
An Exploration of 2D and 3D Deep Learning
Techniques for Cardiac MR Image Segmentation

Christian F. Baumgartner?1, Lisa M. Koch?2, Marc Pollefeys2, Ender
Konukoglu1

1 Computer Vision Lab, ETH Zurich
2 Computer Vision and Geometry Group, ETH Zurich

Abstract. Accurate segmentation of the heart is an important step to-
wards evaluating cardiac function. In this paper, we present a fully auto-
mated framework for segmentation of the left (LV) and right (RV) ven-
tricular cavities and the myocardium (Myo) on short-axis cardiac MR
images. We investigate various 2D and 3D convolutional neural network
architectures for this task. Experiments were performed on the ACDC
2017 challenge training dataset comprising cardiac MR images of 100
patients, where manual reference segmentations were made available for
end-diastolic (ED) and end-systolic (ES) frames. We find that process-
ing the images in a slice-by-slice fashion using 2D networks is beneficial
due to a relatively large slice thickness. However, the exact network ar-
chitecture only plays a minor role. We report mean Dice coefficients of
0.950 (LV), 0.893 (RV), and 0.899 (Myo), respectively with an average
evaluation time of 1.1 seconds per volume on a modern GPU.

1 Introduction

Cardiovascular diseases are a major public health concern and currently the
leading cause of death in Europe [12]. Automated segmentation of cardiac struc-
tures from medical images is an important step towards analysing normal and
pathological cardiac function on a large scale, and ultimately towards developing
diagnosis and treatment methods.

Until recently, the field of anatomical segmentation was dominated by atlas-
based techniques (e.g. [2]), which have the advantage of providing strong spatial
priors and yielding robust results with relatively little training data. With more
data becoming available and recent advances in machine learning and parallel
computing infrastructure, segmentation techniques based on deep convolutional
neural networks (CNN) are emerging as the new state-of-the-art [15,9].

This paper is dedicated to the segmentation of cardiac structures on short-
axis MR images and is accompanied by a submission to the automated cardiac
diagnosis challenge (ACDC) 2017. Short-axis MR images consist of a stack of 2D
MR images acquired over multiple cardiac cycles which are often not perfectly
aligned and typically have a low through-plane resolution of 5− 10 mm.
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In this paper, we investigate the suitability of state-of-the-art 2D and 3D
CNNs for the segmentation of three cardiac structures. A specific focus is to
answer the question if 3D context is beneficial for this task in light of the low
through-plane resolution. Furthermore, we explore different network architec-
tures and employ a variety of techniques which are known to enhance train-
ing and inference performance in deep neural network such as batch normalisa-
tion [6], and different loss functions [11]. The proposed framework was evaluated
on the training set for the ACDC 2017 segmentation challenge. Accurate seg-
mentation results were obtained with a fast inference time of 1.1 s per 3D image.

2 Method

In the following, we will outline the individual steps focusing on the pre-processing,
network architectures, optimisation and post-processing of the data.

2.1 Pre-Processing

Since the data were recorded at varying resolutions, we resampled all images
and segmentations to a common resolution. For the networks operating in 2D,
the images were resampled to an in-plane resolution of 1.37 × 1.37 mm. We
did not perform any resampling in the through-plane direction to avoid any
losses in accuracy in the up- and downsampling steps. Part of the data had
a relatively low through-plane resolution of 10 mm and we found that losses
incurred by resampling artefacts can be significant. For the 3D network we chose
a resolution of 2.5×2.5×5 mm. Higher resolutions were not possible due to GPU
memory restrictions. We then placed all the resampled images centrally into
images of constant size, padding with zeros where necessary. The exact image
size depended on the network architecture and will be discussed below. Lastly,
each image was intensity-normalised to zero mean and unit variance.

2.2 Network Architectures

We investigated four different network architectures. The fully convolutional seg-
mentation network (FCN) proposed by [10] is a 2D segmentation network widely
used for natural images. In this architecture deep, and thus coarse, feature maps
are upsampled to the original image resolution by using transposed convolutions.
In order to fuse the semantic information available in the deeper layers with the
spatial information available in the shallower stages, the authors proposed to
use skip connections. In the present work, we used the best performing incarna-
tion which is based on the VGG-16 architecture and uses three skip connections
(FCN-8) [10]. We used an image size of 224× 224 pixels for this architecture.

Another popular segmentation architecture is the 2D U-Net initially proposed
for the segmentation of neuronal structures in electron microscopy stacks and cell
tracking in light microscopy images [15]. Inspired by [10] the authors employ an
architecture with symmetric up- and downsampling paths and skip connections
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within each resolution stage. Since this architecture does not employ padded
convolutions, a larger image size of 396× 396 pixels was necessary, which led to
segmentation masks of size 212× 212 pixels.

