N
N

N

HAL

open science

A dynamic scenario by remote supervision: a serious

game in the museum with a Nao robot

Damien Mondou, Armelle Prigent, Arnaud Revel

» To cite this version:

Damien Mondou, Armelle Prigent, Arnaud Revel.
serious game in the museum with a Nao robot. Advances in Computer Entertainment Technology,

Dec 2017, London, United Kingdom. pp.103-116, 10.1007/978-3-319-76270-8 8 . hal-01670562

HAL Id: hal-01670562
https://hal.science/hal-01670562
Submitted on 21 Dec 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

A dynamic scenario by remote supervision: a

https://hal.science/hal-01670562
https://hal.archives-ouvertes.fr

A dynamic scenario by remote supervision: a
serious game in the museum with a Nao robot.

Damien Mondou, Armelle Prigent, and Arnaud Revel

L3i - University of La Rochelle - France,
damien.mondou@univ-1r.fr,
Home page: http://13i.univ-larochelle.fr

Abstract. This paper presents a new approach to designing and su-
pervising an interactive experience. The approach is implemented by
creating a serious game with a Nao robot. This game allows youth to
discover the ethnographic artifacts of La Rochelle’s natural history mu-
seum in a playful manner. The design phase of the game is divided into
two steps. The first step defined the atomic behaviors grouped within
the pattern. In the second step, the agents implementing these patterns
were created; they specified the contents and behaviors to be executed
on the controlled process, in our case the Nao robot. The first objective
is to externalize the contents of the game (e.g. robot speech) and the real
behaviors of the process (e.g. the different postures and gestures of the
Nao) in a database. The second objective is to be able to define a serious
game without constraints on the process piloted.

Keywords: Robot, serious game, supervision, game design

1 Introduction

Museums continually search for new ways to both increase their visitor count and
allow visitors to discover the museum artifacts while gaining new knowledge. For
several years, the serious game has demonstrated that it can playfully help users
increase their understanding of a subject. The benefits of learning through play
have been demonstrated [24,9]. Thus, many cultural sites have been equipped
with fun features that allow visitors to find out about the collections or works
of art in another manner.

For it, museum’s curators may use on-screen games [7], augmented reality
[17], transmedia and virtual immersion solutions [5] to allow visitors to navigate
the artifacts and to learn about the cultural and artistic items at the cultural
center. A possible continuation of these serious games is playing with a robot,
which has been proposed for several years.

There are many advantages to interactive games with a robot. Robot-based
computer vision systems can be integrated into the museum space and challenge
a visitor to participate. Thus, a simple visitor can become a player for part of
their visit. In addition, people can visit the museum and play without having

to be equipped with a tablet, phone or others equipments which might interfere
with their visit.

In collaboration with the Museum of Natural History of La Rochelle in
France, we have developed an interactive experience for young visitors. This
serious game allows the youth to discover, in a interesting manner, the ethnog-
raphy section of the museum. This serious game is embedded in the Nao robot,
that was initially developed by the French company Aldebaran (now Softbank
Robotics). Nao encompasses a set of sensors (e.g. a camera, sonar, and tactile
sensors) that allow it to perceive the environment. This robot is also able to in-
teract with a person through its microphones and speakers. Thanks to a serious
game, Nao is in charge of the playful discovery of the museum’s artifacts.

In parallel with this experience and in the framework of a transdisciplinary
study conducted with a laboratory specialized in marketing research, we studied
the reactions of visitors to the presence of a robot in a cultural place. We found
that, depending on the age of the visitor, the reactions differ. Children responded
quicker to the robot and could be impatient waiting for the robot’s response;
adults were more hesitant. Thus, it is important to plan for different visitor
scenarios (e.g. accounting for the individual’s age).

It is important to note that scripting a game through a robot creates new
challenges in design, especially when several scenarios are desired. For instance,
the user can interact with the robot in various manners, which means these
different interactions must be precisely orchestrated. Thus, the robot can move
and gesture; see, recognize, and talk to the visitor; and wait for the visitor’s
responses. Another issue is that the current programming interfaces do not allow
for content outsourcing, which is a challenge for the replicability of the interactive
experience (e.g. in another museum).

In this paper, we offer an approach for the supervision of interactions with the
robot through a high-level model to represent the different execution contexts.

We propose a formal model for the scenario, a generic supervision tool and
the connection from Nao to the supervision tool (wrapper). After describing the
interactive experience with Nao, developed for the museum, we will present the
method for the game’s modeling and dynamic supervision.

2 Robots in Everyday Life

Robots become more and more present in our everyday lives and allow us to sim-
plify our daily activities. For instance, at King’s College London, the receptionist
is a robot named Inkha (Figure 1 (b)). Robots can also be found in supermar-
kets to help shoppers find different products and provide nutritional advice, such
as LoweBot [19], Aiko Chihira [23], and Pepper [3]. Robots can also be major
actors in artistic works, such as Nao [2] and Poppy [13]. Artists and scientists
have proposed a human-robot dance performance at the School of Moon in 2016
in order to question perceptions and representations of the body.

In this article, we are particularly interested in the presence of robots in
cultural places. We have found several projects that introduce robots in museums

Fig. 1. Experiences with robots in museums

for the reception and orientation of the visitors. Since 2014 at the National
Museum of Emerging Science and Innovation in Tokyo, two robots have been in
charge of welcoming visitors and can also read the news to them. At the Eppur
Si Muove exhibition at the Museum of Modern Art in Luxembourg, a Nao robot
with the base of a mobile robot (Figure 1(a)) is itself an interactive work and is
responsible for guiding and presenting the works to the public [10]. In France,
as part of a project on the artificial esthetism of machines, the robot Berenson
(Figure 1(c)) was deployed at the Quai Branly Museum. This robot behaves
like an art critic, as he expresses an emotion when he sees a work. His opinion
will evolve thanks to the reactions of the people around him [4]. Furthermore,
some museums, because of their architecture, are not accessible to people with
a motor handicap. The Oiron castle museum in France observed this issue and,
on the first floor of the museum, introduced a robot that is able to be remotely
controlled by a joystick from the ground floor, which allows individuals with a
handicap to visit the works that were previously inaccessible to them. This robot
is called Norio (Figure 1(d)) and has been used in the museum since November
2014 [11].

3 Playing with Nao in the Museum

The scenario proposed in our experiment aims to allow the visitor (or player)
to interact with the Nao robot to discover the Museum’s Kanak masks collec-
tions. The robot asks the player a number of questions. This first experiment of
dynamic supervision is based on an interactive quiz. With each new question,
the player is required to move around the museum to find the answer and give
it to the robot. Players can start a session with Nao at any time since a visual

recognition algorithm allows the robot to continue the question sequence with
the visitor.

Fig. 2. Nao in the La Rochelle museum, France

The experiment, shown in Figure 3, proceeds as follows. At the beginning of
the session, Nao is in a waiting position, the robot remains so until it detects
the presence of a human in its field of vision. Then, Nao attracts the visitor’s
attention by calling and inviting the individual. Once the visitor is close enough
to Nao, the robot asks the individual to place themselves in front of Nao in order
to trigger the visual recognition algorithm, which will allow the robot to identify
the player during the different phases of the session. If the face is recognized,
Nao resumes the question sequence with this identified visitor. If the robot does
not recognize the face, Nao asks the visitor if they want to play; if the visitor
refuses, Nao goes back into the waiting situation. If the user accepts, then Nao
records the visitor’s face with an identifier and starts the quiz.

Draw attention

|
In$orrect
answer

approach ! I
PP Face Khown face
recognition

« Do you want to
play with me ? »

|
No player reaction

T
Face detection
|

Visitor

«Hey,
approach!»

Fig. 3. The interactive experience scenario

3.1 First Approach : the Linear Programming of Nao

The first game session was completed by a purely linear development through
the graphical programming tool called Choregraphe, which was delivered with
Nao - and supported by Softbank Robotics - in order to pilot Nao. Choregraphe
is a simple tool for combining predefined behaviors and descriptions of new
behaviors, with Python language support. The pre-existing behaviors provided
to Nao can be modified, since the Python code is accessible from Choregraphe.
This tool offers some visual abstraction, which is then interpreted by the robot’s
NAOuqi, the software that runs on the robot and controls it. The visual language
of Choregraphe is translated through behaviors. Each behavior is defined by
a name, input(s), output(s), parameter(s), and typically a Python script that
contain the commands to be executed. When a signal arrives at the input, the
behavior is loaded and performed. Once the output is stimulated, the box is
onloaded.

O—[jr_l root]-[?ﬁil Interactions]-[%)ﬂ Present]
Approach [Learn face

Log Message

EI\I:\-"‘.'ait Far Sign:
||

ElislE]

N

Fig. 4. Choregraphe programming for the game

The entire interactive experiment in the museum was modeled and imple-
mented through Choregraphe. The model obtained can be compared to a Petri
net [20] where the places are behaviors (modeled by boxes) and the transitions
are the links between these behaviors. While this tool has proven to be effective,
it does not meet all of the researchers’ expectations. For instance, Choregraphe
does not make it possible to define a scenario, accounting for the space for
which it was designed. The goal is to be able to deploy this type of experience
in different museums with minimal processing effort. In order for this experience
to be adaptable to various museums, the contents of the experiment must also
be modified. Though the interactions are relatively simple and the sequence
with a player contains only three questions, the possible modifications of the
dialogues and, the content or the re-scheduling of the interactions proved to be
laborious and hazardous when they intervened shortly before a session with the

public. The final limitation concerns the temporality of the experience. We
wish to be able to apply a duration period to a particular event in the scenario,
such as a time limit on how long the visitor has to answer the question posed
by the robot.

3.2 Modeling and Dynamic Supervision of the Game

These different limitations led the researchers to propose a new architecture
allowing to take into account the activity’s temporality, to manage external con-
tents and to facilitate the deployment of the same scenario in another museum.
Softbank Robotics proposed a software development kit (SDK) in C++ and
Python to control Nao. Thus, we used the Python SDK in our approach. The
first step consisted of developing a wrapper which would allow dialogue to occur
between the robot and the supervision engine. Therefore, the robot’s sequence
consisted of waiting for a command that was supplied through a server (i.e. an
order corresponding to a module programmed in Nao that was triggered by the
supervision engine). The set of these orders (programming module) found their
match in the model we created. This modeling method then considered different
entities corresponding to the various possible states of Nao based on the sequence
of the quiz, including waiting, ”hey, approach”, facial recognition, and learning
the face. These entities were then grouped to define the execution contexts. The
architecture of our solution, which allows for the design ans supervision of an
interactive experiment (here, the Nao robot) is shown in the figure 5.

Curator
o /"{9’ """"""""""" ~~, Supervision
Curator i | file
’ (o)
U — Editor Generator/
1 verifier |
1
1 I
]
Contents E Specification ~ — | }e
o database \ file)
______________________________ ’ (=
&g/
Process expert 5“9:;‘;5'0" "‘
& a
Wrapper Process

Fig. 5. Architecture of the design and supervision of an interactive experience

As shown in figure 5, in the first step, the museum’s curator and process’
expert define the contents (e.g. the text of presentation of the works and quiz)
and the executable behaviors (e.g. postures and gestures) respectively and then
insert them into the database. The museum’s curator can then design the in-
teractive experience through the model’s editor. The curator uses the contents

present in the database to construct its scenario, associating the robot’s behavior
and speech and obtaining a specification file in XML format (Figure 7). This file
is then used to generate the supervision file which contains the scenario modeled
by timed automata as the input of the supervision tool. This tool, described in
the following section, will then pilot the robot thanks to the scenario designed
by the curator.

4 A Dynamic Supervision Approach

The final objective of our work is proposing a platform that allows for dynamic
adaptation to the user and that permits the supervision of the activity, taking
into account the content, interactivity, time, and space. Indeed, designing an
interactive experience that fully corresponds to a user is tricky. A way of man-
aging the quality of the experience is adjusting the content to the user’s context.
In this case, the management of the activity is based on an a priori modeling
approach called top-down, as management have been used in web adaptation
[26, 8] and in a video game adaptation framework [14, 16, 15].

We propose a formal model of the game’s execution based on two layers
of modeling. The behaviors of the entities are modeled by input/output finite
state machines, and the objective is to leave a significant possibility of choice
to the user while guaranteeing the quality of the narrative framework. A first
approach of dynamic supervision has been proposed in [22, 21], and having given
rise to a supervision framework called #Telling. We propose an extension of this
work that facilitate the control allows content outsourcing and time constraints
representation. Thus, #Telling, whose modeling is divided into three layers, can
supervise the activity based on the execution scenes. Although this framework’s
effectiveness has been proven, it does not allow for the temporal dimension to be
taken into account, in either the definition of the behavior or in the transition
from one situation to another. Finally, content management is not supported.
We propose a new model that is able to address these issues and simplify the
modeling phase of the experiment using the two-layer model, which is described
in the next section.

4.1 Two-Layers Model

Formal models have been proven to be effective for controlling interactive exper-
iments. Petri nets are often used to model and verify asynchronous activities,
particularly serious games [1,18]. Linear logic approaches have been used to
represent ressources consumption [6]. In our approach, we use timed I/O finite
state machines networks, which are more suited to represent synchronous sys-
tems with time constraints. Modeling an interactive experience is divided into
two parts:

— We first describe the experience in an abstract manner, by defining the
reusable entities (e.g. behaviors and patterns), modeled by timed automata.
This step creates the declarative layer;

— By instantiating patterns into agents, which are grouped into scheduled ex-
ecution contexts, we define the implementation layer.

The process of creating an interactive system is illustrated in Figure 6.

Declarative
variable
N

|

| Chan*

‘ Clock |

Behavior

layer

Initialization

Declarative

| Behavior
: Process
|
|

I
I
g Agent Agent .) | Parameter | Output |
= variable 8 :
©
s, 4 I
< o Context
> variable Context 1
1= © | Content
@ ' _ ,
Qo Global Context T T/ T/ T/ T
g variable graph

*chan is a signal allowing the behaviors’ synchronization

Fig. 6. Two-layer approach for interactive modeling with content management

Declarative layer The declarative layer is the layer in which we define the
generic entities of the modeled system, namely the atomic behaviors that can be
executed. These behaviors are associated with declarative variables (e.g. integers,
strings or Boolean) and channels, which are signals that allow several behaviors
to be synchronized. The behaviors are then grouped into patterns that represent
a set of entity specific behaviors that can be reused by the multiple inheritance
principle.

Implementation layer The implementation layer is the layer where the de-
signer defines the agents, that can instantiate the behaviors of several patterns
and aggregate atomic behaviors not present in the instantiated patterns. This
principle of multiple inheritance allows the designer to reuse the patterns defined
in the declarative layer as many times as necessary without needing to redefine
the patterns. When the designer is defining the agents, for each behavior they
specify the content or action to be performed on the process. These agents are
then linked in execution contexts representing the specific context in which
agents interact with each other.

<specification id="Nao">
<declarative_layer>
<chan id="confirmGame"/>
<clock i
<behavior
<behavior
<behavior
<behavior
<pattern i
<behavior
<behavior
</pattern>
</declarative_layer>
<implementation_layer>
<agent id="speechAwait">
<pattern id="animatedSay"/>

The module 673
corresponding to the speech
module is associated with the
Dehavior «say» . The content

number 9 will uttered by the

<behavior '.n=".s._1y" clas Module" value="673" success="" fail="">] N, robolin French ala speed

<parameter id="language" value="french"/> of 90%.

