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Preface

What are Nonlinear Eigenproblems and Why are They
Important?

A vast majority of real-world phenomena are nonlinear. Therefore, linear modeling
serves essentially as a rough approximation and in some cases offers only shallow
understanding of the underlying problem. This holds not only for modeling
physical processes but also for algorithms, such as in image processing and com-
puter vision, which attempt to process and understand the physical world, based on
various 2D and 3D sensors.

Linear algorithms and transforms have reached tremendous achievements in
signal and image processing. This was accomplished by very effective tools such as
Fourier and Laplace transforms and based on the broad and deep mathematical
foundations of linear algebra. Thus, very strong theories have been established over
the years and efficient numerical methods have been developed.

Unfortunately, linear algorithms have their limitations. This is especially evident
in signal and image processing, where standard linear methods such as Fourier
analysis are rarely used in modern algorithms. A main reason is that images and
many other signals have nonstationary statistics and include discontinuities (or
edges) in the data. Therefore, standard assumptions of global statistics and
smoothness of the data do not apply. The common practice in the image processing
field is to develop nonlinear algorithms. These can roughly be divided into several
main approaches:
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e Local linearization. Applying a linear operator which is adaptive and changes
spatially in the image domain. Examples: adaptive Wiener filtering [1, 2],
bilateral filtering [3], and nonlocal means [4].

¢ Hybrid linear-nonlinear. Performing successive iterations of linear processing
followed by simple nonlinear functions (such as thresholding, sign, and sigmoid
functions). This branch includes many popular algorithms such as wavelet
thresholding [5], dictionary and sparse representation approaches [6—8], and
recently, deep convolutional neural networks [9, 10].

¢ Spectral methods. In this branch, one often constructs a data-driven graph and
then performs linear processing using spectral graph theory [11], where the
graph Laplacian is most commonly used. Examples: graph cuts [12], diffusion
maps [13], and random-walker segmentation [14].

e Convex modeling. Algorithms based on convex optimization with
non-quadratic functionals, such as total variation [15-17]. More details are
given on this branch in this book.

e Kernel-based. Applying directly nonlinear kernel operators such as median,
rank filers [18], and morphological filtering [19].

In this book, we take a fresh look at nonlinear processing through nonlinear
eigenvalue analysis. This is still a somewhat unorthodox approach, since eigen-
value analysis is traditionally concerned with linear operators. We show how one-
homogeneous convex functionals induce operators which are nonlinear and can be
analyzed within an eigenvalue framework. The book has three essential parts. First,
mathematical background is provided along with a summary of some classical
variational algorithms for vision (Chaps. 2-3). The second part (Chaps. 4-7)
focuses on the foundations and applications of the new multiscale representation
based on nonlinear eigenproblems. In the last part (Chaps. 8§-11), new numerical
techniques for finding nonlinear eigenfunctions are discussed along with promising
research directions beyond the convex case. These approaches may be valuable also
for scientific computations and for better understanding of scientific problems
beyond the scope of image processing.

In the following, we present in more details the intuition and motivation for
formulating nonlinear transforms. We begin with the classical Fourier transform
and its associated operator and energy. We ask how these concepts can be gener-
alized in the nonlinear case? This can give the reader the flavor of topics discussed
in this book and the approach taken to address them.
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Basic Intuition and Examples

Fourier and the Dirichlet Energy

Let us first look at the classical case of the linear eigenvalue problem
Lu = Ju, (1)

where L is a bounded linear operator and u is some function in a Hilbert space. For
u admitting (1), we refer to as an eigenfunction, where A is the corresponding
eigenvalue.

In this book, we investigate nonlinear operators which can be formed based on
regularizers. This can be done either by deriving the variational derivative of the
regularizer (its subdifferential in the general convex nonsmooth case) or by using
the proximal operator. Let us examine the standard quadratic regularizer, frequent
in physics, and the basis of Tikhonov regularization, the Dirichlet energy

1
Jp = 5/ |Vul*dx. (2)

The variational derivative is
OJp = —Au,
with A the Laplacian. The corresponding eigenvalue problem is
—Au = Au, (3)

where Fourier basis yields the set of eigenfunctions (with appropriate boundary
conditions).
Another classical result in this context is the relation to the Rayleigh quotient,

2
R\

5
HMHLZ

Taking the inner product with respect to u# from both sides of (3), we get
(—Au,u) = A{u,u). Using integration by parts (or the divergence theorem), we
have (—Au,u) = ||Vu|}, and thus for any eigenfunction u we obtain

A =R(u).

Moreover, if we seek to minimize R(u), with respect to u, we can formulate a
constrained minimization problem, subject to [[u]|;. = 1, and see (using Lagrange
multipliers) that eigenfunctions are extremal functions of the Rayleigh quotient
(hence, also its global minimizer is an eigenfunction).
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From the above discussion, we see the connection between a quadratic regu-
larizer (Jp) and the related linear operator (—A). We notice that the corresponding
eigenvalue problem induces a multiscale representation (Fourier) and that eigen-
functions are local minimizers of the Rayleigh quotient. The remarkable recent
findings are that these relations generalize very nicely to the nonlinear case. We will
now look at the total variation (TV) regularizer, which induces a nonlinear
eigenvalue problem.

(a) Components of (b) Input (c) Fourier spectrum  (d) Fourier band-stop fil-
input tered

(e) Input (f) TV Spectrum (g) TV band-stop fil-
tered

Fig. 1 Example of multiscale representation and filtering based on linear and nonlinear eigen-
functions. In the first row, three sine functions of different frequencies (left) are combined and
serve as the input signal. A classical Fourier transform shows the spectrum containing three
numerical delta functions. Filtering out the middle frequency (band-stop or notch filter) yields the
result on the right. On the bottom row, we show a similar phenomenon based on the TV transform,
where the input is a combination of four eigenfunctions in the shape of disks. Based on the TV
transform, explained in Chap. 5, we get a spectrum with four numerical deltas, corresponding to
each disk (from small to large radius). One can filter out the second smallest disk in an analog
manner to Fourier, receiving the result on the right, preserving perfectly the three other disks, with
some marginal errors due to grid discretization effects

The Total Variation Eigenvalue Problem
First, we would like to introduce the typical nonlinear eigenvalue problem asso-
ciated with a bounded nonlinear operator T,

Tu = Ju. 4)

This is a straightforward analog of (1) and will be investigated throughout this
book, mainly in the context of convex optimization. Further generalizations to this
equation will also be briefly addressed.
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The L'-type regularizer, which is analog to the Dirichlet energy, is the total
variation functional defined by

JTV:/|Vu|dx. (5)

Here, we use the simple (strong-sense) formulation. TV is very frequent in
regularization of image processing problems, such as denoising, 3D reconstruction,
stereo, and optical flow estimations. Chapter 3 gives more details on the properties
of this functional. Based on the variational derivative of TV, 0,Jry, we reach the
following nonlinear eigenvalue problem:

—div (|§_Z) = Ju, (6)

which is the analog of (3). For those less familiar with variational methods, we give
the basic background in Sect. 1.3 on how the operator on the left side of (6) was
derived. This operator is often referred to as the 1-Laplacian. We also note that this
writing is somewhat informal (a subgradient inclusion is more precise, and the
derivatives should be understood in the distributional sense).

Let u be an indicator function of a convex set C in R?. A fascinating result by
Andreau et al. [20] is that u is an eigenfunction, in the sense of (6), if C admits the
following simple geometric condition:

Per(C)
Icl

(maximal curvature on 9C) <

where OC is the boundary of C, Per(C) is its perimeter and |C]| is its area. Checking
this condition for the case of a disk of radius r (curvature 1/r, Per(C) = 2nr,
|C| = nr?), we observe that any disk admits this condition. It essentially means that
convex characteristics sets with smooth enough boundaries are TV eigenfunctions.
Moreover, it was established that the eigenvalue is precisely the perimeter to area
ratio

1= Per(C) '
|C]|

An alternative way to derive A for any u is to follow the computation described
earlier for the linear case. That is, we can take the inner product with respect to u of
(6) and get

_ 2.
[luell 72

=
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Indeed, for the specific case of a characteristic set, we obtain the equalities
Per(C) = Jyy(u) and |C| = |jul|;.. The last equation is actually a generalized
Rayleigh quotient, where one can show that eigenfunctions are extremal points, as
in the linear case.

A natural question to ask is, can we also generalize a multiscale representation,
based on TV eigenfunctions, in an analog manner to Fourier? If so, what are the
properties and qualities of this representation? how well can it represent images?
This book tries to address this fundamental question. A suggestion for a spectral
representation suggested by the author and colleagues [21-23] is the spectral TV
representation or the TV transform. A detailed explanation of the formalism is
given in Chap. 5.

In the multiscale representation of the TV transform, scales (in the sense of
eigenvalues) can be well separated, amplified, or attenuated, in a similar manner to
classical Fourier filtering. In Fig. 1, we show a toy example of TV band-stop
filtering along a comparison to standard Fourier filtering.

Graphs and Physics

Nonlinear eigenvalue problems related to TV are highly useful also for classifica-
tion and learning, using graph data structures. The Cheeger constant is an
isoperimetric value which essentially measures the degree of the dominant “bot-
tleneck” in the graph. Perimeter of a set on a graph is directly related to the total
variation on graphs. It was established that finding this bottleneck, or Cheeger cut,
which is a NP-hard problem, can be well approximated by solving the 1-Laplacian
eigenvalue problem

Ayu = Jsign(u),

where A;u is the 1-Laplacian on the graph. In Chap. 8, it will be explained how this
can be used for segmentation and classification. Also, numerical algorithms for
solving such problems will be discussed in Chap. 7. Finally, we will briefly mention
the more general double-nonlinear eigenvalue problem

T(u) = 20(u),

where both 7 and Q can be nonlinear operators. In the case of T = —A (a linear
operator) and nonlinear Q, there are several physical problems, such as soliton
waves, which are modeled by solutions to these types of eigenvalue problems.
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What is Covered in This Book?

This book first presents some of the basic mathematical notions, which are needed
for later chapters. An effort is made to make the book self-contained so it is
accessible to many disciplines. We then outline briefly the use of variational and
flow-based methods to solve many image processing and computer vision algo-
rithms (Chap. 3).

As total variation is an important functional, which is used throughout this book,
we present its properties in more details (Chap. 4). We then define the concept of
nonlinear eigenfunctions related to convex functionals and state some of the
properties known today (an area still under active research, Chap. 5).

We proceed by going into a fundamental concept presented in this book of the
spectral framework for one-homogeneous functionals. We show how eigenfunc-
tions appear naturally in gradient descent and variational methods and that a
spectral decomposition can be used for new representations of signals. The concept
and motivation are discussed, as well as current theory on the subject. Applications
of using this framework for denoising, texture processing, and image fusion are
presented (Chaps. 6-7).

In the following chapter, we go deeper into the nonlinear eigenvalue problem
and propose new ways to solve it using special flows which converge to eigen-
functions (Chap. 8).

We then go to graph-based and nonlocal methods, where a TV eigenvalue
analysis gives rise to strong segmentation, clustering, and classification algorithms
(Chap. 9).

Next, we present a new direction of how the nonlinear spectral concept can be
generalized beyond the convex case, based on pixel decay analysis (Chap. 10). We
are thus able to construct a spectral representation with different nonlinear denoisers
and get different eigenmodes.

Relations to other image processing branches, such as wavelets and dictionary
based, are discussed (Chap. 11). We conclude with the current open problems and
outline future directions for the development of theory and applications related to
nonlinear eigenvalue problems. In the appendix, we summarize some standard
discretization and convex optimization methods, which are used to implement
numerically such methods.

Haifa, Israel Guy Gilboa
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