Skip to main content

Impact of Uncertainty About a User to be Active on OFDM Transmission Strategies

  • Conference paper
  • First Online:
Book cover Cognitive Radio Oriented Wireless Networks (CrownCom 2017)

Abstract

In this paper we investigate the impact that incomplete knowledge regarding user activity can have on the equilibrium transmission strategy for an OFDM-based communication system. The problem is formulated as a two user non-zero sum game for independent fading channel gains, where the equilibrium strategies are derived in closed form. This allows one to show that a decrease in uncertainty about the user activity could reduce the number of subcarriers jointly used by the users. For the boundary case (with complete information, which reflects a classical water-filling game) the equilibrium strategies are given explicitly. The necessary and sufficient conditions, when channels sharing strategies are optimal, is established as well as the set of shared subcarriers is identified. The stability of the upper bound of the size of this set with respect to power budgets is derived.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Altman, E., Avrachenkov, K., Garnaev, A.: Closed form solutions for water-filling problems in optimization and game frameworks. Telecommun. Syst. 47, 153–164 (2011)

    Article  Google Scholar 

  2. Fudenberg, D., Tirole, J.: Game Theory. MIT Press, Boston (1991)

    MATH  Google Scholar 

  3. Garnaev, A., Baykal-Gursoy, M., Poor, H.V.: A game theoretic analysis of secret and reliable communication with active and passive adversarial modes. IEEE Trans. Wirel. Commun. 15, 2155–2163 (2016)

    Article  Google Scholar 

  4. Garnaev, A., Trappe, W.: The eavesdropping and jamming dilemma in multi-channel communications. In: IEEE International Conference on Communications (ICC), pp. 2160–2164. Budapest, Hungary (2013)

    Google Scholar 

  5. Garnaev, A., Trappe, W.: Stationary equilibrium strategies for bandwidth scanning. In: Jonsson, M., Vinel, A., Bellalta, B., Marina, N., Dimitrova, D., Fiems, D. (eds.) MACOM 2013. LNCS, vol. 8310, pp. 168–183. Springer, Cham (2013). https://doi.org/10.1007/978-3-319-03871-1_15

    Chapter  Google Scholar 

  6. Garnaev, A., Trappe, W.: Secret communication when the eavesdropper might be an active adversary. In: Jonsson, M., Vinel, A., Bellalta, B., Belyaev, E. (eds.) MACOM 2014. LNCS, vol. 8715, pp. 121–136. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10262-7_12

    Chapter  Google Scholar 

  7. Garnaev, A., Trappe, W.: One-time spectrum coexistence in dynamic spectrum access when the secondary user may be malicious. IEEE Trans. Inf. Forensics Secur. 10, 1064–1075 (2015)

    Article  Google Scholar 

  8. Garnaev, A., Trappe, W.: A bandwidth monitoring strategy under uncertainty of the adversary’s activity. IEEE Trans. Inf. Forensics Secur. 11, 837–849 (2016)

    Article  Google Scholar 

  9. Garnaev, A., Trappe, W.: Bargaining over the fair trade-off between secrecy and throughput in OFDM communications. IEEE Trans. Inf. Forensics Secur. 12, 242–251 (2017)

    Article  Google Scholar 

  10. Garnaev, A., Trappe, W., Petropulu, A.: Equilibrium strategies for an OFDM network that might be under a jamming attack. In: 51st Annual Conference on Information Systems and Sciences (CISS) (2017)

    Google Scholar 

  11. Han, Z., Niyato, D., Saad, W., Basar, T., Hjrungnes, A.: Game Theory in Wireless and Communication Networks: Theory, Models, and Applications. Cambridge University Press, New York (2012)

    MATH  Google Scholar 

  12. He, G., Cottatellucci, L., Debbah, M.: The waterfilling game-theoretical framework for distributed wireless network information flow. EURASIP J. Wirel. Commun. Netw. 1, 124–143 (2010)

    Google Scholar 

  13. Ju, P., Song, W., Jin, A.L.: A Bayesian game analysis of cooperative MAC with incentive for wireless networks. In: IEEE Global Communications Conference (GLOBECOM) (2014)

    Google Scholar 

  14. Monderer, D., Shapley, L.S.: Potential games. Games Econ. Behav. 14, 124–143 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  15. Prasad, R.: OFDM for Wireless Communications Systems. Artech House, Boston (2004)

    Google Scholar 

  16. Scutari, G., Palomar, D.P., Barbarossa, S.: Asynchronous iterative water-filling for Gaussian frequency-selective interference channels. IEEE Trans. Inf. Theory 54, 2868–2878 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  17. Slimeni, F., Scheers, B., Le Nir, V., Chtourou, Z., Attia, R.: Closed form expression of the saddle point in cognitive radio and Jammer power allocation game. In: Noguet, D., Moessner, K., Palicot, J. (eds.) CrownCom 2016. LNICSSITE, vol. 172, pp. 29–40. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-40352-6_3

    Chapter  Google Scholar 

  18. Song, T., Stark, W.E., Li, T., Tugnait, J.K.: Optimal multiband transmission under hostile jamming. IEEE Trans. Commun. 64, 4013–4027 (2016)

    Article  Google Scholar 

  19. Sridharan, G., Kumbhkar, R., Mandayam, N.B., Seskar, I., Kompella, S.: Physical-layer security of NC-OFDM-based systems. In: IEEE Military Communications Conference (MILCOM), pp. 1101–1106 (2016)

    Google Scholar 

  20. Wei, H., Sun, H.: Using Bayesian game model for intrusion detection in wireless Ad Hoc networks. Int. J. Commun. Netw. Syst. Sci. 3(7), 602–607 (2010)

    Google Scholar 

  21. Yu, W., Ginis, G., Cioffi, J.M.: Distributed multiuser power control for digital subscriber lines. IEEE J. Sel. Areas Commun. 20, 1105–1115 (2002)

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported in part by a grant from the U.S. Office of Naval Research (ONR) under grant number N00014-15-1-2168.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrey Garnaev .

Editor information

Editors and Affiliations

A Appendix

A Appendix

Proof of Theorem 1:

Since \(v^j({\varvec{P}}^1,{\varvec{P}}^2)\) is concave on \({\varvec{P}}^j\), (a) follows [2]. The KKT Theorem straightforward implies (b).

(c) It is clear that the sets of equilibrium coincide for the games with payoffs scaled by positive multiplies. That is why, to find equilibrium instead of the original game with payoffs \((v^1,v^2)\) we can consider equivalent game with payoffs \((V^1,V^2)=(v^1,q^1v^2)\). The last game is an exact potential game [14], and so, the best response algorithm converges. Recall that the game with payoffs \((V^1,V^2)\) is an exact potential game if and only if there is a function \(V({\varvec{P}}^1,{\varvec{P}}^2)\) such that for any strategies \(({\varvec{P}}^1,{\varvec{P}}^2)\) and \(({\varvec{P}}^1_*,{\varvec{P}}^2_*)\) the following conditions hold:

$$\begin{aligned} \begin{aligned} V({\varvec{P}}^1_*,{\varvec{P}}^2)-V({\varvec{P}}^1,{\varvec{P}}^2)&=V^1({\varvec{P}}^1_*,{\varvec{P}}^2)-V^1({\varvec{P}}^1,{\varvec{P}}^2), \\ V({\varvec{P}}^1,{\varvec{P}}^2_*)-V({\varvec{P}}^1,{\varvec{P}}^2)&=V^2({\varvec{P}}^1,{\varvec{P}}^2_*)-V^2({\varvec{P}}^1,{\varvec{P}}^2). \end{aligned} \end{aligned}$$
(17)

It is clear for the function

$$ V({\varvec{P}}^1,{\varvec{P}}^2)=q^1\sum \limits _{i=1}^n\ln (\sigma ^2+ h^1_iP^1_i+ h^2_iP^2_i)+q^0\sum \limits _{i=1}^n\ln (\sigma ^2+ h^1_iP^1_i) $$

the condition (17) holds, and the result follows. \(\quad \blacksquare \)

Proof of Theorem 2:

Since \(v^j({\varvec{P}}^1,{\varvec{P}}^2)\) is concave on \({\varvec{P}}^j\), by KKT Theorem, \(({\varvec{P}}^1,{\varvec{P}}^2)\) is an equilibrium if and only if there are \(\omega ^1\) and \(\omega ^2\) (Lagrangian multipliers) such that the following conditions hold:

$$\begin{aligned} \frac{q^1 h^1_i}{\sigma ^2+ h^1_iP^1_i + h^2_iP^2_i}+\frac{q^0 h^1_i}{\sigma ^2+ h^1_iP^1_i} {\left\{ \begin{array}{ll} =\omega ^1,&{}P^1_i>0,\\ \le \omega ^1,&{}P^1_i=0, \end{array}\right. } \end{aligned}$$
(18)
$$\begin{aligned} \frac{h^2_i}{\sigma ^2+ h^1_iP^1_i + h^2_iP^2_i} {\left\{ \begin{array}{ll} =\omega ^2,&{}P^2_i>0,\\ \le \omega ^2,&{}P^2_i>0. \end{array}\right. } \end{aligned}$$
(19)

Thus, by (18) and (19), we have that

(a) if \(P^1=0\) and \(P^2=0\) then \(h^1_i/\sigma ^2\le \omega ^1\) and \(h^2_i/\sigma ^2\le \omega ^2\),

(b) if \(P^1>0\) and \(P^2=0\) then \(P^1_i=1/\omega ^1-\sigma ^2/h^1_i\) with \(h^1_i/\sigma ^2> \omega ^1\) and \(h^2_i/h^1_i\le \omega ^2/\omega ^1\).

(c) if \(P^1=0\) and \(P^2>0\) then \(P^2_i=1/\omega ^2-\sigma ^2/h^2_i\) with \(h^2_i/\sigma ^2> \omega ^2\) and \(q^1h^1_i/h^2_i\omega ^2 + q^0h^1_i/\sigma ^2 \le \omega ^1\).

(d) if \(P^1>0\) and \(P^2>0\) then

$$ P^1_i=\frac{q^0}{\omega ^1 -q^1 h^1_i \omega ^2/h^2_i}-\frac{\sigma ^2}{h^1_i} \text { and } P^2_i=\frac{1}{\omega ^2} - \frac{h^1_i}{h^2_i}\frac{q^0}{\omega ^1 -q^1 h^1_i \omega ^2/h^2_i}, $$

and the result follows. \(\quad \blacksquare \)

Proof of Theorem 3:

The set of the channels jointly used by both users is \(I_{11}(\omega ^1,\omega ^2)=\left\{ i: \omega ^2/h^2_i<\omega ^1/h^1_i< q^1\omega ^2/h^2_i+q^0/\sigma ^2\right\} \). First, note that due to \(q^1\omega ^2/h^2_i+q^0/\sigma ^2>\omega ^2/h^2_i\) and \(q^0+q^1=1\) yield that \(\sigma ^2>\omega ^2/h^2_i\). Then, \(q^1\omega ^2/h^2_i+q^0/\sigma ^2= q^0(1/\sigma ^2-\omega ^2/h^2_i)+\omega ^2/h^2_i\) is increasing on \(q^0\), and the result follows. \(\quad \blacksquare \)

Proof of Theorem 5:

Since \(v^j({\varvec{P}}^1,{\varvec{P}}^2)\) is concave on \({\varvec{P}}^j\), by KKT Theorem, \(({\varvec{P}}^1,{\varvec{P}}^2)\) is an equilibrium if and only if there are \(\omega ^1\) and \(\omega ^2\) (Lagrangian multipliers) such that the following conditions hold for \(m=1,2:\)

$$\begin{aligned} \frac{h^m_i}{\sigma ^2+ h^1_iP^1_i + h^2_iP^2_i} {\left\{ \begin{array}{ll} =\omega ^m,&{}P^m_i>0,\\ \le \omega ^m,&{}P^m_i=0. \end{array}\right. } \end{aligned}$$
(20)