<parameter i speedSpeech" value="90"/>

<content value="9"/>
<fbehay10r_> _ - Association of the gesture
<behavior id="animate" class="Gesture" value= ' success= U with the id 247 in

<fau_|'€ht_ = database with the behavior
<agent id="speechExplain"> 5

<pattern id- nimatedSay"/> «animate»
<behavior id="say" class="Module" value="673" success="" fail="">

<parameter id="language" value

<parameter speedSpeech” wval

<content value="6"/>
</behavior>
<behavior id="animate" cl
<behavior "speechReco"

<parameter i

<parameter

<parameter id="confidence" value="45"/>

SuLput 10— wordRecognized >
<value="oui" launch="confirmGame!"/
<value="non" launch="noGame!"/>

<default launch="noGame!"/>
Joutput>
</behavior>
</agent>
<context i wait">
<agent "speechAwait"/>
<agent id="pecpleDetection"/>
</context>
<contextGraph>

<clock id="¥"/>
<global_variable i
<context id="await
<successor i
<successor id=
</context>

"nbPlayer" type="integer"
init="txue">

</contextGraph>
</implementation_layer>
</specification>

await" synchronization="errorDetection?" timeM
explain" synchronization="detectUser?" timeMin=

Qutput of the speech recognition module. Two
answers are expected "oui” or "non". A
specilic signal is Lhen sent for each case.

value="0"/>

Fig. 7. Scenario specification in XML format

4.2 Example of the Model for the Robot in Museums

We used our two-layer model to pilot the Nao robot in the natural history
museum. We now present examples of behaviors for the implementation of the
serious game embedded in the robot. In the declarative layer, we defined two
behaviors, including ”say” and ”animate”. Our scenario contains several phases
in which the robot had to make a speech while being animated. We combined
these two behaviors in an ”animatedSay” pattern. This pattern can be reused
as many times as necessary in the implementation layer.

For example, we wanted to define a ”speechAwait” agent who would be
responsible for attracting visitors. This agent would implement the previously
defined ”animatedSay” pattern. When defining the agent, the designer would
perform a specification of the ”say” and ”animate” behaviors.

Thus, according to Figure 7, the module with ID number 673 in the database
is associated with the ”say” behavior and corresponds to the speech module
programmed in Nao. With this behavior, we associated the content with ID
number 9, which represents the speech uttered by the robot. Speed speech and
language parameters had to be entered.

The interactive experience thus scripted was modeled by timed automata.
We then obtained a supervisory file, as the input of our supervision tool.

4.3 Dynamic Supervision

This section introduces the dynamic supervision of the interactive experience.
Since the interactive experience has been modeled, our supervision tool was
responsible for running the experience and invoking it remotely in the Nao robot.
The aim of our platform was to dissociate the modeling and the supervision of
the activity. It was then possible to use the same model to control different
processes, provided one develops a specific client for each process. A sequence
diagram of the supervision is detailled in Figure 8.

This supervision tool uses the specification file previously generated as an
input and loads the defined context graph (Figure 9). The transition from one
context to another is completed by receiving signals (e.g. errorDetection, wait,
detectUser, noGame and confirmGame) from a source context. The transition
can also be done via global variables to which we can apply guards and updates,
like an automaton. Thus, we define four contexts:

— Waiting: The robot goes into the rest position and waits until it detects the
presence of a visitor. If a detection problem occurs, the context re-executes
with the signal errorDetection. Otherwise, the supervision tool changes to
the Fzxplain context;

— Explain: At this step, the serious game is presented and the robot asks the
visitor if they want to play;

— Disappoint: The visitor left or does not want to play. Nao expresses disap-
pointment;

I
%
z
3

Content Supervision Server Process
database tool client robot)
T T
|

| ! |
I I !
} } 1: Open socket }
} 2: Connection 3: Open socket

| :‘ 4: Load specification file

|
I
}
I
i
| | 5: Load execution context
I
I |
sdLoop | |
| 7: Get content and behavior to :‘ 6: Choose a transutmT
! be execute on the process

0
-9
[y
(o]
Q
ae=l
1— I

content to execute

i
I

T

I

I

|

|

I

I

I

I

| I
8: Send behavior and } }
| 8.1: Data transmission

8.1.1: Order translaté

8.1.2: Execution on the process

e
[N
o
>
Q
=
=1
o
5
o
c
s

0
i 8.1.2.1.1: Action output [J<~~ """~~~
8.1.2.1.1.1: Action output [T~~~ "~~~ "~~~

S

Fig. 8. Supervision sequence diagram

— Quiz: Here, the robot utilizes a facial recognition to determine if it knows
the player. If Nao knows the individual, the robot waits for the answer to
the question previously asked; otherwise, Nao learns the player’s face and
ask them a question.

Each context is defined as a timed automaton, and each transition resembles
a command to be executed on the process. An example of the context ” Waiting”
is shown in Figure 10.

This serious game is executed on the Nao robot. We use the Python SDK
provided by Softbank Robotics to control the robot through a client developed
for this purpose. Each controlled process must possess its own client in order to
interpret the data received from the server. The client links the supervision tool
and the controlled process. Nao receives orders from the supervision tool and
translates them into a language that is understandable by the robot.

5 Conclusion and Future Work

This paper presented a supervision model for interactive experiences. The mod-
eling was divided into two steps. The first step defined the atomic behaviors
grouped within the pattern. In the second step, the agents implementing these
patterns were created; they specified the contents and behaviors to be executed

wait?

errorDetection?

detectUser?

confirmGame? noGame?

wait

DetectPersonOutput
[numberOfFaces == 0]
errorDetection!

X<=5

Say

module::673
content::9

Animate
gesture::247

X>=3
X<=15 =0

DEtE ctPerson

module::678
X>10
X:=0

DetectPersonOutput
[numberOfFaces >= 1]
detectUser!

Fig.9. Context graph of the serious
game

Fig. 10. Context ” Waiting” modeled by
time automaton

on the controlled process (the Nao robot). Our contribution lies in two main
points:

— A simplified construction of the scenario based on a two-layer model
that helped with the modularity, reuse and automatic construction of the
entities;

— The external content management. Conventional design tools (like Chore-
graphe) do not allow this management. The modeling and adaptation of an
experiment from one museum to another would have been laborious tasks.
Thanks to our approach, the contents were managed externally. Our super-
vision tool was then in charge of recovering the contents in the database to
control the process.

With the exception of the editor for designing the supervision’s input file
(which was thus designed manually), which is under development, all of these
features were implemented. To test this approach, we modeled a simple serious
game with the Nao robot. The validation of our model allows us today to consider
the design of a more complex game. In the long run, we aim to combine this
top-down approach with a bottom up approach [25,12] in order to integrate a
relevance loop. Thus, due to the observations made during the execution of the
activity and the machine learning process, we aim to be able to modify the a
priori model by adding or removing behaviors. The machine learning process will
allow the experience to be adaptated to the actual behavior of the end user, which
is nearly impossible to predict during the design. Finally, we want to extend our
model to the management of the locations where the different contexts of the

scenario are executed; this outreach will allow us to take advantage of the visitors’
real-time geolocation thanks to the e-beacon technology. It will also be possible
to choose the dialogues and behaviors of the robot according to the observed
displacements of the visitor.

References

10.

11.

12.

13.

14.

15.

16.
17.

Aratjo, M., Roque, L.: Modeling Games with Petri Nets. Digital Games Research
Association (DiGRA) (2009)

Aspord, E., Becker, J., Grangier, E.: Link human/robot. Van Dieren eds (2014)
Boom, D.V.. Pepper the humanoid robot debuts in france,
https://www.cnet.com/news/pepper-the-popular-humanoid-robot-debuts-in-
france/, year=2015

Boucenna, S., Gaussier, P., Andry, P., Hafemeister, L.: A robot learns the facial ex-
pressions recognition and face/non-face discrimination through an imitation game.
International Journal of Social Robotics 6(4), 633—652 (Nov 2014)

Carrozzino, M., Bergamasco, M.: Beyond virtual museums: Experiencing immer-
sive virtual reality in real museums. Journal of Cultural Heritage 11(4), 452 — 458
(2010)

Champagnat, R., Estraillier, P., Prigent, A.: Adaptative execution of game: Un-
folding a correct story. In: Proceedings of the 2006 ACM SIGCHI International
Conference on Advances in Computer Entertainment Technology. ACE 06, ACM,
New York, NY, USA (2006), http://doi.acm.org/10.1145/1178823.1178941
Coenen, T., Mostmans, L., Naessens, K.: Museus: Case study of a pervasive cultural
heritage serious game. J. Comput. Cult. Herit. 6(2), 8:1-8:19 (May 2013)

De Virgilio, R.: AML: A modeling language for designing adaptive web applica-
tions. Personal and Ubiquitous Computing 16(5), 527-541 (2012)

Dietze, D.: Playing and learning in early childhood education. Wadsworth Pub-
lishing Company (2011)

Henaff, P.: Entre art et science: Guido, un robot guide espiegle au musée d’art
moderne de luxembourg. session vidéo, Journées Nationales de la Recherche en
Robotique (JNRR) (october 2015)

Khlat, M.: Norio, the robot guide of the oiron castle (2014), http

/ /www.tourmag.com/Norio — the — robot — guide — of — the — Oiron —
Castley71190.html

Kop, R., Toubman, A., Hoogendoorn, M., Roessingh, J.J.: Evolutionary Dynamic
Scripting : Adaptation of Expert Rule Bases for Serious Games 2, 53-62 (2015)
Lapeyre, M., Rouanet, P., Oudeyer, P.Y.: Poppy: a New Bio-Inspired Humanoid
Robot Platform for Biped Locomotion and Physical Human-Robot Interaction. In:
Proceedings of the 6th International Symposium on Adaptive Motion in Animals
and Machines (AMAM). Darmstadt, Germany (Mar 2013)

Liapis, A., Martinez, H.P., Togelius, J., Yannakakis, G.N.: Adaptive game level
creation through rank-based interactive evolution pp. 1-8 (Aug 2013)

Louchart, Y., Aylett, R.: Emergent narrative, requirements and high-level archi-
tecture p. 308 (2004)

Magerko, B.: Building an interactive drama architecture (2003)

Miyashita, T., Meier, P., Tachikawa, T., Orlic, S., Eble, T., Scholz, V., Gapel, A.,
Gerl, O., Arnaudov, S., Lieberknecht, S.: An augmented reality museum guide. In:

18.

19.

20.

21.

22.

23.

24.

25.

26.

Proceedings of the 7th IEEE/ACM International Symposium on Mixed and Aug-
mented Reality. pp. 103-106. ISMAR ’08, IEEE Computer Society, Washington,
DC, USA (2008)

Natkin, S., Vega, L.: A Petri Net Model for the Analysis of The Ordering of Actions
in Computer Games. In: GAME ON 2003. France (Jan 2003), london, October 2003
Prnewswire: Lowe’s introduces lowebot - the next generation robot to en-
hance the home improvement shopping experience in the bay area (2016),
http://www.prnewswire.com/news-releases/lowes-introduces-lowebot—the-next-
generation-robot-to-enhance-the-home-improvement-shopping-experience-in-the-
bay-area-300319497.html

Reisig, W.: A Primer in Petri Net Design. Springer Compass International, Springer
Berlin Heidelberg (2011)

Rempulski, N.: Synthése dynamique de superviseur pour l’exécution adaptative
d’applications interactives. Ph.D. thesis, Université de La Rochelle (2013)
Rempulski, N., Prigent, A., Courboulay, V., Perreira Da Silva, M., Estraillier,
P.: Adaptive Storytelling Based On Model-Checking Approaches. International
Journal of Intelligent Games & Simulation (IJIGS) 5(2), 33-42 (Nov 2009)
reuters: Humanoid robot starts work at japanese depart-
ment store, http://www.reuters.com/article/us-japan-robot-store-
idUSKBNONB10Z20150420

Samuelsson, I.P., Fleer, M.: Play and learning in early childhood settings : inter-
national perspectives. Springer Dordrecht ; London (2008)

Spronck, P., Ponsen, M., Postma, I.S.k.E.: Adaptive game Al with dynamic script-
ing pp. 217-248 (2006)

Wang, C., Wang, D.Z., Lin, J.L.: ADAM: An adaptive multimedia content descrip-
tion mechanism and its application in web-based learning. Expert Systems with
Applications 37(12), 8639-8649 (2010)

