8. Novák, A.: Improving corpus annotation quality using word embedding models.
Polibits (2016), Accepted for publication

9. Okazaki, N.: CRFsuite: a fast implementation of Conditional Random Fields
(CRFs) (2007), http://www.chokkan.org/software/crfsuite/

10. Orosz, G., Novák, A.: Purepos 2.0: a hybrid tool for morphological disambiguation.
In: RANLP. pp. 539–545 (2013)

11. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,
Blondel, M., Prettenhofer, P., Weiss, R., et al.: Scikit-learn: Machine learning in
Python. The J. of Mach. Learn. Res. 12 (2011)

12. Shen, H., Sarkar, A.: Voting between multiple data representations for text chunk-
ing. In: Kégl, B., Lapalme, G. (eds.) Advances in Artificial Intelligence, 18th Con-
ference of the Canadian Society for Computational Studies of Intelligence, Cana-
dian AI 2005, Victoria, Canada, May 9-11, 2005, Proceedings. Lecture Notes in
Computer Science, vol. 3501, pp. 389–400. Springer (2005), \url{http://dx.doi.
org/10.1007/11424918_40}

13. Siklósi, B.: Using embedding models for lexical categorization in morphologically
rich languages. In: Gelbukh, A. (ed.) Computational Linguistics and Intelligent
Text Processing: 17th International Conference, CICLing 2016, Konya, Turkey,
April 3-9, 2016. Springer International Publishing, Cham (2016)

14. Tjong Kim Sang, E.F., Buchholz, S.: Introduction to the CoNLL-2000 shared task:
Chunking. In: Proceedings of the 2Nd Workshop on Learning Language in Logic
and the 4th Conference on Computational Natural Language Learning - Volume 7.
pp. 127–132. ConLL ’00, Association for Computational Linguistics, Stroudsburg,
PA, USA (2000), \url{http://dx.doi.org/10.3115/1117601.1117631}

15. Tjong Kim Sang, E.F., Veenstra, J.: Representing text chunks. In: Proceedings of
the ninth conference on European chapter of the Association for Computational
Linguistics. pp. 173–179. Association for Computational Linguistics (1999)

16. Van Der Walt, S., Colbert, S., Varoquaux, G.: The NumPy array: a structure for
efficient numerical computation. Comp. in Sci. & Eng. 13(2) (2011)