Then, by (20),

$$\begin{aligned} (P^1_i,P^2_i)\!=\! {\left\{ \begin{array}{ll} (0,0),&{}h^1_i/\omega ^1\le \sigma ^2 \text { and } h^2_i/\omega ^2\le \sigma ^2,\\ \left( \frac{\displaystyle 1}{\displaystyle \omega ^1}-\frac{\displaystyle \sigma ^2}{\displaystyle h^1_i},0\right) ,&{}h^1_i/\omega ^1> \sigma ^2 \text { and } h^2_i/\omega ^2 \le h^1_i /\omega ^1,\\ \left( 0,\frac{\displaystyle 1}{\displaystyle \omega ^2}-\frac{\displaystyle \sigma ^2}{\displaystyle h^2_i}\right) ,&{}h^2_i/\omega ^2> \sigma ^2 \text { and } h^1_i/\omega ^1 \le h^2_i /\omega ^2,\\ \sigma ^2+ h^1_iP^1_i + h^2_iP^2_i=\frac{\displaystyle h^1_i}{\displaystyle \omega ^1}=\frac{\displaystyle h^2_i}{\displaystyle \omega ^2},&{} h^1_i/\omega ^1=h^2_i/\omega ^2> \sigma ^2. \end{array}\right. } \end{aligned}$$
(21)

By (21), if \(P^1_i>0\) and \(P^2_i>0\) then \(h^2_i/h^1_i=\omega ^2/\omega ^1\). Thus, by (8), both strategies can employ only at most one channel for joint use. Moreover, there is a k such that

$$\begin{aligned} P^1_i{\left\{ \begin{array}{ll}>0,&{}i<k-1,\\ \ge 0,&{}i=k,\\ =0,&{}i>k, \end{array}\right. } \text { and } P^2_i{\left\{ \begin{array}{ll} =0,&{}i<k-1,\\ \ge 0,&{}i=k,\\>0,&{}i>k, \end{array}\right. } \end{aligned}$$
(22)

where (a) \(P^1_k>0\) and \(P^2_k>0\) if \(h^2_k/h^1_k=\omega ^2/\omega ^1\), (b) \(P^1_k>0\) and \(P^2_k=0\) if \(h^2_k/h^1_k< \omega ^2/\omega ^1\), and (c) \(P^1_k=0\) and \(P^2_k>0\) if \(h^2_k/h^1_k>\omega ^2/\omega ^1\).

Thus, by assumption (8), we have to consider separately two cases: (A) there is a k such that \(h_k<\omega ^2/\omega ^1<h_{k+1}\), (B) there is a k such that \(h_k=\omega ^2/\omega ^1\).

(A) Let there exist a k such that \(h_k<\omega ^2/\omega ^1<h_{k+1}\). Then, by (21), (22) and the fact that \({\varvec{P}}^1\in \varPi ^1\) and \({\varvec{P}}^2\in \varPi ^2\), we have that \({\varvec{P}}^1\) and \({\varvec{P}}^2\) have to be given by (12), and \(\omega ^1=\omega ^1_k\) and \(\omega ^2=\omega ^2_k\). Thus, (11) also has to hold.

(B) Let there exist a k such that \(h_k=\omega ^2/\omega ^1\). Thus, (15) holds. Also, by (21), (22) and the fact that \({\varvec{P}}^1\in \varPi ^1\) and \({\varvec{P}}^2\in \varPi ^2\), we have that \({\varvec{P}}^1\) and \({\varvec{P}}^2\) have to be given by (14) and also the following condition has to hold:

$$\begin{aligned} \sigma ^2+ h^1_kP^1_k + h^2_kP^2_k=\frac{\displaystyle h^1_k}{\displaystyle \omega ^1}=\frac{\displaystyle h^2_k}{\displaystyle \omega ^2} \end{aligned}$$
(23)

By (23) with right side \(h^1_k/\omega ^1\), \(P^1_k=1/\omega ^1- (\sigma ^2+P^2_k)/h^1_k<1/\omega ^1- \sigma ^2/h^1_k\). Substituting this \(P^1_k\) into (14) and taking into account that \({\varvec{P}}^1\in \varPi ^1\) yield that

$$\begin{aligned} \omega ^1\le \omega ^1_k. \end{aligned}$$
(24)

Similarly, dealing with strategy \({\varvec{P}}^2\) in condition (23) with right side \(h^2_k/\omega ^2\) implies that

$$\begin{aligned} \omega ^2\le \omega ^2_{k-1}. \end{aligned}$$
(25)

By (14), the condition (23) with right side \(h^1_k/\omega ^1\) is equivalent to

$$\begin{aligned} \sigma ^2+ h^1_k\left( \overline{P}^1-\sum \limits _{j=1}^{k-1}\left\lfloor \frac{\displaystyle 1}{\displaystyle \omega ^1}-\frac{\displaystyle \sigma ^2}{\displaystyle h^1_i}\right\rfloor _+\right) + h^2_k\left( \overline{P}^2-\sum \limits _{j=k+1}^{n}\left\lfloor \frac{\displaystyle 1}{\displaystyle \omega ^2}-\frac{\displaystyle \sigma ^2}{\displaystyle h^2_i}\right\rfloor _+ \right) =\frac{\displaystyle h^1_k}{\displaystyle \omega ^1}. \end{aligned}$$
(26)

Substituting (15) into (26) implies (16).

Since the left side of Eq. (16) is decreasing on \(\omega ^1\), by (24), it has a root if and only of \(F(\omega ^1_k)<\overline{P}^1+h_k \overline{P}^2\). This condition is equivalent to

$$ \overline{P}^2>\sum \limits _{j=k+1}^{n}\left\lfloor \frac{\displaystyle 1}{\displaystyle \omega ^1 h_k}-\frac{\displaystyle \sigma ^2}{\displaystyle h^2_i}\right\rfloor _+\,=\,(\text {by (15)})\,=\, \sum \limits _{j=k+1}^{n}\left\lfloor \frac{\displaystyle 1}{\displaystyle \omega ^2}-\frac{\displaystyle \sigma ^2}{\displaystyle h^2_i}\right\rfloor _+. $$

Thus, \(\omega ^2>\omega ^2_k\). Substituting (15) in the last inequality and taking into account (24) implies that

$$\begin{aligned} \xi _k<h_k. \end{aligned}$$
(27)

By (14) and (15), the condition (23) with right side \(h^2_k/\omega ^2\) is equivalent to

$$\begin{aligned} G(\omega ^2):=\sum \limits _{j=1}^{k-1}\left\lfloor \frac{\displaystyle 1}{\displaystyle \omega ^2}-\frac{\displaystyle \sigma ^2}{\displaystyle h^1_i h_k}\right\rfloor _+ + \sum \limits _{j=k}^{n}\left\lfloor \frac{\displaystyle 1}{\displaystyle \omega ^2}-\frac{\displaystyle \sigma ^2 }{\displaystyle h^2_i}\right\rfloor _+= \overline{P}^1/h_k+\overline{P}^2. \end{aligned}$$
(28)

Thus, by (25), this equation has a positive root if and only if \(G(\omega ^2_{k-1})<\overline{P}^1/h_k+\overline{P}^2\). By (15) and (28), this is equivalent to \(\omega ^1_{k-1}<\omega ^1\). This, jointly with (15) and (25), implies that \(\xi _{k-1}>h_k.\) Then, taking into account (27) yields (13), and the result follows. \(\quad \blacksquare \)

Rights and permissions

Reprints and permissions

Copyright information

© 2018 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Garnaev, A., Trappe, W., Kumbhkar, R., Mandayam, N.B. (2018). Impact of Uncertainty About a User to be Active on OFDM Transmission Strategies. In: Marques, P., Radwan, A., Mumtaz, S., Noguet, D., Rodriguez, J., Gundlach, M. (eds) Cognitive Radio Oriented Wireless Networks. CrownCom 2017. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 228. Springer, Cham. https://doi.org/10.1007/978-3-319-76207-4_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-76207-4_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-76206-7

  • Online ISBN: 978-3-319-76207-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics