Skip to main content

A Coupling Support Vector Machines with the Feature Learning of Deep Convolutional Neural Networks for Classifying Microarray Gene Expression Data

  • Chapter
  • First Online:

Part of the book series: Studies in Computational Intelligence ((SCI,volume 769))

Abstract

Support vector machines (SVM) and deep convolutional neural networks (DCNNs) are state-of-the-art classification techniques in many real-world applications. Our investigation aims at proposing a hybrid model combining DCNNs and SVM (called DCNN-SVM) to effectively predict very-high-dimensional gene expression data. The DCNN-SVM trains the DCNNs model to automatically extract features from microarray gene expression data and followed which the DCNN-SVM learns a non-linear SVM model to classify gene expression data. Numerical test results on 15 microarray datasets from Array Expression and Medical Database (Kent Ridge) show that our proposed DCNN-SVM is more accurate than the classical DCNNs algorithm, SVM, random forests.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Brazma, A., et al.: ArrayExpress a public repository for microarray gene expression data at the EBI. Nucleic Acids Res. 31(1), 68–71 (2003)

    Article  Google Scholar 

  2. Edgar, R., Domrachev, M., Lash, A.E.: Gene expression omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res. 30(1), 207–210 (2002)

    Article  Google Scholar 

  3. Schena, M., et al.: Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science (New York then Washington) 467–470 (1995)

    Google Scholar 

  4. Pinkel, D., et al.: High resolution analysis of DNA copy number variation using comparative genomic hybridization to microarrays. Nat. Genet. 20(2) (1998)

    Google Scholar 

  5. Brown, M.P.S., et al.: Support vector machine classification of microarray gene expression data. University of California, Santa Cruz, Technical Report UCSC-CRL-99-09 (1999)

    Google Scholar 

  6. Furey, T.S., Cristianini, N., Duffy, N., Bednarski, D.W., Schummer, M., Haussler, D.: Support vector machine classification and validation of cancer tissue samples using microarray expression data. Bioinformatics 16(10), 906–914 (2000)

    Article  Google Scholar 

  7. Guyon, I., Weston, J., Barnhill, S., Vapnik, V.: Gene selection for cancer classification using support vector machines. Mach. Learn. 46(1), 389–422 (2002)

    Article  MATH  Google Scholar 

  8. Hasri, N.N.M., et al.: Improved support vector machine using multiple SVM-RFE for cancer classification. Int. J. Adv. Sci. Eng. Inf. Technol. 7(4–2), 1589–1594 (2017)

    Google Scholar 

  9. Yeang, C.H., Ramaswamy, S., Tamayo, P., Mukherjee, S., Rifkin, R.M., Angelo, M., Reich, M., Lander, E., Mesirov, J., Golub, T.: Molecular classification of multiple tumor types. Bioinformatics 17(suppl-1), S316–S322 (2001)

    Google Scholar 

  10. Li, J., Liu, H.: Ensembles of cascading trees. In: 2003 Third IEEE International Conference on Data Mining, ICDM 2003, pp. 585–588. IEEE (2003)

    Google Scholar 

  11. Li, J., Liu, H., Ng, S.K., Wong, L.: Discovery of significant rules for classifying cancer diagnosis data. Bioinformatics 19(suppl-2), ii93–ii102 (2003)

    Google Scholar 

  12. Tsai, M.H., et al.: A decision tree based classifier to analyze human ovarian cancer cDNA microarray datasets. J. Med. Syst. 40(1), 21 (2016)

    Article  Google Scholar 

  13. Díaz-Uriarte, R., De Andres, S.A.: Gene selection and classification of microarray data using random forest. BMC Bioinf. 7(1), 3 (2006)

    Article  Google Scholar 

  14. Do, T.N., Lenca, P., Lallich, S., Pham, N.K.: Classifying very-high-dimensional data with random forests of oblique decision trees. In: Advances in Knowledge Discovery and Management, pp. 39–55. Springer (2010)

    Google Scholar 

  15. Tan, A.C., Gilbert, D.: Ensemble machine learning on gene expression data for cancer classification. Bioinformatics (2003)

    Google Scholar 

  16. Dettling, M.: Bagboosting for tumor classification with gene expression data. Bioinformatics 20(18), 3583–3593 (2004)

    Article  Google Scholar 

  17. Krizhevsky, A., et al.: ImageNet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)

    Google Scholar 

  18. Lai, S., Xu, L., Liu, K., Zhao, J.: Recurrent convolutional neural networks for text classification. AAAI 333, 2267–2273 (2015)

    Google Scholar 

  19. Min, S., Lee, B., Yoon, S.: Deep learning in bioinformatics. Brief. Bioinf. (2016). https://doi.org/10.1093/bib/bbw068

  20. Suykens, J.A., Vandewalle, J.: Training multilayer perceptron classifiers based on a modified support vector method. IEEE Trans. Neural Netw. 10(4), 907–911 (1999)

    Article  Google Scholar 

  21. Bellili, A., Gilloux, M., Gallinari, P.: An hybrid MLP-SVM handwritten digit recognizer. In: Proceedings of the Sixth International Conference on Document Analysis and Recognition 2001, pp. 28–32. IEEE (2001)

    Google Scholar 

  22. Niu, X.X., Suen, C.Y.: A novel hybrid CNN-SVM classifier for recognizing handwritten digits. Pattern Recognit. 45(4), 1318–1325 (2012)

    Article  Google Scholar 

  23. Nagi, J., et al.: Convolutional neural support vector machines: hybrid visual pattern classifiers for multi-robot systems. In: 2012 11th International Conference on Machine Learning and Applications (ICMLA), vol. 1, pp. 27–32. IEEE (2012)

    Google Scholar 

  24. Cao, G., Wang, S., Wei, B., Yin, Y., Yang, G.: A hybrid CNN-RF method for electron microscopy images segmentation. Tissue Eng. J. Biomim. Biomater. Tissue Eng. 18, 2 (2013)

    Google Scholar 

  25. Jinyan, L., Huiqing, L.: Kent ridge bio-medical data set repository (2002)

    Google Scholar 

  26. Vapnik, V.: Statistical Learning Theory, vol. 1. Wiley, New York (1998)

    MATH  Google Scholar 

  27. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)

    Article  MATH  Google Scholar 

  28. Hubel, D., Wiesel, T.: Shape and arrangement of columns in cat’s striate cortex. J. Physiol. 165(3), 559–568 (1963)

    Article  Google Scholar 

  29. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015)

    Article  Google Scholar 

  30. Burges, C.J.: A tutorial on support vector machines for pattern recognition. Data Min. Knowl. Discov. 2(2), 121–167 (1998)

    Article  Google Scholar 

  31. Kreßel, U.H.G.: Pairwise classification and support vector machines. In: Advances in Kernel Methods, pp. 255–268. MIT press (1999)

    Google Scholar 

  32. Cristianini, N., Shawe Taylor, J.: An introduction to support vector machines and other kernel-based learning methods. Cambridge university press (2000)

    Google Scholar 

  33. Huang, F., LeCun, Y.: Large-scale learning with SVM and convolutional nets for generic object recognition. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (2006)

    Google Scholar 

  34. Chang, C.C., Lin, C.J.: LIBSVM: a library for support vector machines. ACM Trans. Intell. Syst. Technol. 2, 27:1–27:27 (2011). Software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm

  35. Abadi, M., et al.: TensorFlow: large-scale machine learning on heterogeneous systems (2015). Software available from http://www.tensorflow.org

  36. Pedregosa, F., et al.: Scikit-learn: machine learning in python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

    MathSciNet  MATH  Google Scholar 

  37. Gordon, G.J., et al.: Translation of microarray data into clinically relevant cancer diagnostic tests using gene expression ratios in lung cancer and mesothelioma. Cancer Res. 62(17), 4963–4967 (2002)

    Google Scholar 

  38. Singh, D., et al.: Gene expression correlates of clinical prostate cancer behavior. Cancer Cell 1(2), 203–209 (2002)

    Article  Google Scholar 

  39. Veer, V., et al.: Gene expression profiling predicts clinical outcome of breast cancer. Nature 415(6871), 530–536 (2002)

    Article  Google Scholar 

  40. Bhattacharjee, A., et al.: Classification of human lung carcinomas by mRNA expression profiling reveals distinct adenocarcinoma subclasses. Proc. Natl. Acad. Sci. 98(24), 13790–13795 (2001)

    Article  Google Scholar 

  41. Subramanian, A., et al.: Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. U. S. A. 102(43), 15545–15550 (2005)

    Article  Google Scholar 

  42. Wong, T.T.: Performance evaluation of classification algorithms by k-fold and leave-one-out cross validation. Pattern Recognit. 48(9), 2839–2846 (2015)

    Article  Google Scholar 

  43. Diederik, P., Kingma, J.B.: Adam: a method for stochastic optimization. In: Proceedings of the 3rd International Conference on Learning Representations (ICLR) (2014)

    Google Scholar 

  44. Hsu, C.W., et al.: A practical guide to support vector classification (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Phuoc-Hai Huynh , Van-Hoa Nguyen or Thanh-Nghi Do .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Huynh, PH., Nguyen, VH., Do, TN. (2018). A Coupling Support Vector Machines with the Feature Learning of Deep Convolutional Neural Networks for Classifying Microarray Gene Expression Data. In: Sieminski, A., Kozierkiewicz, A., Nunez, M., Ha, Q. (eds) Modern Approaches for Intelligent Information and Database Systems. Studies in Computational Intelligence, vol 769. Springer, Cham. https://doi.org/10.1007/978-3-319-76081-0_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-76081-0_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-76080-3

  • Online ISBN: 978-3-319-76081-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics