Skip to main content

A Framework for Rapid Configuration of Collaborative Aviation System-of-Systems Simulations

  • Conference paper
  • First Online:
Modelling and Simulation for Autonomous Systems (MESAS 2017)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 10756))

Abstract

We propose a model-based framework to specify, integrate, and verify heterogeneous Software Integration Lab and System of Systems (SoS) simulations that include unmanned aviation mission systems during the early development and evaluation phases. This approach would bridge the currently separated development and test/training domains. We propose a tool suite for Rapid Configuration of Collaborative Aviation SoS Simulations (RCAS3.) This will provide a seamless plug-and-play framework that is highly adaptive and configurable while providing model transformation mechanisms to easily interface with High Level Architecture or other federated simulation protocols. RCAS3 will be built around already existing technologies: Aviation Scenario Definition Language Modeling, Discrete Event System Specification, and System Entity Structure implemented in RTSync’s MS4 Me. These will be augmented with an Architecture Analysis and Design Language (AADL)-based configuration and behavior analysis suite. This paper presents RCAS3 framework architecture and its underlying concepts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. ASDL. https://github.com/ASDL-prj/Ontology

  2. Balci, O.: A life cycle for modeling and simulation. Simulation 88(7), 870–883 (2012)

    Article  Google Scholar 

  3. Barhorst, J., Belote, T., Binns, P., Hoffman, J., Paunicka, J., Sarathy, P., Scoredos, J., Stanfill, P., Stuart, D., Russell, U.: A research agenda for mixed-criticality systems. In: Cyber-Physical Systems Week (2009)

    Google Scholar 

  4. Bruneliere, H., Cabot, J., Jouault, F., Madiot, F.: MoDisco: a generic and extensible framework for model driven reverse engineering. In: Proceedings of the IEEE/ACM International Conference on Automated Software Engineering (2010)

    Google Scholar 

  5. Budinsky, F.: Eclipse Modeling Framework: A Developer’s Guide. Addison-Wesley Professional, Boston (2004)

    Google Scholar 

  6. Eclipse Model To Text (M2T) Eclipse. https://eclipse.org/modeling/m2t/

  7. Federal Aviation Administration. AFS Flight Program Flight Operations Manual

    Google Scholar 

  8. Grange, F.E., Jacobs, A., Prouhet, R., Thengvall, B.: Modeling, simulation and analysis of “unknown unknowns” with simulation optimization. In: Proceedings of the 80th Symposium. Colorado Springs: Military Operations Research Society (2012)

    Google Scholar 

  9. Hodicky, J.: HLA as an experimental backbone for autonomous system integration into operational field. In: Hodicky J. (eds.) Modelling and Simulation for Autonomous Systems. MESAS 2014. LNCS, vol 8906. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-13823-7_11

  10. Hoare, C.A.R.: Communicating Sequential Processes. Prentice Hall, Upper Saddle River, New Jersey (1985)

    MATH  Google Scholar 

  11. Jafer, S., Chhaya, B., Durak, U., Gerlach, T.: Formal scenario definition language for aviation: aircraft landing case study. In: AIAA Modeling and Simulation Technologies Conference, p. 3521 (2016)

    Google Scholar 

  12. Jafer, S., Chhaya, B., Durak, U.: Graphical specification of flight scenarios with aviation scenario defintion language (ASDL). In: AIAA Modeling and Simulation Technologies Conference, p. 1311 (2017)

    Google Scholar 

  13. Koymans, R.: Specifying real-time properties with metric temporal logic. Real-Time Syst. 2(4), pp. 255–299 (1990)

    Google Scholar 

  14. Manna, Z., Pnueli, A.: The Temporal Logic of Reactive and Concurrent Systems. Springer, New York (1992)

    Book  MATH  Google Scholar 

  15. Milner, R.: Communication and Concurrency. Prentice Hall, Upper Saddle River, New Jersey (1989)

    MATH  Google Scholar 

  16. Mital, S., Risco Martin, J.L.: Netcentric System of Systems Engineering with DEVS Unified Process. CRC Press, Boca Raton (2013)

    Google Scholar 

  17. Nutaro, J.: Building Software for Simulation: Theory and Algorithms with applications in C++. Wiley, Hoboken (2011)

    MATH  Google Scholar 

  18. Nutaro, J., Sarjoughian, H.S.: Design of distributed simulation environments: a unified system-theoretic and logical processes approach. Simulation 80(11), 577–589 (2004)