Inspired by the fact that the FCN-8 produces competitive results despite
having a simple upsampling path with few channels, we speculated that the full
complexity of the U-Net upsampling path may not be necessary for our problem.
Therefore, we additionally investigated a modified 2D U-Net with number of
feature maps in the transpose convolutions of the upsampling path set to the
number of classes. Intuitively, each class should have at least one channel.

Çiçek et al. recently extended the U-Net architecture to 3D [4] by following
the same symmetric design principle. However, for data with few slices in one ori-
entation, the repeated pooling and convolving may be too aggressive. We found
that using the 3D U-Net for our data all spatial information in the through-plane
direction was lost before the third max pooling step. We thus also investigated
a slightly modified version of the 3D U-Net in which we performed only one
max-pooling (and upsampling) step in the through-plane direction. This had
two advantages: 1) The spatial information in the through-plane was retained
and thus available in the deeper layers, 2) it allowed us to work with a slightly
higher image resolution because less padding in the through-plane direction (and
thus less GPU memory) was required. In preliminary experiments we found that
the modified 3D U-Net led to improvements of around 0.02 of the average Dice
score over the standard 3D U-Net. In the interest of brevity we only included
the modified version in the final results of this paper. Here, we used an input
image size of 204× 204× 60, which led to output masks of size 116× 116× 28.

We used batch normalisation [6] on the outputs of every convolutional and
transposed convolutional layer for all architectures. We found that this not only
led to faster convergence, as reported in [4], but also consistently yielded bet-
ter results and allowed the training of some networks to converge that did not
converge otherwise.

2.3 Optimisation

We trained the networks introduced above (i.e. FCN-8, 2D U-Net, 2D U-Net
(mod.) and 3D U-Net (mod.)) from scratch with the weights of the convolutional
layers initialised as described in [5].

We investigated three different cost functions. First, we used the standard
pixel-wise cross entropy. To account for the class imbalance between the back-
ground and the foreground classes, we also investigated a weighted cross entropy
loss. We used a weight of 0.1 for the background class, and 0.3 for the foreground
classes in all experiments in this paper, which corresponds approximately to the
inverse prevalence of each label in the dataset. Lastly, we investigated optimising
the Dice coefficient directly. In order to get more stable gradients we calculated
the Dice loss on the softmax output as follows:

Ldice = 1−
∑K

k=2

∑N
n=1 tnkynk∑K

k=2

∑N
n=1 tnk + ynk

,
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where K is the number of classes, N the number of pixels/voxels, y is the softmax
output, t is a one-hot vector encoding the true label per location.

To minimise the respective cost functions we used the ADAM optimiser [7]
with a learning rate of 0.01, β1 = 0.9 and β2 = 0.999. The best results were
obtained without using any weight regularisation. The training of each of the
models took approximately 24 hours on a Nvidia Titan Xp GPU.

2.4 Post-Processing

Since training and inference were performed in a different resolution, the predic-
tions had to be resampled to each subject’s initial resolution. To avoid resampling
artefacts, this step was carried out on the softmax (i.e. continuous) network out-
puts for each label using linear interpolation. The final discrete segmentation
was then obtained in the final resolution by choosing the label with the highest
score at each voxel. Interpolation on the softmax output, rather than the output
masks, led to consistent improvements of around 0.005 in the average Dice score.

We occasionally observed spurious predictions of structures in implausible lo-
cations. To compensate for this, we applied simple post-processing to the segmen-
tation results by keeping only the largest connected component for every struc-
ture. Since the segmentations are already quite accurate without post-processing
this only lead to an average Dice increase of approximately 0.0003, however, it
reduced the Hausdorff distance considerably, which by definition is very sensitive
to outliers. Other post-processing techniques such as the commonly used spatial
regularisation method based on fully connected conditional random fields [8] did
not yield improvements in our experiments.

3 Experiments and Results

3.1 Data

The experiments in this paper were performed on cardiac cine-MRI training
data of the ACDC challenge3. The publicly available training dataset consists
of 100 patient scans each including a short-axis cine-MRI acquired on 1.5T and
3T systems with resolutions ranging from 0.70 × 0.70 mm to 1.92 × 1.92 mm
in-plane and 5 mm to 10 mm through-plane. Furthermore, segmentation masks
for the myocardium (Myo), the left ventricle (LV) and the right ventricle (RV)
are available for the end-diastolic (ED) and end-systolic (ES) phases of each
patient. The dataset includes, in equal numbers, patients diagnosed with previ-
ous myocardial infarction, dilated cardiomyopathy, hypertrophic cardiomyopa-
thy, abnormal right ventricles, as well as normal controls. We did not employ
any external data for training or pre-training of the networks.

The dataset was divided into a training and validation set comprising 80
and 20 subjects, respectively, with a stratified split w.r.t. patient diagnosis. All
images were pre-processed as described in Sec. 2.1.

3 https://www.creatis.insa-lyon.fr/Challenge/acdc (last accessed 26 July 2017)

https://www.creatis.insa-lyon.fr/Challenge/acdc
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Table 1: Segmentation accuracy obtained by optimising the modified 2D U-Net
using different cost functions.

Dice (LV) ASSD (LV) Dice (RV) ASSD (RV) Dice (Myo) ASSD (Myo)

Crossentropy 0.950 (0.029) 0.43 (0.41) 0.891 (0.084) 1.06 (1.04) 0.888 (0.031) 0.52 (0.22)
W. Crossentropy 0.950 (0.036) 0.52 (0.75) 0.893 (0.083) 1.04 (1.06) 0.899 (0.032) 0.51 (0.35)
Dice Loss 0.944 (0.051) 0.56 (0.77) 0.843 (0.137) 2.13 (2.03) 0.891 (0.029) 0.55 (0.24)

3.2 Evaluation Measures

We evaluated the segmentation accuracy achieved with the different network
architectures and optimisation techniques using three measures: the Dice co-
efficient, the Hausdorff distance and the average symmetric surface distance
(ASSD). Furthermore, for the best performing experiment configuration, the
correlations to commonly measured clinical variables were calculated.

3.3 Experiment 1: Comparison of Loss Functions

In the first experiment we focused on the modified 2D U-Net architecture for
which we obtained good initial results, and compared the performance using the
different cost functions introduced in Sec. 2.3. In Table 2 we report the Dice score
and ASSD averaged over both cardiac phases. It can be seen that using cross
entropy led to better results than optimising the Dice directly. Weighted and
unweighted cross entropy performed similarly, with the weighted loss function
leading to marginally better results. We conclude that for the task at hand, the
class imbalance does not seem to be an issue. Nevertheless, for the comparison of
the network architectures in the next section we continued using the unweighted
cross entropy as a loss function due to the slightly better results.

3.4 Experiment 2: Comparison of Network Architectures

This experiment focuses on the comparison of the different 2D and 3D network
architectures described in Sec. 2.2. The results are shown in Table 2. It can be
seen that the 2D U-Net (both the original and modified version) outperformed
FCN-8 and the (modified) 3D U-Net. While both versions of the 2D U-Net
perform similarly, the modified version leads to slightly better results.

Clinical measures for the best performing method (the modified 2D U-Net)
are shown in Table 3. A detailed description of the measures is provided by
ACDC3. Figure 1 shows example segmentation results at three slice positions
using the above method. Inference on a single volume took approximately 1.1 s
for the 2D networks and 2.2 s for the 3D networks using a Nvidia Titan Xp GPU.

3.5 Discussion and Conclusion

In this work we evaluated the suitability of state-of-the-art neural network ar-
chitectures for the task of fully automatic cardiac segmentation. We also investi-
gated modified versions of those networks which yielded marginal improvements
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Table 2: Segmentation accuracy measures for different network architectures.
Each table entry depicts the mean (std) value accuracy measure obtained for a
specific structure and cardiac phase.

Left Ventricle (ED) Left Ventricle (ES)

Dice ASSD HD Dice ASSD HD

FCN-8 0.960 (0.018) 0.41 (0.49) 5.77 (3.05) 0.926 (0.061) 0.64 (0.80) 7.31 (3.39)
2D U-Net 0.965 (0.014) 0.36 (0.38) 5.63 (2.79) 0.937 (0.051) 0.54 (0.64) 6.85 (3.52)
2D U-Net (mod.) 0.966 (0.017) 0.37 (0.48) 5.71 (4.22) 0.935 (0.042) 0.67 (0.92) 8.23 (8.29)
3D U-Net (mod.) 0.939 (0.022) 0.63 (0.50) 8.69 (4.25) 0.905 (0.039) 0.70 (0.38) 9.13 (4.10)

Right Ventricle (ED) Right Ventricle (ES)

Dice ASSD HD Dice ASSD HD

FCN-8 0.932 (0.025) 0.57 (0.45) 12.24 (5.51) 0.835 (0.100) 1.63 (1.07) 13.89 (4.24)
2D U-Net 0.936 (0.028) 0.65 (0.48) 12.43 (6.13) 0.838 (0.085) 1.72 (1.22) 14.52 (5.28)
2D U-Net (mod.) 0.934 (0.039) 0.66 (0.74) 12.17 (6.02) 0.852 (0.095) 1.42 (1.19) 13.46 (6.24)
3D U-Net (mod.) 0.888 (0.069) 1.17 (1.21) 14.91 (5.02) 0.781 (0.101) 2.26 (1.40) 16.24 (5.39)

Myocardium (ED) Myocardium (ES)

Dice ASSD HD Dice ASSD HD

FCN-8 0.869 (0.029) 0.55 (0.23) 9.16 (6.74) 0.890 (0.027) 0.62 (0.24) 9.69 (5.28)
2D U-Net 0.885 (0.027) 0.52 (0.29) 9.01 (7.66) 0.904 (0.029) 0.55 (0.28) 10.06 (5.79)
2D U-Net (mod.) 0.892 (0.027) 0.45 (0.22) 8.65 (6.02) 0.906 (0.034) 0.56 (0.44) 9.66 (6.21)
3D U-Net (mod.) 0.802 (0.053) 0.91 (0.34) 11.87 (6.25) 0.839 (0.066) 0.90 (0.42) 10.95 (3.47)

in performance. In particular, we found that using fewer feature maps in the
upsampling path of the 2D U-Net yielded minor but consistent improvements.
We speculate that for this problem the full complexity of the upsampling path
is not necessary. Furthermore, the “bottlenecks” may force the downsampling
layers to learn more semantically meaningful features. Lastly, having fewer pa-
rameters may also make the problem easier to optimise. Further investigation
into the significance of the upsampling path complexity will be necessary.

Overall we found that the exact architecture played a minor role in the
accuracy of the system. However, the use of batch normalisation as well as the
choice of the cost function had a big impact on the performance. Moreover, we
found that resampling of the predictions to the original image resolution was a
significant source of errors. This could be reduced by resampling the softmax
output with linear interpolation, rather than the predicted masks.

One goal of this paper was to investigate if 3D context is helpful for the
segmentation of short-axis MR images. Our experiments revealed that all 2D
approaches consistently outperformed the (modified) 3D U-Net. There are at
least three possible reasons for this: (1) when using 3D data, the amount of
training images is drastically reduced which complicates training. (2) Since the
through-plane resolution is low (and the cardiac structures typically appear in
the top and bottom slices already), border effects from 3D convolutions may
compromise the information available at intermediate representations. (3) GPU
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Table 3: Clinical measurements: correlation, bias and limits of agreement (LoA)
for the LV and RV ejection fraction (EF) and all structure volumes.

Correlation Bias [LoA]

EF Vol (ED) Vol (ES) EF Vol (ED) Vol (ES)

LV 0.972 0.998 0.994 −0.45[−9.68; 8.78] 1.28[−7.27; 9.83] 2.55[−14.86; 19.96]
RV 0.868 0.961 0.965 6.25[−13.08; 25.58] −0.45[−28.89; 27.99] −8.08[−33.87; 17.71]
Myo - 0.995 0.988 - −5.24[−15.27; 4.79] −0.71[−17.89; 16.47]
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Fig. 1: Example segmentations at ED obtained using the 2D U-Net (mod.) for
subjects with the highest, median, and lowest Dice coefficients on the My-
ocardium (left to right). Ground truth (left) and predicted segmentation (right)
are shown for a basal, mid-ventricular and apical slice (top to bottom).

memory restrictions required a substantial downsampling of the data for training
and prediction, potentially leading to a loss of information.

The segmentation scores reported in this work compare favourably to the
related literature. However, it should be noted that a direct comparison is com-
plicated by the fact that different datasets were used in the different works.
For the LV cavity two recent deep learning methods [1,14] report Dice scores
of around 0.94, while the modified 2D U-Net discussed here achieved a slightly
higher value of 0.95. For automated segmentation of the RV cavity, [3,13] report
similar results to ours. Segmentation of the myocardium is a more challeng-
ing task than the LV and RV cavities, which is reflected by lower Dice scores of
around 0.81 reported in recent literature [2,14]. We achieved substantially higher
results using all 2D architectures. In particular, the modified 2D U-Net archi-
tecture produced a Dice score of 0.899 for this structure. While these results are
encouraging, further analysis on common datasets is necessary. Specifically, we
observed that the field of view in many images of the ACDC challenge dataset
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does not include the apex and basal region of the heart, which are particularly
challenging to segment.

The code and pretrained models for all examined network architectures are
publicly available at https://github.com/baumgach/acdc_segmenter.
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