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Abstract. Segmentation of the heart in cardiac cine MR is clinically
used to quantify cardiac function. We propose a fully automatic method
for segmentation and disease classification using cardiac cine MR images.

A convolutional neural network (CNN) was designed to simultaneously
segment the left ventricle (LV), right ventricle (RV) and myocardium in
end-diastole (ED) and end-systole (ES) images. Features derived from
the obtained segmentations were used in a Random Forest classifier to
label patients as suffering from dilated cardiomyopathy, hypertrophic
cardiomyopathy, heart failure following myocardial infarction, right ven-
tricular abnormality, or no cardiac disease.

The method was developed and evaluated using a balanced dataset con-
taining images of 100 patients, which was provided in the MICCAI 2017
automated cardiac diagnosis challenge (ACDC). Segmentation and clas-
sification pipeline were evaluated in a four-fold stratified cross-validation.
Average Dice scores between reference and automatically obtained seg-
mentations were 0.94, 0.88 and 0.87 for the LV, RV and myocardium.
The classifier assigned 91% of patients to the correct disease category.
Segmentation and disease classification took 5 s per patient.

The results of our study suggest that image-based diagnosis using cine
MR cardiac scans can be performed automatically with high accuracy.

Keywords: Deep learning, Random Forest, Convolutional neural net-
works, Cardiac MR, Automatic diagnosis

1 Introduction

Quantification of volumetric changes in the heart during the cardiac cycle is es-
sential for diagnosis and monitoring of cardiac diseases. To this end, quantitative
indices such as the ejection fraction and myocardial mass are typically extracted
based on segmentations of the ventricular cavities and myocardium and used to
identify patients suffering from cardiac diseases [6].

However, segmentation of the ventricular cavities and myocardium in cine
MR is a challenging problem [9]. Cine MR images are highly anisotropic, contrast
in these images may be poor, and cardiac diseases may cause large variations in
patient anatomy. The development of accurate cine MR segmentations methods
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is an ongoing endeavor [10], which has recently seen contributions from deep
learning methods, e.g. [11,5].

We propose a method for fully automatic segmentation of the LV cavity,
the RV cavity and the myocardium in cardiac cine MR images. We use a deep
learning method for cardiac cine MR segmentation and show that this method
achieves high overlap with manual reference segmentations. Furthermore, we
show how basic quantitative features extracted from the automatically obtained
segmentations can be combined with patient information in a forest of random-
ized decision trees. This allows fast and accurate disease classification in cardiac
patients, and detection of patients with ambiguous indications.

2 Data

The proposed method was developed and evaluated using data from the MICCAI
2017 automated cardiac d iagnosis challenge (ACDC). This challenge provides
a dataset consisting of cine MR images of 150 patients who have been clinically
diagnosed in five classes: normal, dilated cardiomyopathy (DCM), hypertrophic
cardiomyopathy (HCM), heart failure with infarction (MINF), or right ventric-
ular abnormality (RVA). Thirty cases are provided in each class. The data set
was separated by the challenge organizers into 100 training cases for which a ref-
erence standard was provided, and 50 test cases for which no reference standard
was provided. Here, we describe experiments and results using the 100 training
cases.

For each patient, short axis (SA) cine MR images with 12-35 frames are
available, in which the end-diastole (ED) and end-systole (ES) frame have been
indicated. The image slices cover the LV from the base to the apex. In-plane
voxel spacing varies from 1.37 to 1.68 mm and inter-slice spacing varies from
5 to 10 mm. Manual reference segmentations of the LV cavity, RV cavity and
myocardium at ED and ES are provided.

To correct for differences in voxel size, all 2D image slices were resampled to
1.4 × 1.4 mm2 spacing. Furthermore, to correct for image intensity differences
between images, each MR volume was normalized between [0.0, 1.0] according
to the 5th and 95th percentile of intensities in the image.

3 Methods

We propose a fully automatic method for segmentation and diagnosis in cardiac
cine MR images. The method uses a convolutional neural network (CNN) to
segment the LV cavity, the RV cavity, and the myocardium in 2D short-axis cine
MR slices. Quantitative indices are extracted from the obtained segmentations
and combined with patient information in a Random Forest classifier that assigns
patients to one of five classes (normal, DCM, HCM, MINF, RVA).
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Fig. 1: Convolutional neural network for segmentation. The CNN uses anatom-
ically aligned end-diastole (ED) and end-systole (ES) 2D image slices as input
and simultaneously predicts probability maps for the background (BG), LV cav-
ity (LV), RV cavity (RV) and myocardium (Myo) at ED and ES. These are
combined into two multi-class segmentations.

3.1 Segmentation

A CNN was trained to segment the LV cavity, the RV cavity, and the myocardium
in 2D short-axis cine MR slices. Motivated by [13,12], the network was designed
to contain a number of convolutional layers with increasing levels of dilation. This
ensures a large receptive field with few trainable parameters and high resolution
feature maps. The final receptive field for each voxel was 131 × 131 voxels, or
18.3 × 18.3 cm2 in the resampled 2D slices. Potential overfitting of the network
was mitigated by the inclusion of Batch Normalization layers [4].

Cine cardiac MR slices obtained throughout the cardiac cycle are anatomi-
cally aligned, but cardiac motion causes differences between images at different
time points. These differences are more pronounced in the heart than in other
areas [1]. We allowed the CNN to leverage this information for heart localization
by simultaneously providing anatomically corresponding ED and ES slices in
two input channels (Fig. 1). The CNN had eight output channels; four for ED
labels (BGED, LVED, RVED, MyoED), and four for ES labels (BGES , LVES ,
RVES , MyoES). ED and ES output channels were separately normalized through
softmax functions. Hence, for both the ED and the ES image there were four
probability maps summing to 1. A segmentation was obtained for both images
by assigning the class with the highest probability to each voxel.

The trainable parameters in the CNN were optimized using a loss function
based on the Dice similarity coefficient [7]. This partly corrects for class imbal-
ance in the voxel labels. A soft Dice loss was used,

Dicec =

∑N
i Rc(i)Ac(i)∑N

i Rc(i) +
∑N

i Ac(i)
, (1)

where Rc is the binary reference image for class c, Ac is the probability map
for class c, N is the number of voxels, and Dicec is the Dice coefficient for class
c. This coefficient was computed for all eight classes (BGED, RVED, MyoED,
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LVED, BGES , RVES , MyoES , LVES) and averaged to ensure joint optimization
for all classes.

The combination of multiple trained CNN models in an ensemble typically
results in more accurate predictions, but at the cost of repeated training. To ob-
tain multiple models with a single training phase, we used the snapshot ensemble
technique proposed in [3]. Hence, the learning rate followed a cyclic scheme ac-
cording to the equation

αi =
α0

2

(
cos

(
πmod(t− 1,M)

M

)
+ 1

)
, (2)

where αi is the current learning rate, α0 is the initial learning rate and M
is the cycle length, i.e. the number of iterations before a reset of the learning
rate to the initial value. We set the total number of iterations to 150,000 and
reset the learning rate to α0 = 0.2 after every M = 10, 000 iterations. A copy of
the model was stored before each learning rate reset. Stochastic gradient descent
was used for training, with L2-regularization on the parameters of the CNN. In
each iteration, the network was optimized with a mini-batch containing 4 images
with 151×151 voxel samples, padded to 281×281 to accommodate the 131×131
voxel receptive field. The training data was augmented by 90 degree rotations
of the images and reference segmentations.

During testing, pairs of ED and ES images were processed by the six stored
versions of the model between 100,000 and 150,000 iterations. The six predicted
probability maps for each class were averaged before the class label with the
largest probability was assigned to each voxel. No post-processing was applied
other than selection of the largest 3D 6-connected component for each class.

3.2 Diagnosis

Each patient was described by patient and image characteristics. Patient char-
acteristics were patient weight (in kg) and patient height (in cm). Image charac-
teristics were extracted from the automatically obtained segmentations: LV, RV
and myocardial volume at ED and ES (in ml), the LV and RV ejection fraction
(EF), the ratio between RV and LV volume at ED and ES, and the ratio between
myocardial and LV volume at ED and ES. Hence, 14 features were used in total:
2 patient-based and 12 image-based features.

A five-class (normal, HCM, DCM, MINF, RVA) Random Forest classifier [2]
was trained, consisting of 1,000 decision trees that were grown to full depth.
For each case, a posterior probability distribution was obtained. Patients were
assigned to the class with the highest probability, and the entropy in the prob-
ability distribution was determined to estimate uncertainty of the classifier.

4 Experiments and Results

The proposed method was evaluated using the ACDC training set in a stratified
four-fold cross-validation experiment. For each fold the system was trained using
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Fig. 2: Example segmentations obtained by the CNN in six different patients,
showing the LV cavity in green, the RV cavity in yellow, and the myocardium
in blue. Reference delineations are shown in red.

Table 1: Average Dice coefficients (Dice) and Hausdorff distances (HD, in mm)
for LV, RV and myocardium segmentation at ED and ES.

LV RV Myocardium
Dice HD Dice HD Dice HD

ED 0.96 ± 0.02 8.35 ± 4.63 0.92 ± 0.04 13.39 ± 5.68 0.86 ± 0.04 11.77 ± 6.38
ES 0.91 ± 0.07 9.01 ± 4.39 0.84 ± 0.09 15.03 ± 6.30 0.88 ± 0.04 10.85 ± 4.74
Total 0.93 ± 0.05 8.68 ± 4.51 0.88 ± 0.08 14.21 ± 6.04 0.87 ± 0.04 11.31 ± 5.62

15 training patients from each of the five classes and evaluated using five test
patients from each of the five classes. Quantitative indices used to train the
Random Forest in a fold were obtained with the trained CNN for that fold.
Hence, training and validation set were completely separated throughout both
stages. We here present combined results on all 100 training images.

4.1 Segmentation Results

Fig. 2 shows example segmentations and the corresponding reference delin-
eations. All obtained segmentations were evaluated using the online platform
provided by the organizers of the ACDC challenge. Table 1 shows Dice coeffi-
cients and Hausdorff distances for LV, RV and myocardium segmentation at ED
and ES. Agreement with the reference standard was highest for the left ventricle
at ED, and lowest for the right ventricle at ES. Performance was substantially
higher in ED than in ES for the LV and RV, but not for the myocardium. Aver-
age Hausdorff distances were lower for the LV than for the RV and myocardium.
This might be caused by the strong contrast that is typically present between
the LV and the surrounding myocardium, and the poorer contrast between the
myocardium and its surrounding structures. Furthermore, the shape of the RV
is more irregular than that of the LV (Fig. 2).

In addition to the Dice coefficient and Hausdorff distance, the agreement
between reference and automatically derived quantitative indices was determined
using the ACDC challenge online platform. Fig. 3 shows Bland-Altman plots with
limits of agreement and Pearson correlations for the agreement between LV, RV
and myocardium volume or mass quantification at ED and ES, as well as the
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Fig. 3: Bland-Altman plots showing the agreement between reference and auto-
matic quantification of the end-diastolic (ED) and end-systolic (ES) volume (V
[in ml]) or mass (M [in g]) of the left ventricle (LV), right ventricle (RV) and
myocardium (MYO). Bland-Altman limits of agreement and Pearson correlation
values are listed. Points correspond to patients, with markers indicating classes.
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Table 2: Agreement in diagnosis between the reference standard and automatic
classification. Patients were classified as normal, dilated cardiomyopathy (DCM),
hypertrophic cardiomyopathy (HCM), heart failure with infarction (MINF), or
right ventricular abnormality (RVA). Overall classification accuracy was 91%.

Automatic
Normal DCM HCM MINF RVA Total

R
e
fe
re
n
c
e Normal 20 0 0 0 0 20

DCM 0 18 0 2 0 20
HCM 2 0 18 0 0 20
MINF 1 2 0 17 0 20
RVA 2 0 0 0 18 20
Total 25 20 18 19 18 100

LV and RV EF. There was a slight underestimation of the LV and RV at both
ED and ES, and a slight overestimation of the myocardium at both ED and ES.
The Pearson correlation between reference and automatically determined LV EF
values was 0.97, while this correlation was 0.86 for the RV EF, reflecting lower
segmentation accuracy for the RV.

The CNN was implemented in Theano and Lasagne. Segmentation with an
ensemble of six trained CNNs took 4 s per patient on a NVIDIA Titan X GPU.

4.2 Diagnosis Results

The obtained diagnoses were evaluated in the online platform provided by the
ACDC organizers. Table 2 shows the confusion matrix for classification into five
categories, with an overall accuracy of 91%. Sensitivity was 100% for the normal
class, 90% for the DCM, HCM and RVA classes, and 85% for the MINF class.
Four out of nine errors were made by confusion between myocardial infarction
and dilated cardiomyopathy, both of which are characterized by low LV EF
values.

The three most important features as determined by the Random Forest were
the left ventricular ejection fraction (LV EF), the ratio between right and left
ventricular volume at ED (V[RV]/V[LV] ED), and the ratio between myocardial
and left ventricular volume at ES (V[MYO]/V[LV] ES). Fig. 4 shows the feature
value distribution over the five different classes, showing several clear patterns.
RVA patients generally have a large RV to LV volume ratio compared with
normal patients. Patients with DCM and MINF have a reduced LV EF, while
this value is higher for normal patients and patients with HCM. The myocardial
volume is relatively small compared with the LV volume in patients with DCM,
indicating thinning of the myocardium, but large in patients with HCM.

However, not all cases can be clearly separated using these features. Based
on the entropy in the posterior probabilities provided by the Random Forest
classifier, several patients with high classification uncertainty could be identified.
Fig. 5 shows automatically obtained segmentations in two such patients. Patient
18 (indicated by a blue circle in Fig. 4) was incorrectly diagnosed as MINF
(classification probability p = 0.45), while the reference diagnosis was DCM
(p = 0.25). In addition, there was a substantial probability for RVA (p = 0.21).



8 J.M. Wolterink et al.

Fig. 4: Three most important features according to the Random Forest classifier:
left ventricular ejection fraction (LV EF), volume ratio between right and left
ventricle at ED (V[RV]/V[LV] ED), volume ratio between myocardium and left
ventricle at ES (V[MYO]/V[LV] ES). Each point corresponds to a patient.

(a) Patient 18 ED (b) Patient 18 ES (c) Patient 44 ED (d) Patient 44 ES

Fig. 5: Two cases in which the classifier showed high uncertainty. The reference
diagnosis for Patient 18 was DCM, but the patient was classified as MINF. The
reference diagnosis for Patient 44 was MINF (LV EF 41.7%), but the patient
was classified as normal.

In this patient, LV EF and the ratio between RV and LV at ED were both
relatively high compared with other DCM patients. Patient 44 (indicated by a
magenta square in Fig. 4) was incorrectly diagnosed as normal (p = 0.44), while
the reference diagnosis was MINF (p = 0.31). This patient had a high LV EF
value of 41.7% compared with other MINF patients.

Extraction of features based on segmentations and classification using the
Random Forest classifier took around 1 s per patient.

5 Discussion and Conclusion

We have presented a method for fully automatic segmentation and diagnosis in
cardiac cine MR images. The results show that automatically obtained segmen-
tations of the left ventricle, right ventricle, and myocardium have good overlap
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with manual reference segmentations. Furthermore, based on these segmenta-
tions patients can be diagnosed with 91% multi-class accuracy.

While disease classification based on quantitative descriptors extracted from
cine MR typically follows clinical guidelines, we have shown here that these
guidelines can partially be captured in a Random Forest classifier. Furthermore,
the posterior probability distribution of the classifier can be used to identify
patients which cannot easily be assigned to a single disease. In future work, we
will further investigate to what extent uncertainty of the classifier corresponds
to uncertainty in the clinical diagnosis.

Deep learning methods have been shown to provide state-of-the-art results
in a wide range of medical imaging problems. Here, we used deep learning for
segmentation of the cine MR images. However, we opted for a more conven-
tional Random Forest approach for patient classification because of the small
training dataset at hand. A potential limitation of this two-stage approach is
that errors in the segmentation stage may affect performance in the classifica-
tion stage. However, a Bland-Altman comparison of quantitative indices derived
from reference and automatic segmentations (Fig. 3) showed only very small
bias values, comparable to interstudy and intraobserver differences in cardiac
MR of normal healthy adults [8]. Moreover, patient classification using quanti-
tative indices derived from the reference segmentations instead of the automatic
segmentations resulted in only minor improvements (classification accuracy 92%
instead of 91%) with a considerable increase in time and effort.

In the current study, we only used the ED and ES images. However, cine MR
contains a whole sequence of images. In future work we will investigate whether
inclusion of the complete sequence of images as input to the CNN could improve
segmentation, and whether features derived from this sequence could provide
additional value for disease diagnosis.
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