    Article  Google Scholar 

  19. OWL Web Ontology Language Reference. http://www.w3.org/TR/owlref/

  20. Pawletta, T., Schmidt, A., Zeigler, B.P., Durak, U.: Extended variability modeling using system entity structure ontology within MATLAB/simulink. In: Proceedings SCS International SpringSim/ANSS 2016, Pasadena, CA, USA, SCS, pp. 62–69 (2016)

    Google Scholar 

  21. SESAR EUROCONTROL ATM Lexicon. Single European Sky ATM Research. http://www.eurocontrol.int/lexicon/lexicon/en/

  22. Seo, C., Zeigler, B.P., Coop, R., Kim, D.: DEVS modeling and simulation methodology with MS4 Me software tool. In: Proceedings of the Symposium on Theory of Modeling & Simulation-DEVS Integrative M&S Symposium, p. 33. Society for Computer Simulation International (2013)

    Google Scholar 

  23. Schmidt, D.C.: Model-driven engineering. IEEE Comput. 29(2), 25–31 (2006)

    Article  Google Scholar 

  24. SISO Base Object Model Product Development Group. Base Object Model (BOM) Template. Simulation Interoperability Standards Organization, Orlando (2006)

    Google Scholar 

  25. Farail, P., Gaufillet, P., Canals, A., Le Camus, C., Sciamma, D., Michel, P., Pantel, M.: The TOPCASED project: a toolkit in open source for critical aeronautic systems design. Embedded Real Time Softw. (ERTS) 781, 54–59 (2006)

    Google Scholar 

  26. Vangheluwe, H.L.M.: DEVS as a common denominator for multi-formalism hybrid systems modeling. In: Proceedings for the 2000 IEEE International Symposium on Computer-aided Control System Design, Alaska, USA (2000)

    Google Scholar 

  27. Volter, M., Stahl, T., Bettin, J., Haase, A., Helsen, S.: Model-Driven Software Development: Technology, Engineering, Management. Wiley, Chichester (2006)

    Google Scholar 

  28. Wimmer, M., Perez, S.M., Jouault, F., Cabot, J.: A catalogue of refactorings for model-to-model transformations. J. Object Technol. 11(2), 2:1–40 (2012)

    Google Scholar 

  29. Zeigler, B.P.: Theory of Modeling and Simulation, 1st edn. Wiley Interscience, New York (1976)

    MATH  Google Scholar 

  30. Zeigler, B.P.: Multifacetted Modelling and Discrete Event Simulation. Academic Press, New York (1984)

    MATH  Google Scholar 

  31. Zeigler, B.P., Sarjoughian, H.S.: System entity structure basics. In: Guide to Modeling and Simulation of Systems of Systems, Simulation Foundations, Methods and Applications, pp. 27–37. Springer, London (2013). https://doi.org/10.1007/978-0-85729-865-2_3

  32. Zeigler, B.P., Praehofer, H., Kim, T.G.: Theory of Modeling and Simulation, 2nd edn. Academic Press, San Diego (2000)

    MATH  Google Scholar 

  33. Zeigler, B.P., Hammonds, P.E.: Modeling and Simulation-based Data Engineering: Introducing Pragmatics into Ontologies for Netcentric Information Exchange. Academic Press, San Diego (2007)

    Google Scholar 

  34. Zeigler, B.P.: Multifaceted Modelling and Discrete Event Simulation. Academic Press, San Diego (1984)

    MATH  Google Scholar 

  35. Zeigler, B.P., Nutaro, J.: Towards a framework for more robust validation and verification of simulation models for systems of systems. J. Defense Model. Simul. Appl. Methodol. Technol. 13(1), 3–16 (2015). https://doi.org/10.1177/1548512914568657

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shafagh Jafer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jafer, S., Zeigler, B., Kim, D.D.H. (2018). A Framework for Rapid Configuration of Collaborative Aviation System-of-Systems Simulations. In: Mazal, J. (eds) Modelling and Simulation for Autonomous Systems. MESAS 2017. Lecture Notes in Computer Science(), vol 10756. Springer, Cham. https://doi.org/10.1007/978-3-319-76072-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-76072-8_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-76071-1

  • Online ISBN: 978-3-319-76072-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics