Skip to main content

A Method for Uncertainty Elicitation of Experts Using Belief Function

  • Chapter
  • First Online:
Modern Approaches for Intelligent Information and Database Systems

Part of the book series: Studies in Computational Intelligence ((SCI,volume 769))

  • 1263 Accesses

Abstract

The reliability of the biomedical data plays an essential role in the translation of the computational models and simulations of the human body systems into clinical decision support. Numerical models are commonly linked to the hypotheses on the data range of values due to the lack of in vivo data for some biomaterial variables. However, the reliability of these data is still not fully understood due to a lack of a systematic evaluation approach. The objective of this present study was to assess the reliability of biomedical data using expert judgment and belief theory. A systematic evaluation framework was developed using belief theory to perform the expert elicitation process. Seven parameters related to the muscle morphology and mechanics and motion analysis were selected. Twenty data sources related to these parameters were acquired using a systematic review process on the reliable search engines. A questionnaire was established including four main questions and four complementary questions related to the confidence levels. Eleven experts participated into the evaluation process via Google Form. A transformation process was developed to convert qualitative expert judgments to the numeric representations of the mass functions in the framework of belief theory. Two combination rules (Demspter and Dubois-Prade) were used to fuse the responses of multiple experts. At the end, data reliability was assessed using the pignistic probability to select the sources that correspond to some on-demand levels of confidence.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aboal, J.R., Boquete, M.T., Carballeira, A., Casanova, A., Fernández, J.A.: Quantification of the overall measurement uncertainty associated with the passive moss biomonitoring technique: sample collection and processing. Environ. Pollut. 224, 235–242 (2017)

    Article  Google Scholar 

  2. Boone, I., Van der Stede, Y., Bollaerts, K., Messens, W., Mintiens, K.: Expert judgement in a risk assessment model for Salmonella spp. in pork: the performance of different weighting schemes. Prev. Vet. Med. 92(3), 224–234 (2009)

    Article  Google Scholar 

  3. Charles Osuagwu, C., Okafor, E.C.: Framework for eliciting knowledge for a medical laboratory diagnostic expert system. Expert Syst. Appl. 37(7), 5009–5016 (2010)

    Article  Google Scholar 

  4. Chatterjee, S., Bhattacharyya, M.: Judgment analysis of crowdsourced opinions using biclustering. Inf. Sci. 375(1), 138–154 (2017)

    Article  Google Scholar 

  5. Cobb, J.B.R., Shenoy, P.P.: On the plausibility transformation method for translating belief function models to probability models. Int. J. Approx. Reason. 41(3), 314–330 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  6. Dubois D., Prade, H.: Representation and combination of uncertainty with belief functions and possibility measures. Comput. Intell. (1988)

    Google Scholar 

  7. Hanea, D.M., Jagtman, H.M., van Alphen, L.L.M.M., Ale, B.J.M.: Quantitative and qualitative analysis of the expert and non-expert opinion in fire risk in buildings. Reliab. Eng. Syst. Saf. 95(7), 729–741 (2010)

    Article  Google Scholar 

  8. Jörg, E., Julia, H., Valentin, Q., Markus, T., Björn, R.: Biomechanical model based evaluation of Total Hip Arthroplasty therapy outcome. J. Orthop. 14(4), 582–588 (2017)

    Article  Google Scholar 

  9. Lev, V.U.: A method for processing the unreliable expert judgments about parameters of probability distributions. Eur. J. Oper. Res. 175(1), 385–398 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  10. Nicholas, T., Danielle, P., Nikhil, V.D., Robert, P.L.: Biomechanical analysis of gait waveform data: exploring differences between shod and barefoot running in habitually shod runners. Gait Posture 58, 274–279 (2017)

    Article  Google Scholar 

  11. Nicolas, R., Didier, P., Julie, C., Johanna, R., Raphael, Z.: Categorization of gait patterns in adults with cerebral palsy: a clustering approach. Gait Posture 39(1), 235–240 (2014)

    Article  Google Scholar 

  12. Pauk, J., Minta-Bielecka, K.: Gait patterns classification based on cluster and bicluster analysis. Biocybern. Biomed. Eng. 36(2), 391–396 (2016)

    Article  Google Scholar 

  13. Rustem, B., Robin Becker, G., Wolfgang, M.: Robust min–max portfolio strategies for rival forecast and risk scenarios. J. Econ. Dyn. Control 24(11), 1591–1621 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  14. Samuel, T.R., Alejandro, S.: Error correction in multi-fidelity molecular dynamics simulations using functional uncertainty quantification. J. Comput. Phys. 334(1), 207–220 (2017)

    MathSciNet  Google Scholar 

  15. Shafer, G.: A Mathematical Theory of Evidence. Princeton University Press (1976)

    Google Scholar 

  16. Skinner, D.J.C., Rocks, S.A., Pollard, S.J.T.: Where do uncertainties reside within environmental risk assessments? Expert opinion on uncertainty distributions for pesticide risks to surface water organisms. Sci. Total Environ. 572, 23–33

    Google Scholar 

  17. Smets, P.: Data fusion in the transferable belief model. In: Proceedings of 3rd International Conference on Information Fusion, Paris, France, pp. 21–33 (2000)

    Google Scholar 

  18. Smets, P.: Belief functions: the disjunctive rule of combination and the generalized Bayesian theorem. Int. J. Approx. Reason. 9(1), 1–35 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  19. Wang, P., Ma, Z., Tian, Y.: Application of expert judgment method in the aircraft wiring risk assessment. Proc. Eng. 17, 440–445 (2011)

    Article  Google Scholar 

  20. Yun, Z., Norman, F., Martin, N.: Bayesian network approach to multinomial parameter learning using data and expert judgments. Int. J. Approx. Reason. 55(5), 1252–1268 (2014)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank all anonymous experts participating into the evaluation process.

Funding

This work was carried out and funded in the framework of the Labex MS2T. It was supported by the French Government, through the program “Investments for the future” managed by the National Agency for Research (Reference ANR-11-IDEX-0004-02).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tuan Nha Hoang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hoang, T.N., Dao, T.T., Ho Ba Tho, MC. (2018). A Method for Uncertainty Elicitation of Experts Using Belief Function. In: Sieminski, A., Kozierkiewicz, A., Nunez, M., Ha, Q. (eds) Modern Approaches for Intelligent Information and Database Systems. Studies in Computational Intelligence, vol 769. Springer, Cham. https://doi.org/10.1007/978-3-319-76081-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-76081-0_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-76080-3

  • Online ISBN: 978-3-319-76081-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics