Skip to main content

MRI Whole Heart Segmentation Using Discrete Nonlinear Registration and Fast Non-local Fusion

  • Conference paper
  • First Online:
Statistical Atlases and Computational Models of the Heart. ACDC and MMWHS Challenges (STACOM 2017)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10663))

Abstract

We present a robust and accurate method for multi-atlas segmentation of whole heart MRI scans. After preprocessing, which includes resampling to isotropic voxel sizes and cropping or padding to same dimensions, all training scans are registered linearly and nonlinearly to an unseen set of test scans. We employ the efficient discrete registration framework called deeds that captures large shape variations across scans, performed best in a recent registration comparison on abdominal scans and requires less than 2 min of computation time per scan. Subsequently, we perform multi-atlas label fusion using a non-local means approach with a normalised SSD metric and a fast implementation using boxfilters. Subsequently, a multi-label random walk is performed on the obtained probability maps for an edge-preserving smoothing. Without performing any domain-specific parameter tuning, we obtained a Dice accuracy of 86.0% (averaged across 7 labels) and 87.0% for the whole heart on the MRI test dataset, which is the first rank of the MICCAI 2017 challenge. The segmentations are also visually very smooth using this fully automatic method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Grothues, F., Smith, G.C., Moon, J.C., Bellenger, N.G., Collins, P., Klein, H.U., Pennell, D.J.: Comparison of interstudy reproducibility of cardiovascular magnetic resonance with 2D echocardiography in normal subjects and in patients with heart failure or left ventricular hypertrophy. Am. J. Cardiol. 90(1), 29–34 (2002)

    Article  Google Scholar 

  2. Ramanathan, C., Ghanem, R.N., Jia, P., Ryu, K., Rudy, Y.: Noninvasive electrocardiographic imaging for cardiac electrophysiology and arrhythmia. Nat. Med. 10(4), 422–428 (2004)

    Article  Google Scholar 

  3. Vuissoz, P.A., Odille, F., Fernandez, B., Lohezic, M., Benhadid, A., Mandry, D., Felblinger, J.: Free-breathing imaging of the heart using 2D cine-GRICS with assessment of ventricular volumes and function. J. Magn. Reson Imaging 35(2), 340–351 (2012)

    Article  Google Scholar 

  4. Nazarian, S., Bluemke, D.A., Lardo, A.C., Zviman, M.M., Watkins, S.P., Dickfeld, T.L., Meininger, G.R., Roguin, A., Calkins, H., Tomaselli, G.F., et al.: Magnetic resonance assessment of the substrate for inducible ventricular tachycardia in nonischemic cardiomyopathy. Circulation 112(18), 2821–2825 (2005)

    Article  Google Scholar 

  5. Nielles-Vallespin, S., Mekkaoui, C., Gatehouse, P., Reese, T.G., Keegan, J., Ferreira, P.F., Collins, S., Speier, P., Feiweier, T., Silva, R., et al.: In vivo diffusion tensor MRI of the human heart: reproducibility of breath-hold and navigator-based approaches. Magn. Reson. Med. 70(2), 454–465 (2013)

    Article  Google Scholar 

  6. Tobon-Gomez, C., Geers, A.J., Peters, J., Weese, J., Pinto, K., Karim, R., Ammar, M., Daoudi, A., Margeta, J., Sandoval, Z., et al.: Benchmark for algorithms segmenting the left atrium from 3D CT and MRI datasets. IEEE Trans. Med. Imag. 34(7), 1460–1473 (2015)

    Article  Google Scholar 

  7. Kutra, D., Saalbach, A., Lehmann, H., Groth, A., Dries, S.P.M., Krueger, M.W., Dössel, O., Weese, J.: Automatic multi-model-based segmentation of the left atrium in cardiac MRI scans. In: Ayache, N., Delingette, H., Golland, P., Mori, K. (eds.) MICCAI 2012. LNCS, vol. 7511, pp. 1–8. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33418-4_1

    Chapter  Google Scholar 

  8. Zhuang, X., Rhode, K.S., Razavi, R.S., Hawkes, D.J., Ourselin, S.: A registration-based propagation framework for automatic whole heart segmentation of cardiac MRI. IEEE Trans. Med. Imag. 29(9), 1612–1625 (2010)

    Article  Google Scholar 

  9. Zhuang, X., Shen, J.: Multi-scale patch and multi-modality atlases for whole heart segmentation of MRI. Med. Imag. Anal. 31, 77–87 (2016)

    Article  Google Scholar 

  10. Wolterink, J.M., Leiner, T., Viergever, M.A., Išgum, I.: Dilated convolutional neural networks for cardiovascular MR segmentation in congenital heart disease. In: Zuluaga, M.A., Bhatia, K., Kainz, B., Moghari, M.H., Pace, D.F. (eds.) RAMBO/HVSMR -2016. LNCS, vol. 10129, pp. 95–102. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-52280-7_9

    Chapter  Google Scholar 

  11. Oktay, O., Ferrante, E., Kamnitsas, K., Heinrich, M., Bai, W., Caballero, J., Guerrero, R., Cook, S., de Marvao, A., O’Regan, D., et al.: Anatomically constrained neural networks (ACNN): Application to cardiac image enhancement and segmentation. arXiv preprint arXiv:1705.08302 (2017)

  12. Heinrich, M., Jenkinson, M., Brady, J., Schnabel, J.: MRF-based deformable registration and ventilation estimation of lung CT. IEEE Trans. Med. Imag. 32(7), 1239–1248 (2013)

    Article  Google Scholar 

  13. Xu, Z., Lee, C., Heinrich, M., Modat, M., Rueckert, D., Ourselin, S., Abramson, R., Landman, B.: Evaluation of six registration methods for the human abdomen on clinically acquired CT. IEEE Trans. Biomed. Eng. 1–10 (2016)

    Google Scholar 

  14. Heinrich, M.P., Jenkinson, M., Papież, B.W., Brady, S.M., Schnabel, J.A.: Towards realtime multimodal fusion for image-guided interventions using self-similarities. In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds.) MICCAI 2013. LNCS, vol. 8149, pp. 187–194. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40811-3_24

    Chapter  Google Scholar 

  15. Wang, H., Suh, J.W., Das, S.R., Pluta, J.B., Craige, C., Yushkevich, P.A.: Multi-atlas segmentation with joint label fusion. IEEE Trans. Patt. Anal. Mach. Intell. 35(3), 611–623 (2013)

    Article  Google Scholar 

  16. Asman, A.J., Landman, B.A.: Non-local statistical label fusion for multi-atlas segmentation. Med. Imag. Anal. 17(2), 194–208 (2013)

    Article  Google Scholar 

  17. Heinrich, M.P., Simpson, I., Papież, B., Brady, J., Schnabel, J.: Deformable image registration by combining uncertainty estimates from supervoxel belief propagation. Med. Imag. Anal. 27, 57–71 (2016)

    Article  Google Scholar 

  18. Coupé, P., Manjón, J.V., Fonov, V., Pruessner, J., Robles, M., Collins, D.L.: Patch-based segmentation using expert priors: application to hippocampus and ventricle segmentation. NeuroImage 54(2), 940–954 (2011)

    Article  Google Scholar 

  19. Heinrich, M.P., Papież, B.W., Schnabel, J.A., Handels, H.: Non-parametric discrete registration with convex optimisation. In: Ourselin, S., Modat, M. (eds.) WBIR 2014. LNCS, vol. 8545, pp. 51–61. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08554-8_6

    Google Scholar 

  20. Langerak, T., Van Der Heide, U., Kotte, A., Viergever, M., Van Vulpen, M., Pluim, J.: Label fusion in atlas-based segmentation using a selective and iterative method for performance level estimation (SIMPLE). IEEE Trans. Med. Imag. 29(12), 2000–2008 (2010)

    Article  Google Scholar 

  21. Xu, Z., Asman, A.J., Shanahan, P.L., Abramson, R.G., Landman, B.A.: SIMPLE is a good idea (and better with context learning). In: Golland, P., Hata, N., Barillot, C., Hornegger, J., Howe, R. (eds.) MICCAI 2014. LNCS, vol. 8673, pp. 364–371. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10404-1_46

    Google Scholar 

  22. Grady, L.: Multilabel random walker image segmentation using prior models. In: CVPR, pp. 763–770 (2005)

    Google Scholar 

  23. Heinrich, M.P., Blendowski, M.: Multi-organ segmentation using vantage point forests and binary context features. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 598–606. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46723-8_69

    Chapter  Google Scholar 

  24. Krähenbühl, P., Koltun, V.: Efficient inference in fully connected CRFs with Gaussian edge potentials. In: Proceedings of NIPS, pp. 2–9 (2011)

    Google Scholar 

  25. Oguz, I., Kashyap, S., Wang, H., Yushkevich, P., Sonka, M.: Globally optimal label fusion with shape priors. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 538–546. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46723-8_62

    Chapter  Google Scholar 

  26. Bai, W., Shi, W., Ledig, C., Rueckert, D.: Multi-atlas segmentation with augmented features for cardiac MR images. Med. Imag. Anal. 19(1), 98–109 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank the organisers of the MM-WHS 2017 for providing this rich new dataset to the public, which enables the evaluation of new algorithms for the problem of detailed 3D heart segmentation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mattias P. Heinrich .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Heinrich, M.P., Oster, J. (2018). MRI Whole Heart Segmentation Using Discrete Nonlinear Registration and Fast Non-local Fusion. In: Pop, M., et al. Statistical Atlases and Computational Models of the Heart. ACDC and MMWHS Challenges. STACOM 2017. Lecture Notes in Computer Science(), vol 10663. Springer, Cham. https://doi.org/10.1007/978-3-319-75541-0_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-75541-0_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-75540-3

  • Online ISBN: 978-3-319-75541-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics